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Abstract: Concept drift is the phenomenon where underlying data distribution changes over time unexpectedly.
Examining such drifts and getting insight into the executing processes at that instance of time is a big challenge.
Prediction models should be capable of handling drifts in scenarios where statistical properties show abrupt changes.
Various strategies exist in the literature to deal with such challenging scenarios but the majority of them are limited
to the identification of a particular kind of drift pattern. The proposed approach uses online drift detection in a
diversified adaptive setting with pruning techniques to formulate a concept drift handling approach, named ensemble-
based online diversified drift detection (En-ODDD), with an aim to identify the majority of drifts including abrupt,
gradual, recurring, mixed, etc. in a single model. En-ODDD is equipped with a dynamically updated ensemble to
speed up the adaptability to changing distributions. Unlike prevalent approaches, which do not consider correlations
between experts, En-ODDD entails experts using varying randomized subsets of input data. Different levels of sampling
having been applied for diversity generation to promote generalization. Prediction accuracy has been used to evaluate
the effectiveness of the proposed approach using Massive Online Analysis software and compared with ten state-of-the-
art algorithms. Experimental results on fifteen benchmark datasets (artificial and real-world) having up to one million
instances depict that En-ODDD outperforms the existing approaches irrespective of nature of drift.
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1. Introduction
In today’s world, a wide range of application domains like adaptive system control, text mining, and information
retrieval generate in-stream data and many among them register concept drift [1, 2]. Adversarial conditions,
changes in population, switching of user interests, and complexity of the environment are various reasons for
drift to occur. Furthermore, with the passage of time, data that were once used to train the classifiers become
outdated, thereby reducing the prediction capability of the model. To handle nonstationary types of data is
a challenging task in stream mining. Relevant works are mainly classified as online or block-based techniques.
In block-based techniques, data are processed in the form of fixed-size or variably sized batches [3, 4], whereas
online approaches analyze instances on the go [5, 6]. Both of them can use either an explicit drift detection
mechanism [7–9] or implicit adaptive strategy to handle evolving data distribution. In adaptive approaches,
high computational cost is incurred due to constant updating of ensemble members even in the absence of drift.
On the other hand, drift detector-based techniques are sometimes not effective as they lack perfectly updated
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component classifiers. They might face catastrophic forgetting, especially in the case of recurrent changes.
Hence it is imperative to combine characteristic features of both groups such that a better adaptation to all
kinds of drifts is achieved. Majority of the existing streaming approaches do not focus upon the the use of
diverse ensemble components. Ensemble members trained on similar data become almost the same after long
periods of stability and consequently do not react well to incoming streams. Thus, to enhance the true detection
capability, algorithms should consider the diverse effects of statistical changes corresponding to specific drift
patterns [5].

Considering these motivations, a novel concept drift detection technique has been proposed. This paper
puts forward a hybrid diversity-based approach in line with the characteristic features of both the explicit and
adaptive techniques. The contributions of our paper are summarized as follows:

Ensemble-based online diversified drift detection (En-ODDD): The paper introduces an explicit
trigger-based drift detection mechanism in the dynamically updated block-based ensemble framework, which
obtains high prediction performance in varied data stream settings. The ensemble experts are built using the
most recent data chunk and are pruned in a timely manner to deal with the deteriorating performance of the
overall ensemble and cope with drifting data.

Diversified incremental training: En-ODDD augments the usual incremental training by deployment
of an online bagging approach at the time of creation as well as updating ensemble experts, which introduces
diversity and randomization to the input instances. We construct an ensemble of experts, which uses various
subsamples of training data to achieve high accuracy and generalization. This ensures effective learning of the
underlying models even during stable periods.

Extensive experimentation: The performance of the proposed concept drift-handling approach has
been evaluated to examine the effectiveness and reliability of En-ODDD on twelve artificial datasets and three
popularly used real datasets in the concept drift domain, namely Poker, Covertype, and Weather. Along with
the analysis of prediction accuracy, other performance measures such as model cost, training time, and testing
time have also been considered and validated using statistical tests.

Comprehensive empirical study: Results have been obtained by comparing ten existing online and
block-based algorithms by inducing a majority of drift patterns including gradual, abrupt, and recurring through
the Massive Online Analysis (MOA) framework for data streaming. Evaluation on complex combinations of
drifting streams, which are otherwise difficult to handle, is a major highlight.

The rest of the paper is organized as follows: in Section 2, overview of the related work is given. The
proposed approach, En-ODDD, is discussed in Section 3, while the methodology adopted is stated in Section 4.
The results along with discussion are provided in Section 5, along with statistical analysis. Section 6 highlights
the threats to the validity of the paper. Section 7 provides the conclusion of the work, giving points for future
extensions.

2. Related work
2.1. Basic notations
Concept is the quantity that a particular learning model (M ) is trying to predict. Concept drift refers to the
scenario in which statistical properties of the target concept or underlying conceptual data distribution changes
over time. In classification, a model is built with the objective of predicting the target class label yi (i = 1,
2,...m) of the incoming data instance x . At every time step t, the model analyses label training instances of X
= (x1, x2, x3, ....xt ) while an incoming instance xt+1 is treated as the testing instance. Prediction is based on
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Table 1. Summary of the main notations.

