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Abstract: Retinal vessel segmentation is important for the identification of many diseases including glaucoma, hy-
pertensive retinopathy, diabetes, and hypertension. Moreover, retinal vessel diameter is associated with cardiovascular
mortality. Accurate detection of blood vessels improves the detection of exudates in color fundus images, as well as
detection of the retinal nerve, optic disc, or fovea. A retinal vessel is a darker stripe on a lighter background. Thus, the
objective is very similar to the lane detection task for intelligent vehicles. A lane on a road is a light stripe on a darker
background (i.e. asphalt). For lane detection, the symmetrical local threshold (SLT) is found to be the most robust
feature extractor among the tested algorithms in the road marking (ROMA) dataset. Unfortunately, the SLT cannot be
applied directly for retinal vessel segmentation. The SLT is a 1D filter and is designed for detecting vertical or close to
vertical light stripes with predictable width. In this paper, the SLT is modified to detect dark stripes and four kernels,
instead of one, are designed to detect both vertical and horizontal features of a retinal vessel with variable thickness. The
proposed algorithm is tested using the High Resolution Fundus (HRF) image database and the accuracy is estimated to
be 95.53% . Furthermore, when tested with the Digital Retinal Images for Vessel Segmentation (DRIVE) database, the
accuracy is estimated to be 93.69% .
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1. Introduction
Ocular fundus images can reveal many pathological diseases related to the cardiovascular, endocrine-metabolic,
and central-nervous systems [1]. Examination of the retinal vessel structure is also an important part of the
diagnosis. For instance, tortuosity (nonsmooth course of the vessel) is associated with blood pressure and
cardiovascular risks [2]. An association between retinal vessel diameter and cardiovascular mortality was found
[2]. Furthermore, it is stated [3] that detection of blood vessels can improve the detection of exudates in a color
fundus image. While detecting vascular trees can reveal useful information for the diagnosis of various diseases
such as hypertension, diabetes, and glaucoma [4], an accurate detection result can also be used for locating the
optic disc [5]. For the stated reasons, automatic detection of blood vessels from ocular fundus images is a vital
task.

In the literature, many algorithms have been proposed based on both feature extraction and machine
learning. Retinal vessel segmentation algorithms can be categorized into five groups [6]: pattern recognition
based, matched filtering based, vessel tracking/tracing based, mathematical morphology based, model based,
∗Correspondence: uozgunalp@ciu.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
93

https://orcid.org/0000-0002-4162-9791


ÖZGÜNALP/Turk J Elec Eng & Comp Sci

and machine learning based. A Gaussian filter has been used to detect retinal vessels [7]. A matched filter
is used as a feature extractor and vessels are detected using a high threshold [8]. Subsequently, additional
vein pieces are added to the segmentation based on the initially detected starting points. A ridge detector is
used to detect retinal vessels [9]. An improvement on the matched filter for retinal vessel segmentation has
been proposed by measuring numerous perpendicular cross-sectional intensity profiles of retinal vessels and by
designing the matched filter accordingly [4]. A genetic algorithm has been used to optimize the matched filter
to detect retinal vessels [10]. Line tracking has been used to detect retinal vessels [11]. CNN-based vessel
segmentation is described [12, 13] and retinal vessels are segmented using an extreme learning machine [14].
Veins are segmented based on creating a vein probability map by filtering images with second derivatives of
Gaussians with multiple scales and calculating eigenvalues of the outputs [15]. A previously proposed algorithm
first detects and in-paints exudates, then enhances vessels using multiscale Hessian eigenvalue analysis, and
finally detects veins using percentile-based thresholding [16].

A discriminative dictionary learning-based retinal vessel segmentation algorithm is proposed, where the
proposed algorithm uses fusion of multiple features [17]. Another study [18] utilizes active contours to segment
out vessels. Palomera-Perez et al. [19] extracted multiscale features based on calculated Hessian values and
enhanced the results by using a region growing algorithm. Zhang et al. [20] utilized a matched filter to detect
retinal vessels. In the algorithm, while retinal vessels are detected by matched filter, the threshold is adjusted
based on the first order derivative of Gaussian. The method proposed by Marin et al. [21] first extracts feature
maps for vessel pixels and then employs a neural network to segment out vessel pixels.