Symbol Description Symbol Description
D̂t Data distribution Pt(X, yi) Joint probability at time t
Ĉn Current data chunk |Ĉmax| Maximum chunk limit
X̂e Base model expert λ Poisson distribution value
ϵcut Drift threshold |Ê| Current ensemble size
L Maximum ensemble size ωb Weighted instance
MSEr Mean square error of randomly

predicting expert
δ Split confidence of learner

ti Tie-threshold n(min) Grace period value
θ Minimum fraction weight β Penalizing factor
Ff Friedman value R̄ Average ranks
χF

2 Friedman statistic N Number of datasets
p(y) Probability of class y k Number of algorithms for comparison
pky(x) Probability of instance x in class y Ĥ Final hypothesis function
λl Low diversity level λh High diversity level
CD Critical difference σ2

w Variance of W elements
m Harmonic mean of elements pf both

subwindows
δc Confidence level

the estimated distribution D̂t represented by joint probability Pt(X, yi) at time step t.

D̂t = Pt(X, y1), Pt(X, y2), Pt(X, y3), ..Pt(X, ym) (1)

Concept drift is registered whenever there occurs any change in joint probability between time step t0 and t1

[10].

∃X : Pt0(X, yi) ̸= Pt1(X, yi) (2)

2.2. Streaming approaches to handle and/or detect concept drift

Related works on approaches can be grouped into four types: ensemble-based update works, explicit detector-
based works, windowing-based works, and diversity-based works.

Many ensemble-based algorithms have been discussed in the literature, which are used to handle concept
drifts [4, 6, 11]. Compared to single classifier-based techniques they provide better adaptability to drifting
streams as they capture the dynamic concept under nonstationary conditions. Dynamic weighted majority
(DWM) [12], accuracy updated ensemble (AUE2) [3], and weighted majority algorithm (WMA)[13] are popular
ensemble-based techniques. They have weighted learners, which are built and removed from ensembles while
responding to drifts in prediction accuracy. However, their configuration depends only on a current batch
of examples and lack adaptability to sudden drifts. Generally, datasets constitute different types of drifts.
However, in most of the existing ensemble-based techniques, only a particular type of drift pattern is handled
[14, 15]. This paper incorporates the specific mechanism of a detector to handle abrupt drifts and constant
weight-based updates to handle gradual and recurring drifts. As the training of base learners of the ensemble is
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a time-consuming process, in En-ODDD multithreading is implemented to execute these operations in parallel
without any loss of prediction performance. Unlike existing approaches, which rely on learners trained from the
current chunk, En-ODDD leverages the relevant information from past ensemble members.

In the category of drift detectors [16], models use trigger mechanisms and statistical tests to identify the
drifts in distribution. In DDM [9] and EDDM [7], concept drift is signaled when misclassification error rates
exceed fixed threshold values. DDM works best for abrupt changes and EDDM handles gradual drifts. However,
the explicit detector-based approaches are usually trained to perform well for a specific type of drift pattern and
may not adapt otherwise. Moreover, they are quite sensitive to noisy streams as they lack continuous updating.
Our approach uses a detector-based ensemble setting, which is updated at regular intervals of batches and
detects all possible kinds of drifts. Moreover, our approach performs well even on noisy data streams.

In windowing-based detection techniques, models detect the concept drifts by using forgetting mechanisms
[8]. A sliding window, which considers current instances as the training dataset, is the commonly used approach.
Very fast decision tree (VFDT) [17] is an induction algorithm that modifies the decision tree without storing
instances once they have been used to train the model. Furthermore, CVFDT [18] was proposed, which had
fixed-sized windows to locate aged nodes. However, these approaches depend largely on the selection of optimum
window size to give good accuracy.

The work in [19, 20] highlighted diversity’s impact on the prediction capability of ensemble models.
Diversity for dealing with drifts (DDD) revealed that ensembles with multiple diversity levels perform differently
for various kinds of drifts [5]. However, these approaches fail to provide faster recovery from concept drifts in
longer durations of time. Our approach implements drift detection along with randomization of subsamples,
which leads to adaptability to drifts in the long term, as well.

The algorithm En-ODDD presented in this paper incorporates online drift detection in a diversified
adaptive setting while pruning the nonperforming experts at fixed intervals. Furthermore, different levels of
randomization have been applied to produce the best prediction results in the above setting. In the following
section, details of our proposed algorithm are discussed along with its characteristic features.

3. Proposed work
This section discusses the proposed approach, En-ODDD, which uses a drift detector in the online setting.

As seen in Figure 1, En-ODDD uses an ensemble-based model where a Hoeffding tree is used as a base
expert for building the ensemble. Initially, each incoming instance is added to Ĉn , the current chunk, until
the maximum chunk limit |Ĉmax| is attained (Algorithm 1: lines 1–3). Online bagging, which manipulates the
input instance, induces diversity in the base experts. The base expert X̂e is updated k̂ times (obtained from
the Poisson(λ) distribution) with the current instance (lines 5–8). As stated by Oza in [21], when the number
of instances used for training tends to infinity, the binomial distribution of the k̂ value tends to Poisson(λ)

distribution for λ = 1. Each expert has a separate drift detector, which constantly monitors the drift error
rate produced during classification of the current instance (Algorithm 2). The detector uses DriftErrWin , a
sliding window of variable length, storing the prediction of the current expert.

ϵcut =

√
2

m
.σ2

w. ln(
2n

δc
) +

2

3m
ln(

2n

δc
) (3)

Whenever the difference of distinctive average values between two subwindows is greater than the
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Figure 1. Block diagram for En-ODDD.

threshold ϵcut obtained using Eq. (3), a change in class distribution is signaled (line 12). To accommodate
this changing scenario, the worst performing expert (the one having the maximum drift error) is identified and
reset, and its drift error value is reinitialized to stabilize the ensemble with current distribution.

On attaining the predefined chunk limit (500 in the proposed scheme), the weights of existing experts
are updated with the current chunk using Eq. (5) where the probabilities of all input classes are considered
[3]. pky(x) denotes the probability that an expert X̂k classifies x as an instance of class y . Weights of experts
(wnonLinear ) depend upon the mean square error of their misclassification and that of a randomly predicting
expert, calculated on the current chunk Ĉn . In En-ODDD, a new expert X̂en is added and one of the existing
experts, with minimum weight, is pruned to maintain the consistency of the ensemble size (lines 21–25).

MSEr =
∑
y

p(y)(1− p(y))2 (4)

wnonLinear =
1

1
|Cn|

∑
{x,y}ϵCn

(1− pky(x))
2 +MSEr + ϵ

(5)

wnewExpert =
1

MSEr + ϵ
(6)

The weight assigned to X̂en , given by Eq. (6), depends only on the current data distribution. A small value of
ϵ is added to Eq. (6) for avoiding the error of dividing by zero. After replacement of an expert, as discussed
above, all the existing experts are updated using online bagging and Ĉn is reinitialized (lines 26–30). In due
course of time, after a stable duration, most of the ensemble experts become essentially identical as they are
trained on similar data instances. Here, diversity has been introduced by employing bagging to provide higher
generalization accuracy among the experts.
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Algorithm 1 Ensemble-based online diversified drift detection (En-ODDD).
⟨xi

t, y
i
t⟩ : ith training instance at time t with the feature vector ⟨xi⟩ and class label yi from dataset D

Ĉn : current chunk of instances
Ê : ensemble of experts X̂e

DriftErrWin : drift error window corresponding to the ensemble experts
DetectDrift: method to detect drift
|Ĉmax| : max size of chunk
|Ê| : current size of ensemble
L: maximum ensemble size where L ∈ N

1: for every instance bi ⟨xi
t, y

i
t⟩ in D do

2: driftSignal ← false
3: add bi to Ĉn

4: for all experts X̂e in ensemble Ê do
5: k̂ = Poisson(λ)

6: if k̂ > 0 then
7: weightedInstance ωb = weight(bi ) * k̂

8: update the expert X̂e with ωb

9: end if
10: driftSignal← DetectDrift(bi,DriftErrWin , X̂e)
11: end for
12: if driftSignal == true then
13: îd = LocateMaxDriftErrorExpert(Ê)
14: reset the learning expert X̂e[îd]

15: reset the DriftErrWin for the expert X̂e[îd ]
16: end if
17: if bi mod |Ĉmax| == 0 then
18: for each X̂e in Ê do
19: ŵe = WnonLinear using Eq. (5)
20: end for
21: construct the new expert X̂en on Ĉn and calculate its weight using Eq. (6)
22: if |Ê| ≥ L then
23: remove worst expert with min ŵe from Ê
24: end if
25: add X̂en to the Ê
26: for each X̂e in Ê do
27: TrainWithBagging(X̂e, Ĉn )
28: end for
29: end if
30: Reinitialize the Ĉn

31: end for
32: Output final hypothesis Ĥ : X → Y
33: Predict with ĥk(x

i
t) : δ[hk(x

i
t) = yit]

34: return Ĥ(xi
t) : arg maxyi

t

∑L
k=1 ŵkĥk(x

i
t)

4. Methodology

In this section the datasets used and the methodology adopted to perform a comparison of different concept
drift-handling techniques are discussed.
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Algorithm 2 DetectDrift(b, DriftErrWin , X̂e)).
1: Initialize Width, Variance, and Total
2: bit_var = correctlyClassify(b, X̂e) /∗ obtain the prediction bit for instance b by X̂e ∗/
3: insertElement(bit_var, DriftErrWin) /∗ insert prediction bit into drift error window ∗/
4: for every split of DriftErrWin into DriftErrWin0 .DriftErrWin1 do
5: µ̂DriftErrWin0

← Average of prediction in DriftErrWin0

6: µ̂DriftErrWin1
← Average of prediction in DriftErrWin1

7: if |µ̂DriftErrWin0
− µ̂DriftErrWin1

| > ϵcut then
8: driftSignal ← true
9: return driftSignal

10: end if
11: end for

4.1. Datasets
All the datasets, artificial and real, used to analyze the proposed approach have been described briefly in Table
2. Twelve artificial datasets have different variations of drifts simulated in them. Three real datasets, Covertype,
Poker, and Weather, commonly used in the concept drift domain, have been considered for experimentation
and evaluation purposes.

Poker is generated by varying the combination of suits and ranks of the five playing cards drawn from
a standard deck consisting of 52 cards [14]. It has ten predictive attributes (5 cards × 2 attributes–rank and
suit) along with one more attribute known as poker hand. This value is inferred after identification of the value
of the five cards in the game. A total of 25,000 instances are produced from this dataset.

The Covertype dataset is based on cover type information of forests obtained from the US Forest Service’s
regional resource information system data. Fifty-three cartographic variables define the examples of this dataset.
Instances may belong to one of the seven cover types based on the cartographic variables, and 581,012 instances
and 54 attributes represent this dataset [4].

Weather is based on records compiled by the US National Oceanic and Atmospheric Administration over
50 years of 9000 weather stations worldwide [22]. It is a meaningful real-world dataset, having a diverse and
extensive range of weather patterns along with meteorological data like temperature, wind speed, etc., making
it suitable for long-term prediction and drift problems.