In the present paper, a novel and accurate retinal vessel segmentation algorithm is proposed. The
proposed algorithm is inspired by symmetrical local thresholding (SLT), which was originally proposed for lane
detection (for intelligent vehicles). The detection of a lane from a road image and the detection of a vein from a
retinal fundus image have certain similarities. For instance, detecting a lane marking requires the detection of a
light stripe on a darker background and, in the case of veins, it is necessary to detect a darker stripe on a lighter
background. In the literature, it can be seen that some of the generic computer vision algorithms are already
common for both lane marking segmentation and retinal vessel segmentation. For instance, in Schreiber et al.
[22], edge detection has been used to extract lane features and in Wand and Lee [23], edge detection has been
used for vein segmentation. In Broggi et al. [24], a matched filter has been used to segment out lane markings
and in Odstrcilik et al. [4], a matched filter has been used to segment out veins in retinal images. McCall
and Trivedi [25, 26] used Gaussian filter-based lane feature extraction and Gang et al. [7] used a Gaussian
filter for vein segmentation. Ridges have been used to extract lane features [27] and for vein segmentation [9].
Although there are many lane feature extractors in the literature, Veit et al. [28] tested the most common lane
feature extractors and concluded that, despite its simplicity, the SLT algorithm is the most accurate among
those tested. However, there are differences between veins and lanes. The thickness of a vein can change
considerably compared to a lane marking. Furthermore, while lane markings are vertical or close to vertical,
a vein can be in any orientation. SLT is specifically designed for lane marking extraction and thus several
modifications are necessary to it for vein detection. Hence, in the present paper, a modified version of the SLT
algorithm is proposed for vein segmentation on retinal images. The rest of the paper is organized as follows:
in Section 2.1, the features of a vein on a digital fundus image are described. In Section 2.2, the standard SLT
algorithm is described. In Section 2.3, proposed modifications to the SLT algorithm are described. In Section
2.4, the postprocessing applied is described. In Section 3, the experimental results are given and a comparison
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is made in terms of sensitivity (SE ), specificity (SP ), and accuracy (ACC ). Finally, in Section 4, the paper
is concluded. The block diagram of the proposed algorithm is shown in Figure 1.
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Figure 1: Block diagram of the proposed retinal vessel segmentation algorithm.

2. Materials and methods
2.1. Features of a vein on a digital fundus image

Conventionally, to segment retinal vessels, only the green channel of the image is used for vessel segmentation
[4]. Thus, in the present paper, only the green channel of the RGB image is extracted (only the green pixel
values are used and red and blue pixel values are ignored) and treated as a gray scale image. An example input
fundus image and its single channel output is provided in Figure 2.

It is observed that a retinal vessel has a light–dark–light (LDL) property. This means that each pixel on
a vein should have a lower intensity value compared to the two sides of the vessel. For instance, if the vein is
vertical or close to vertical, the pixels on the left-hand side and the pixels on the right-hand side should both
have higher intensity values. On the other hand, if the vein is horizontal, the pixels on the top and the pixels
on the bottom should both have higher intensity values. This is demonstrated in Figure 3. In Figure 3a, an
example of a vertical vein extracted from an ocular fundus image is demonstrated. In Figure 3b, an example
of a horizontal vein extracted from an ocular fundus image is demonstrated. Another important property of a
vein captured by an ocular fundus image is its thickness. The thickness of a vein can change considerably. This
is demonstrated in Figure 4. In Figure 4a, an example image with thin veins is shown, while in Figure 4b, an
example image with thick veins is shown. Both images are extracted from the same ocular fundus image. The
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(a) (b)

Figure 2: An example RGB image captured by a fundus camera and its green channel.

algorithm proposed in the present paper is inspired by the SLT algorithm, which is useful for extracting lane
markings from a road image. In the next section, the SLT algorithm and its use for lane marking extraction
will be described. Then the properties of a lane and a vein will be compared and modifications to the SLT
algorithm will be proposed for vein detection.

(a) (b)

Figure 3: Example cross-sectional areas for vertical and horizontal veins: (a) an example vertical vein extracted
from an ocular fundus image, (b) an example horizontal vein extracted from an ocular fundus image.