4.2. Experimental setup

This section presents the empirical study conducted for comparison of results of existing classifiers with the
proposed approach. Experiments were performed using the MOA framework [23], a tool extensively used in
the data stream domain to analyze streaming approaches. A machine equipped with an Intel Core and i7-
6700 CPU @3.41 GHz processor having 8.00 GB of RAM has been used. An initial study was conducted,
which indicated that using a large number of classifiers does not increase the accuracy; instead, it increases the
time requirements. Taking this point into consideration, the number of learners considered in ensemble-based
approaches is 10, with a Hoeffding tree as the base learner of ensembles with δ = 0.01, n(min) = 100, and ti =
0.05. Chunk size of |d| = 500 is used for all datasets since this size value is considered as the minimal suitable
size for block-based ensembles. The ensemble experts are trained in parallel using separate individual threads,
which reduces the training time considerably. For a meaningful comparison between different algorithms, the
same parameter values have been set as stated above.
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Table 2. Characteristics of datasets.

Dataset #Instances #Attributes #Classes Type of drift Generator Drift description
Agrmix 1M 9 10 Mixed Agrawal

[23]
Three drifts each
after 250k instances

Mixincr 1M 4 2 Incremental Mixed [23] One drift after
500k instances

Mixgrdl 1M 4 2 Gradual Mixed One drift after
500k instances

Mixabr 1M 4 2 Abrupt Mixed One drift after
500k instances

RBFgrdl_rec 1M 20 4 Gradual
recurring

RBF [3] Four drifts each
after 125k instances

RBFmix 1M 20 4 Mixed RBF Four alternating
sudden and gradual
drifts each after
125k instances

Sinegrdl 1M 2 2 Gradual Sine [7] One gradual drift
with concepts switched
at angle of drift 45◦
after 500k instances

Treegrdl_rec 1M 5 4 Gradual
recurring

Random
Tree[17]

Four drifts each
after 200k instances

Treeabr_rec 1M 5 4 Abrupt
recurring

Random
Tree

Four drifts each
after 200k instances

Wavegrdl 400k 40 3 Gradual Waveform
[23]

Three drifts each
after 100k instances

Waveabr 400k 40 3 Abrupt Waveform Three drifts each
after 100k instances

Wavemix 1M 40 3 Mixed Waveform Three alternating
sudden and gradual
drifts each after
100k instances

Poker 25k 10 10 Unknown Real Unknown
Covertype 581k 13 7 Unknown Real Unknown
Weather 18k 8 2 Unknown Real Unknown

4.3. Evaluation using different diversity levels

To leverage the bagging performance, En-ODDD was tested by introducing different levels of diversity. As λ

is the parameter that largely influences the diversity, its impact on predictive accuracy was verified by tuning
it on training data. Table 3 presents the average accuracies obtained by performing 8 preliminary executions
using λ = 0.01, 0.1, 0.5, 1, 1.5, 2, 2.5, and 3 on each dataset. Additionally, the plot in Figure 2 depicts that
prediction accuracy in most of the considered datasets increases until λ = 1.5. However, the performance of
En-ODDD tends to converge for λ > 1.5. Thus, for analyzing the performance of the proposed approach, a
value of λ = 1.5 has been considered in all experiments.
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Table 3. Average classification accuracy (%) of En-ODDD using various values of λ .

λ = 0.01 λ = 0.1 λ = 0.5 λ = 1 λ = 1.5 λ = 2 λ = 2.5 λ = 3
Agrmix 80.61 86.34 90.84 91.56 92.61 92.82 92.78 92.46
Mixincr 91.75 95.86 98.40 98.97 99.12 98.90 99.33 99.31
Mixgrdl 91.43 95.74 98.43 98.96 99.10 98.90 99.31 99.33
Mixabrpt 91.96 95.88 98.59 98.91 99.14 98.95 99.30 99.33
RBFgrdl_rec 76.56 90.02 94.64 96.18 96.68 96.40 96.94 96.92
RBFmix 69.85 85.04 91.66 94.05 94.94 94.55 95.62 95.60
Sinegrdl 87.14 95.83 98.52 99.08 99.19 99.10 99.21 99.27
Treegrdl_rec 49.74 70.29 81.18 85.80 88.50 87.45 90.92 91.51
Treeabr_rec 60.68 77.51 86.14 89.33 91.06 90.04 92.74 93.07
Wavegrdl 77.46 79.65 82.50 83.84 84.02 83.67 83.42 82.98
Waveabr 78.45 80.91 83.25 84.42 84.46 84.28 83.89 83.63
Wavemix 80.82 80.96 83.34 84.65 84.77 84.52 84.32 83.90
Poker 48.18 48.51 50.76 54.96 56.62 51.91 58.81 59.04
Covertype 75.77 80.64 84.02 84.96 85.30 84.80 85.51 85.51
Weather 64.36 70.43 73.57 75.24 75.23 74.68 76.44 76.60
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Figure 2. Average classification accuracy of En-ODDD using different values of λ .

4.4. Evaluation using interleaved test-then-train method

In this methodology, every instance is used first for evaluating the existing classifier before using it for the
update process. However, the classifier is always tested on unseen instances [16]. Plots between the number
of processed instances and classification accuracy are drawn to examine the effect of the underlying classifiers
on concept drift. Accuracy has been evaluated as the percentage of instances classified correctly over the total
number of instances. Tables 4 and 5 present the results of the average accuracy and training time of the
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algorithms evaluated.

Table 4. Average classification accuracy in percentage [%].

Dataset DDD Oza AUE2 ACE DWM WMA NSE LevBag ARF En-ODDD
Agrmix 89.53 89.43 88.11 90.36 87.1 88.64 83.5 91.18 87.4 92.63
Mixincr 98.64 98.01 98.38 85.10 97.76 94.93 91.6 98.37 98.18 99.11
Mixgrdl 98.63 98.02 98.38 84.31 97.65 94.97 91.62 98.25 98.19 99.13
Mixabr 98.62 98.03 98.38 85.22 97.77 94.97 91.61 98.25 98.18 99.12
RBFgrdl_rec 96.11 96.25 94.69 84.04 89.6 88.56 77.99 96.12 86.08 96.72
RBFmix 93.94 94.07 91.68 83.97 86.52 83.66 73.77 95.09 85.34 95.13
Sinegrdl 98.83 98.35 98.57 87.36 98.06 95.55 89.32 98.2 95.84 99.14
Treegrdl_rec 80.29 67.08 79.68 53.29 65.47 59.24 44.27 82.26 59.48 88.21
Treeabr_rec 84.99 72.4 84.73 61.48 78.32 66.46 57.67 86.42 65.3 90.87
Wavegrdl 83.87 83.87 82.5 74.66 79.57 79.75 78.84 81.04 79.35 84.16
Waveabr 83.95 83.95 83.04 75.83 81.02 79.83 80.4 81.68 79.61 84.52
Wavemix 84.55 84.55 83.36 75.96 81.04 81.58 80.47 81.89 80.27 84.65
Poker 52.95 51.48 49.64 45.75 48.58 49.66 49.19 57.21 55.2 56.38
Covertype 65.75 82.21 84.28 49.07 82.54 76.79 77.85 83.52 84.82 85.32
Weather 61.18 75.1 73.34 73.00 72.34 72.8 73.2 75.7 77.38 75.81

Table 5. Average chunk training time in deciseconds.

Dataset DDD Oza AUE2 ACE DWM WMA NSE LevBag ARF En-ODDD
Agrmix 1.014 2.58 0.147 0.175 0.328 0.029 2.413 9.141 0.662 0.278
Mixincr 0.151 0.202 0.044 0.085 0.032 0.011 1.447 0.796 0.154 0.091
Mixgrdl 0.146 0.193 0.045 0.084 0.029 0.009 1.446 1.222 0.15 0.088
Mixabr 0.14 0.193 0.041 0.085 0.028 0.008 1.438 1.218 0.146 0.091
RBFgrdl_rec 1.987 1.763 0.566 1.719 0.295 0.102 20.12 4.822 0.457 0.62
RBFmix 0.895 0.654 0.657 1.795 0.353 0.099 5.342 2.554 0.457 0.667
Sinegrdl 0.187 0.306 0.068 0.147 0.089 0.014 1.859 2.089 0.245 0.111
Treegrdl_rec 0.917 5.295 0.226 0.462 0.259 0.048 5.698 10.364 0.529 0.302
Treeabr_rec 0.863 3.554 0.222 0.484 0.241 0.044 5.481 10.029 0.524 0.301
Wavegrdl 2.23 1.903 1.047 2.337 1.617 0.161 12.863 12.869 0.786 1.393
Waveabr 2.335 1.893 1.05 2.199 1.615 0.159 12.877 8.388 0.753 1.345
Wavemix 4.463 4.171 1.017 2.231 1.625 0.157 31.697 14.785 0.756 1.344
Poker 0.768 0.482 0.482 1.016 1.979 0.104 0.104 5.742 2.552 0.99
Covertype 2.612 4.594 1.124 1.974 1.37 0.239 11.754 2.968 1.377 1.454
Weather 2.261 0.478 0.57 0.827 0.882 0.129 0.386 4.063 1.967 0.882
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4.5. Parametric configuration

En-ODDD has been compared with both online and block-based algorithms by analyzing various performance
metrics as given in Table 6. To implement the ensemble-based approaches, the default values of the parameters
were used as per their configuration. In DWM, the factor to penalize experts (β ) is set to 0.5, minimum fraction
weight (θ ) is set as 0.01, and the value for the period between removal of the expert (p) is set to 50. In AWE
and AUE2, the number of classifiers to learn is set as 10 with a block size of 500. Various values of 250, 750,
and 1000 were also tested for the same but 500 provided the best average accuracy. The DDD algorithm is
chosen for experiments with λl = 1 and λh = 0.1, as it is an important approach considering the diversity of
ensembles. LearnNSE, online bagging, and leverage bagging are chosen as they are efficient representatives of
the ensemble-based online approaches.

5. Results and discussion
The performance of different algorithms under varying drift patterns for the datasets considered for evaluation
is presented. Due to limitation of space, we show the most interesting plots.

Experiments with wave generator: Figure 3 shows the accuracy achieved on the Waveabr dataset. The
best performing algorithms here are En-ODDD, DDD, and Oza, closely followed by AUE2 and LevBag. ARF,
WMA, and LearnNSE have relatively shown loss in performance. Here the first drift has major influence on
the accuracy, which seems to stabilize later. Probably the use of an explicit drift detector in En-ODDD works
best with abrupt changes and is the reason why the performance of the rest of the algorithms may not be as
good as that of this hybrid technique. ACE has shown poor results, however, despite the presence of a drift
detector, which may be attributed to the fact that it lacks pruning of poorly performing classifiers that are not
updated from time to time. As seen in Figure 4, En-ODDD and Oza show the most accurate results for mixed
dataset Wavemix comprising two gradually moving concepts separated by an abrupt drift at 500k instances.
Since AUE2 is not well equipped with any explicit drift detection, it performs more poorly compared to other
diversity-based approaches like DDD, ARF, and En-ODDD. However, DWM and LearnNSE handle this change
without largely affecting performance due to their adaptive nature. ACE shows a steady performance with
mixed drifts without much rise or fall near drift points.
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Figure 3. Classification accuracy on the Waveabr
dataset.
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Figure 4. Classification accuracy on the Wavemix

dataset.
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Table 6. Data stream learning techniques used in comparative analysis.