2.2. Symmetrical local threshold

A lane departure warning system (LDWS) is a crucial component of intelligent vehicles. These systems are
designed to warn the driver when the ego vehicle is departing from the road. The key component of a LDWS
is lane detection. Lane detection algorithms can be divided into two categories: feature-based and model-based
[29]. While feature-based lane detection algorithms segment lane markings or road area, model-based algorithms
firstly extract the feature map and then based on certain assumptions such as fixed road curvature, fixed road
width, or flat road, lanes are modeled (defined) by mathematical equations. In both cases, the first step is to
segment the lane features. For lane feature extraction, many algorithms have been proposed including edge
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(a) (b)

Figure 4: Example cross-sectional areas for thin and thick veins: (a) an example thin vein, (b) an example
thick vein, where there is a considerable thickness difference between two different veins in an ocular fundus
image.

detectors [22], the Otsu algorithm [30], Gabor filters [31], local threshold [28], matched filters [24], and the SLT
algorithm [32]. Although feature extraction is the first and most vital component of a lane detection system,
there is no benchmark available for lane marking feature extraction. However, Veit et al. [28] implemented the
most common lane feature extractors and compared them quantitatively using ground truths supplied in a road
marking (ROMA) dataset. The ROMA dataset consists of 116 road images from diverse road scenes including
variable lighting conditions, variable scene content, and variable road types. For these images, pixels from lane
markings are manually labeled as ground truth lane pixels. Although the SLT algorithm offers simplicity, Veit
et al. [28] concluded that it is the most robust feature extractor among those tested.

The SLT algorithm is designed to extract light stripes with vertical or near vertical slope. It processes
images row by row independently. In each row of the image, for each pixel, it calculates the average of the pixels
on the left-hand side within the range and then calculates the average of the pixels on the right-hand side within
the range. If the intensity value of the pixel (Ip) minus a threshold (Th) value is larger than both left average
(AverageL ) and right average (AverageR), that pixel is estimated to be a feature point. As mentioned before,
a lane marking has a dark–light–dark (DLD) property. DLD means that compared to the pixel intensity the
pixels on the left and pixels on the right need to be darker. The threshold used (the threshold is set to be 4
for the experiments) is necessary to remove noise from homogeneous areas. The pseudocode of the algorithm is
shown in Algorithm 1. The algorithm is illustrated in Figure 5, where the test pixel is shown with a blue dot
and the area that is used to calculate the left average and the right average is shown with a yellow horizontal
line.

2.3. Multiscale multidirectional SLT
There are several differences between lane markings and retinal vessels. First, retinal veins have a LDL property
instead of DLD. Thus, pixel intensity plus a threshold needs to be lower than both the left average (AverageL )
and right average (AverageR ). For vein segmentation, the SLT algorithm is modified accordingly. Second, the
SLT algorithm is a one-dimensional approach. Since a lane marking on a road image is assumed to be horizontal
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Algorithm 1 Symmetrical local threshold
F← ∅
while Ip ∈ ImageSize do

if Ip − Th > AverageR and Ip − Th > AverageL then
FIp ← 1

end if
end while

Le� Average Right Average

Figure 5: Illustration of the regions used for the SLT algorithm, where the test pixel is shown with a blue dot
and the area that is used to calculate the left average and right average is shown with a yellow horizontal line.

or nearly horizontal, the DLD feature is checked from left to right. Veins can be both horizontal and vertical.
Thus, the SLT algorithm is applied both vertically and horizontally. Third, veins have more variable thickness
compared to lane markings. It is common practice to use multiple kernels with variable thicknesses in vein
segmentation. In the proposed algorithm, similar logic is applied. The SLT algorithm uses a range to calculate
AverageL and AverageR (i.e. the number of pixels used to calculate the average). To consider both thick and
thin veins, the SLT algorithm is applied twice with a low range value (12 pixels) and a high range value (25
pixels) for both vertically and horizontally (please note that these values are selected for the HRF database and
when testing with the DRIVE dataset, thickness values are changed directly according to the ratio between the
image width of the HRF images and the image width of the DRIVE images). Thus, the input image is filtered
with the SLT algorithm four times in total: two times in the vertical direction with different range values and
two times in the horizontal direction with different range values. Each feature map is then passed through
image erosion and then image dilation to remove disconnected noises before applying a logical ”OR” operator.
Input and output feature maps can be seen in Figure 6. Subsequently, these four feature maps are combined
using a logical “OR” operator. The pseudocode of the algorithm is shown in Algorithm 2.

2.4. Postprocessing using major axis length

Connected component analysis and filters like the median filter are the most commonly applied techniques to
eliminate disconnected noises such as salt and pepper noise. It is already known that the veins are stripes.
Thus, even if there is a discontinuity, in the extracted vein one axis needs to be much larger than the other
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Algorithm 2 Multiscale Multidirectional SLT
F ← ∅
Fh1← ∅
Fh2← ∅
Fv1← ∅
Fv2← ∅

while Ip ∈ ImageSize do
if Ip + Th < AverageR1 && Ip + Th < AverageL1 then

Fh1Ip ← 1
end if
if Ip + Th < AverageR2 && Ip + Th < AverageL2 then

Fh2Ip ← 1
end if
if Ip + Th < AverageUp1 && Ip + Th < AverageDown1 then

Fv1Ip ← 1
end if
if Ip + Th < AverageUp2 && Ip + Th < AverageDown2 then

Fv2Ip ← 1
end if

end while
Erode Fh1 then Dilate Fh1
Erode Fh2 then Dilate Fh2
Erode Fv1 then Dilate Fv1
Erode Fv2 then Dilate Fv2

F = Fh1 | Fh2| Fv1| Fv2

axis. Thus, such a connected component has much larger perimeter compared to a connected component of the
same size (total number of connected pixels). This can be observed in Figure 7. In Figure 7, two examples of
connected components are shown. When the properties of connected components in the figure are measured,
the connected component on the left consists of 40,449 pixels and its major axis length is measured as 140
(major axis length is the distance between the two farthest pixels in a connected component). On the other
hand, the connected component on the right consists of only 2028 pixels and its major axis length is measured
as 156. It is a common approach to use connected component analysis to remove small sized noises by filtering
based on the number of connected pixels. However, since veins have a stripe-like shape and resemble the shape
shown on the right, it makes sense to use major axis length to eliminate small objects for vein segmentation.
Accordingly, the major axis length of each connected component is measured and disconnected components are
eliminated based on this metric. An example of an input feature map and its output feature map can be seen
in Figure 8.

3. Results and discussion
To quantify the performance of the algorithm, the publicly available High-Resolution Fundus (HRF) image
database [4] is used. In this database, both healthy retinas and pathological retinas with their hand-labeled
ground-truths are provided. The database includes images from healthy eyes, eyes with signs of diabetic
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 6: Combined feature maps: (a) thin vertical vein segmentation, (b) its output after morphological
operations, (c) thin horizontal vein segmentation, (d) its output after morphological operations, (e) thick vertical
vein segmentation, (f) its output after morphological operations, (g) thick horizontal vein segmentation, (h) its
output after morphological operations.

Figure 7: Example connected components, where on the left a connected component with a total number
of 40,449 pixels and with a major axis length of 140 is shown. On the other hand, on the right, a connected
component with a total number of 2028 pixels and with a major axis length of 156 is shown.

retinopathy, and eyes with signs of glaucoma. The dataset provides 15 images for each group. Examples of
input images and their segmented outputs are provided in Figure 9. To quantify the performance of the proposed
algorithm, three different metrics are used: sensitivity, specificity, and accuracy. Equations for these metrics
can be found below.

Sensitivity (SE) = TP/P (1)

Specificity (SP ) = TN/(TN + FP ) (2)

Accuracy (ACC) = (TP + TN)/(TP + TN + FP + FN), (3)

where TP stands for the total number of true positives, P stands for the total number of positives,
TN stands for the total number of true negatives, FN stands for the total number of false negatives, and FP

stands for the total number of false positives. It should be noted that only one metric, such as accuracy, is not
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(a) (b)

Figure 8: Extracted vein feature maps beforepost processing and after postprocessing.