Algorithm Learning
process

Data
processing
mode

Drift
handling
mechanism

Detection
mechanism

Parameters considered

DDD [5] Ensemble Block Explicit EDDM λl: to maintain ensemble with
low diversity
λh: to maintain high diversity
ensemble
γ: drift detection parameter

LearnNSE(NSE)
[22]

Ensemble Block Implicit – a: sigmoid slope
b: sigmoid infliction point

Oza [21] Ensemble Online Implicit – l : base learner option
DWM [12] Ensemble Online Implicit – β: factor for decreasing weights

of experts (0 ≤ β < 1)
p: period between expert removal
θ: threshold for deleting experts

ACE [24] Ensemble Online Explicit α: confidence level factor
µ: adjustment factor of ensemble
Sa: short-term memory size

WMA [13] Ensemble Online Implicit – l: learner option list
β: penalty factor for experts
γ: minimum fraction of weight
per model
p: pruning factor

AUE2 [3] Ensemble Block Implicit – n: maximum no. of component
classifiers in ensemble
c: chunk size
m: maximum byte size of
ensemble memory

LevBag [25] Ensemble Online Implicit – λl: to maintain diversity ensemble
l: base learner option

ARF [6] Ensemble Online Explicit ADWIN
& PHT

λl: Poisson distribution parameter
GP: value of grace period taken
for split test heuristics
m: maximum no. of features
that are evaluated per split
δw: drift warning threshold
δd: drift alarm threshold
c(.): drift detection method

Experiments with Agrawal generator: En-ODDD performs well at all the three consecutive drift points,
i.e. at 250k, 500k, and 750k instances, with the accuracy of LevBag being slightly lower than it. The capability
to sustain accuracy by both is possible due to the presence of diverse ensemble components. The explicit drift
detector in En-ODDD and ACE helps them to recover from the drop in accuracy after the first drift. ACE
shows a steady accuracy near the drift point. DDD handles itself efficiently as compared to the others but most
of the algorithms like LearnNSE, DWM, and even AUE2 are severely affected by the first drift point. Even
ARF, which usually stabilizes itself after drift points, has shown a fall in accuracy largely after the first drift.
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Experiments with RBF generator: In this dataset, there is an interesting use case of four alternating drift
points at 125k, 250k, 500k, and 750k. En-ODDD, DDD, LevBag, and Oza have performed in similar manners
in recovering from these drifts. WMA and DWM failed to adapt to mixed drifts due to the absence of explicit
drift detectors. Despite the difference in the accuracy levels of ARF and LearnNSE being large, both have
shown a similar recovery nature after the drifts, possibly because of strong time similarity in data being used
for classification. In the case of RBFgrdl_rec there is a slight difference in the accuracy of diversity-based online
algorithms DDD, LevBag, Oza, and En-ODDD. In this scenario, there is no single best performing approach.
ARF has shown a severe drop in performance after 500k instances, which clearly shows it is not suitable in
gradually recurring drift scenarios.

Experiments with tree generator: Figures 5 and 6 illustrate the performance of classifiers on the
Treegrdl_rec and Treeabr_rec datasets, respectively. In the Treegrdl_rec scenario the speed of recurring changes
plays an important role. Although DWM has shown better adaptation to drift, En-ODDD performs quite well
by achieving better accuracy as compared to DDD for high speeding drift. Interestingly, LevBag outperformed
the others before the first drift point but showed a major drop in accuracy after that. AUE2 performs similar to
En-ODDD due to removal of buffer classifiers. Both Oza and LevBag do not adapt themselves to the recurring
drifts after every 250k instances as they lack any pruning mechanism. Results indicate that the diversified
ensemble without any drift control strategy is not enough to handle such situations. LearnNSE, WMA, and
ACE do not react well to recurring changes irrespective of speed of change. In the Treeabr_rec dataset, abruptly
recurring drifts are simulated after every 200k instances. En-ODDD, closely followed by the LevBag algorithm,
performs efficiently in this case. DDD and Oza have failed to respond to recurring drifts well. The absence
of a drift detector in Oza is a reason for poor adaptation to suddenly recurring concepts. WMA has shown
drastic decrease in accuracy. Furthermore, algorithms like LearnNSE and ACE, which do not prune their poorly
performing components, show decreases in accuracy.
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Figure 5. Classification accuracy on the Treegrdl_rec

dataset.
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Figure 6. Classification accuracy on the Treeabr_rec

dataset.

Experiments with real datasets: With all three real datasets, Poker, Weather, and Covertype, En-
ODDD performs consistently better than all the algorithms considered for comparison. Efficient performance
is accomplished because of the generalization in classification error produced due to diverse components. From
Figure 7, it is evident that adaptive approaches like AUE2, LevBag, ARF, LearnNSE, Oza, and DWM perform
relatively better in this case as compared to simulated drifts. The combination of online and adaptive approaches
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has helped En-ODDD achieve the best results. A significant drop in accuracy is observed in the DDD algorithm.
The combination of low and high diversity ensembles does not cater to drifts in this real dataset. As with most
of the artificial datasets, ACE continues to be a poor performer. Figure 8 analyzes the Poker dataset. There
is a sudden increase in the accuracy of the En-ODDD and LevBag algorithms after 10k instances. ARF and
DDD are also closely following them. However, other approaches like WMA and AUE2 show a consistent
performance with no increase in accuracy at any point of time. DWM, LearnNSE, and ACE are the worst
performing algorithms on this dataset.
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Figure 7. Classification accuracy on the Covertype
dataset.
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Figure 8. Classification accuracy on the Poker dataset.

5.1. Interpretability of the proposed approach
In the proposed approach, bagging is employed, which provides higher generalization accuracy to the ensemble
system. It creates varied training sets of random subsamples for continuous improvement and outputs weighted
aggregated results. However, as the process involves randomization, it sometimes makes the experiments less
interpretable in a single execution. Thus, to verify its correctness and reliability, ten repetitions of En-ODDD
were done for each dataset. Table 7 presents the results of average accuracy along with mean ± standard
deviation obtained over multiple runs to check interpretability. Furthermore, statistical tests were also performed
for analyzing the varied performance over multiple datasets. It can be concluded that the deviation among
multiple runs is not significant, making the approach reliable and trustworthy.

5.2. Trade-off analysis
Introduction of bagging in our approach increases the predictive accuracy of the underlying ensemble as better
training is achieved due to diverse learners. Figure 9 demonstrates that En-ODDD achieves the best accuracy
among all the algorithms compared for all the datasets. However, in Figure 10 we have compared the training
time that was obtained for all approaches. It can be seen that for ARF, ACE, Oza, DDD, NSE, and LevBag,
training time is much more than that of the proposed approach. Three algorithms, WMA, DWM, and AUE2,
take less time in comparison to En-ODDD, but the accuracy achieved by our approach is more than all these.
Though bagging encounters some overhead in random subsampling, the increase in accuracy is much more
significant compared to it. Also, this time is reduced by the usage of multithreading, where base learners are
trained in parallel while updating.
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Table 7. Average classification accuracy of En-ODDD obtained over 10 iterations in percentage [%].

DataSet Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Mean ± s.d.
Agrmix 92.62 92.66 92.56 92.65 92.66 92.46 92.51 92.41 92.98 92.74 92.62 ± 0.16
Mixincr 99.10 99.13 99.09 99.10 99.13 99.09 99.11 99.11 99.09 99.16 99.11 ± 0.02
Mixgrdl 99.14 99.13 99.09 99.18 99.16 99.13 99.13 99.18 99.10 99.09 99.13 ± 0.03
Mixabr 99.13 99.12 99.14 99.14 99.11 99.11 99.16 99.13 99.07 99.11 99.12 ± 0.02
RBFgrdl_rec 96.80 96.72 96.64 96.75 96.69 96.71 96.81 96.72 96.76 96.60 96.72 ± 0.06
RBFmix 95.06 95.28 95.15 94.96 95.20 94.99 95.25 95.34 95.11 94.95 95.13 ± 0.14
Sinegrdl 99.16 99.18 99.12 99.15 99.12 99.13 99.08 99.15 99.15 99.13 99.14 ± 0.03
Treegrdl_rec 88.37 87.86 88.07 88.39 87.82 88.28 88.30 88.70 88.24 88.09 88.21 ± 0.26
Treeabr_rec 90.83 90.85 90.91 90.98 90.84 90.68 90.98 90.96 90.97 90.73 90.87 ± 0.11
Wavegrdl 80.29 80.33 79.75 80.44 80.27 80.24 80.34 79.79 80.20 80.24 80.19 ± 0.23
Waveabr 82.59 82.57 82.62 82.58 82.55 82.58 82.53 82.61 82.50 82.61 82.57 ± 0.04
Wavemix 82.61 82.67 82.61 82.66 82.67 82.72 82.68 82.62 82.61 82.68 82.65 ± 0.04
Poker 57.03 56.69 56.04 56.33 55.73 57.05 56.76 55.64 56.01 56.50 56.38 ± 0.51
Covertype 85.41 85.31 85.39 85.28 85.14 85.36 85.28 85.37 85.31 85.34 85.32 ± 0.08
Weather 75.20 74.74 75.43 73.99 74.10 75.27 73.12 74.96 74.28 75.34 74.64 ± 0.75
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Figure 9. Classification accuracy of all the algorithms.
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Figure 10. Training time of all algorithms.

In terms of computational complexity, in EnODD the updating of T classifiers incurs O(T) time com-
plexity, which includes the logarithmic component of O(logW) for a window of length W processing per item.
Bagging involves subsampling but does not impact the overall complexity too much. Instead, other techniques
like LevBag, LearnNSE, and DDD have huge training time due to the high-cost computations involved. DDD
uses four ensembles simultaneously, giving time complexity of O(4*T), which is much higher than En-ODDD.
However, WMA and DWM took less training time than En-ODDD because they do not continuously update
their existing ensembles; rather, they just use a pruning mechanism. Hence, they provide very low accuracy for
all drifting streams (Table 8). AUE2 lacks a diversity generation strategy and therefore takes less time than our
approach, but at the cost of accuracy. ACE in an online setting has an inbuilt detector, which accounts for the
major training time. ARF has hyperparameter tuning, which is a time-consuming process. Thus, En-ODDD
manages to maintain a balance between achieving high accuracy and feasible training time. Figures 11, 12,
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13, and 14 depict the evaluation time taken by various algorithms for gradual, abrupt, mixed, and real drifts,
respectively. It is observed that with increase in processed instances, En-ODDD adopts a linear increase in time,
which is comparatively less than other approaches. Constant updating and a weight-based detection system
help En-ODDD to encounter concept drift of all types, which is otherwise difficult to handle. Since the online
concept drift problems have a major focus towards achieving higher accuracy, it can be concluded that En-ODD
is trustworthy.

Table 8. Average algorithm ranks obtained from Friedman tests.