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 9: Example vein segmentation results, where in the first column input images are shown, in the second
column calculated veins for the input images are shown, and in the last column manually labeled ground truth
veins are shown.
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enough to truly quantify the algorithm. Vein pixels are only a small portion of the total number of pixels in the
image. Thus, the algorithms favoring true negatives over true positives can give higher accuracy but might not
segment out vein pixels as effectively as desired. Thus, sensitivity and specificity are also important metrics.
The proposed algorithm is tested for each set (three sets in total) separately and sensitivity, specificity, and
accuracy are measured for each image and their calculated mean values are shown in Table 1.

In Table 1, the sensitivity, specificity, and accuracy of the proposed algorithm and the algorithms in
previous studies [4, 15, 16] are shown. It is seen that the proposed algorithm outperformed the algorithm
described in Odstrcilik et al. [4] in terms of sensitivity, specificity, and accuracy in all sets of images. The
algorithm described in Annunziata et al. [16], while achieving good accuracy, has relatively low sensitivity
compared to all other described algorithms. Compared to the algorithm described in Yu et al. [15], while in
some cases their algorithm [15] performs better in terms of sensitivity and specificity, in other cases, the proposed
algorithm achieves better results. On the other hand, in all cases, the proposed algorithm performs better in
terms of accuracy. In Table 2 the average sensitivity, specificity, and accuracy of the algorithms are shown.
In addition to the previous algorithms, in this table, results of Yang et al. [17] are also shown (no available
data for this algorithm for the individual sets). From the table, it can be seen that in terms of accuracy only
the algorithm in Annunziata et al. [16] performs better than the proposed algorithm. On the other hand,
Annunziata et al.’s algorithm [16] has relatively low sensitivity compared to all other algorithms in the table.

Table 1: Performance evaluation on the HRF database.

Algorithm Mean Mean Mean
SE% SP% ACC%

Proposed Healthy 80.18 97.60 95.97
Odstrcilik et al.[4] Healthy 78.61 97.50 95.39
Yu et al. [15] Healthy 79.38 97.67 95.66
Annunziata et al. [16] Healthy 68.20 99.35 95.87
Proposed diabetic retinopathy 75.02 96.58 95.08
Odstrcilik et al. [4] diabetic retinopathy 74.63 96.19 94.45
Yu et al. [15] diabetic retinopathy 76.04 96.25 94.60
Annunziata et al. [16] diabetic retinopathy 69.97 97.87 95.54
Proposed glaucomatous 79.56 96.72 95.54
Odstrcilik et al. [4] glaucomatous 79.00 96.38 94.97
Yu et al. [15] glaucomatous 78.90 96.62 95.18
Annunziata et al. [16] glaucomatous 75.66 97.85 96.03

Although the HRF database [4] supplies high resolution fundus images, in the literature the DRIVE
[9] database is more widely used for evaluation of retinal vessel segmentation algorithms. Thus, the proposed
algorithm is also tested in the DRIVE database. The images for the DRIVE database were obtained from
a diabetic retinopathy screening program in the Netherlands. The screening population consisted of subjects
25–90 years of age and 40 images are randomly selected for creating the database. Among these images, 33 do
not show any sign of diabetic retinopathy and 7 show signs of mild early diabetic retinopathy. Among these
40 images, 20 are selected as the training set and the other 20 as the test set. The test set is manually labeled
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twice. One set is then used as the gold standard and the other set is used for evaluating the proposed algorithm
with respect to a human observer. The sensitivity, specificity, and accuracy for the second human observer are
measured and the values obtained can be seen in the first row of Table 3.

It should be noted that the estimated sensitivity, specificity, and accuracy of the algorithms on the HRF
database consider all the input image pixels. However, in the DRIVE database, a mask image is provided that
delineates the FOV along with each input image (this was not available for the HRF database). Thus, while
calculating sensitivity, specificity, and accuracy only the pixels within this mask are considered.

The sensitivity, specificity, and accuracy for the proposed algorithm on the DRIVE database can also be
seen in Table 3. From Table 3, it can be noted that while the accuracy of the automated algorithms is closer
to that of the human observer, the sensitivity of the human observer is by far better. Table 3 shows that in
terms of accuracy the proposed algorithm outperforms those in Odstrcilik et al. [4], Al-Diri et al. [18], and
Palomera-Perez et al. [19]. On the other hand, the proposed algorithm outperforms those in Odstrcilik et al.
[4], Palomera-Perez et al. [19], Marín et al. [21], and Zhang et al. [20] in terms of specificity.