En-ODDD DDD OzaBag AUE2 ACE DWM WMA LevBag ARF NSE
Accuracy 1.13 3.76 4.36 4.26 9 6.8 7.4 3.4 6.133 8.733
Train time 4.77 6.93 6.833 2.966 5.533 3.76 1.033 9.4 5.26 8.5
Test time 6 6.77 6.77 5.96 2 4.63 2.46 6.73 4 9.66

0

200

400

600

800

1k

1k

0 50k 100k 150k 200k 250k 300k 350k 400k

E
va

lu
at

io
n

 T
im

e(
cp

u
 s

ec
o

n
d

s)

Processed instances

LevBag
AUE2

En-ODDD
ACE
Oza
ARF

LearnNSE
DWM
WMA
DDD

Figure 11. Evaluation time for gradual drifts.
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Figure 12. Evaluation time for abrupt drifts.
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Figure 13. Evaluation time for mixed drifts.
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Figure 14. Evaluation time on real dataset.
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5.3. Statistical analysis

To compare various algorithms and to show if there exist significant differences among them, it is essential to
give statistical test support. This paper investigates the usage of Friedman and Wilcoxon tests for machine
learning methods [4, 6, 14]. The null hypothesis for the experimental design suggests that there exists no
significant difference between the prediction performances of the algorithms tested. Post hoc analysis using the
Bonferroni–Dunn test [26] is performed in the case that the null hypothesis is rejected. The Ff statistic value
ranks separate methods based upon the average results [27]. The lowest rank is given to the best performing
approach and vice versa. As stated by Eq. 7, average ranks (R̄) and the Friedman statistic (χF

2 ) are computed
(using N datasets and k algorithms).

χF
2 =

12N

k(k + 1)
[ΣR̄2 − k(k + 1)2

4
] (7a)

Ff =
(N − 1)χF

2

N(k − 1)− χF
2

(7b)

Table 8 presents the average ranks of the algorithms that were analyzed earlier to compare accuracy, training
time, and test time. Computing the Ff for accuracy, 32.21 was obtained, which is greater than the critical
value of 1.95 obtained by the F-distribution at 95% confidence, indicating that the null hypothesis gets rejected.
Post hoc analysis results indicate that performance of En-ODDD is better than that of Oza, ACE, DWM,
WMA, ARF, and LearnNSE as the critical difference (CD) = 3.13. For algorithms like AUE2, LevBag, and
DDD, the Wilcoxon test was performed since their average accuracy ranks were higher than that of En-ODDD.
The P-values obtained were: PDDD = PAUE2 = 0.0006 and PLevBag = 0.0011 . These values indicate that
En-ODDD is better in terms of accuracy as compared to all other algorithms considered.

For the training time, the Ff statistic returned 32.87, indicating rejection of the hypothesis. By comparing
the average ranks obtained in Table 8 and performing the Wilcoxon test, it can be concluded that En-ODDD is
faster than DDD, Oza, LevBag, and LearnNSE (PDDD = 0.001, POza = 0.008, PLevBag = 0.0005, PLearnNSE =

0.001) but slower than AUE2, DWM, and WMA. The tested En-ODDD algorithm outperforms in classification
accuracy in the presence of all possible drift scenarios.

6. Threats to validity

This section discusses various potential threats to the validity of this study along with some mitigations taken
to reduce their impact on our work. Though the performance of the proposed approach has been proved on
a reasonable number of instances (∼1M), it can be further validated by increasing the number of instances.
Therefore, the analysis of increasing the scalability of this approach is left for future work. Another threat
could be the misinterpretation of the actual relationship between the predicted variable and predictors, which is
caused because of not evaluating statistical results [28]. However, this threat is removed in this study by using
two nonparametric tests, the Wilcoxon and Friedman tests, at a confidence level of 95% to statistically validate
the results obtained. Finally, although the proposed technique exhibited encouraging prediction performance
on various drift patterns like gradual, abrupt, and recurring, it requires further investigation of a combination
of drift scenarios where multiple types of drift coexist.
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7. Conclusion and future scope

Concept drift handling is a challenging task where complexity increases, especially when dealing with heteroge-
neous drifts. This paper proposes and evaluates an incremental learning algorithm, En-ODDD, which ensures
a timely reaction to concept drift by using an ensemble of diversified experts embedded with an active drift
detector. A combination of a majority weighting mechanism and online drift detector in En-ODDD covers all
possible drift scenarios: gradual, abrupt, recurring, and mixed. The introduction of diversity by modifying the
incoming training instances using online bagging and a diversified update mechanism is the primary reason for
En-ODDD outperforming most algorithms in terms of accuracy. An explicit drift detector enables En-ODDD
to identify abrupt drifts quickly, without waiting for the chunk cycle to complete. Moreover, the updating of
experts at regular intervals of time helps the model to adapt better to gradual drifts. The impact of diversity
parameter λ is also investigated by testing En-ODDD with different values. Best results were obtained when
λ = 1.5. After analyzing the results of various pruning strategies it can be concluded that substituting the
worst performing expert is the best option. En-ODDD is compared with 10 state-of-the-art ensemble-based al-
gorithms. An empirical study performed using 12 artificial and 3 real datasets proves that En-ODDD provides
stable accuracy performance under all drifts, which is better than the compared algorithms. Also, the statistical
tests suggest that En-ODDD achieves higher accuracy under different drifting streaming conditions.

In the future, we plan to extend our work by exploring different techniques to introduce diversity other
than bagging. We are also interested in developing strategies that can handle semisupervised streams of data
where labels of all the data instances are not available beforehand. Integrating existing approaches with big
data frameworks like SPARK or Hadoop to improve the scalability of the proposed approach could be another
line of research.
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