The proposed algorithm has an algorithmic complexity of O(N), where N is the number of pixels in the
input image. The algorithm is implemented on MATLAB and the run time is measured as 2.94 s on average
for the HRF database and 174 ms for the DRIVE database using i7− 8750H CPU on the HRF database. The
implemented algorithm currently uses a single thread and it is also possible to improve the run time significantly
by using multiple threads on multiple cores or by utilizing GPU.

Table 2: Average performance evaluation on the HRF database.

Algorithm Mean Mean Mean
SE% SP% ACC%

Proposed algorithm 78.25 96.97 95.53
Odstrcilik et al. [4] 77.60 96.69 94.94
Yu et al. [15] 78.10 96.85 95.15
Annunziata et al. [16] 71.28 98.36 95.81
Yang et al. [17] 79.15 96.72 95.17

Table 3: Performance evaluation on the DRIVE database.

Algorithm Mean Mean Mean
SE% SP% ACC%

Second human observer 78.07 97.12 94.73
Proposed algorithm 72.46 96.82 93.69
Odstrcilik et al. [4] 70.60 96.93 93.40
Marin et al. [21] 70.67 98.01 94.52
Zhang et al. [20] 71.20 97.24 93.82
Al-Diri et al. [18] 72.82 95.51 92.58
Palomera-Perez et al. [19] 64.40 96.70 92.50
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4. Conclusion
In this paper, a retinal vessel segmentation algorithm has been proposed. The proposed algorithm is based on
the symmetrical local threshold, which is originally designed as a feature extraction algorithm for lane detection.
The lane markings and retinal vessels are similar structures in a sense that both of them represent a stripe on a
digital image. In the literature, it is seen that many feature extraction algorithms for lane feature extraction and
retinal vessel extraction are common such as ridge detectors, steerable filters, and matched filtering. However,
SLT is designed and used only for lane detection. Furthermore, although there is no benchmarking for lane
feature extractors, researchers who created the ROMA dataset tested the most common lane feature extractors
and concluded that the SLT algorithm is the most robust lane feature extractor among those tested. Accordingly,
in the present paper symmetrical local threshold, for the first time, is used for retinal vessel segmentation.
Moreover, to be able to detect retinal vessels with a variety of thicknesses and orientations, the SLT algorithm
is modified and made suitable for vessel segmentation. A lane marking has a higher intensity compared to
both its left-hand side and its right-hand side. Furthermore, a retinal vessel has a darker intensity compared
to both its left-hand side and its right-hand side (if the vein is vertical) or has a darker intensity compared to
both its upper-hand and its lower-hand (if the vein is horizontal). Thus, instead of applying the SLT row by
row horizontally as in the case of lane feature extraction, for retinal vessel segmentation, two different kernels
are applied: one for horizontal vein segmentation and one for vertical segmentation. Then, considering the
variation in the retinal vessels, the SLT is applied twice for each case: once for thick veins with thick SLT
and once for thin veins with thin SLT. It should also be noted that applying kernels with variable thickness
and orientation is a common practice for filters such as matched filters or steerable filters. By combining these
outputs with a logical ”OR” operator, the output gave a high response to vessels with both different thickness
and orientation. While filters like the matched filter give a high response to the stripe-like pattern, it is not
necessary for a structure to have a LDL pattern. On the other hand, SLT checks both sides (i.e. left and right)
and ensures that both sides of the anchor pixel satisfy this property. Moreover, vessel light reflexes (a bright
strip in the middle of a vessel) are not considered in this paper and can cause disruption in the middle of thick
vessels. The algorithm is tested on high resolution retinal fundus images for healthy eyes, diabetic eyes, and
eyes with glaucoma supplied from the HRF image database. In all categories, the proposed algorithm managed
to segment retinal vessels with an accuracy of 95.53% and a sensitivity of 78.25% with a run time of 2.94 s on
average using a single thread implementation. When tested with the DRIVE database, the proposed algorithm
managed to segment retinal vessels with an accuracy of 93.69% and a sensitivity of 72.46% with a run time of
174 ms on average using a single thread implementation.
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