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Abstract: There exist few blind solutions for chaotic MIMO channel equalization. In this work, a chaotic MIMO
channel equalization framework is proposed. The objective function to be minimized in the proposed solution is obtained
by adopting the objective function developed for chaotic SISO channel equalization. Furthermore, an optimum filter
that minimizes the proposed cost function is designed to recover chaotic input signals assuming that the channel is
known. The stationary point of the adaptive solution is equal to the optimal filter if the adaptive filter coefficients
change sufficiently slowly. The adaptive solution is contrasted with the optimum filter in terms of mean-square error
and bit error rate performances. In addition, the proposed solution reconstructs chaotic input signals at the same time.
Consequently, it can be applied to multiple signal separation problems as well.
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1. Introduction
Chaos has attracted attention from researchers including physicists and engineers over the last two decades.
Signal processing and communications are two of the most popular areas for researchers interested in chaos.
The earliest techniques for chaos-based communication systems are chaotic modulation and chaotic masking
[1, 2].

Irregularity, aperiodicty, and difficult accurate prediction over long periods are the main characteristics
of chaotic signals. In the continuous case, differential equations can be used to produce chaotic signals, while
iterative maps can be used to generate them in the discrete case. Additional prominent properties of chaotic
signals are that their autocorrelation functions look like an impulse function and the cross-correlation function
between two different chaotic signals has negligible components [2]. Spread spectrum, multiuser, and secure
communications are the three main applications of chaotic signals resulting from their aforementioned properties
[3–9].

In a chaos-based communication application, an information-carrying message is sent over a channel
after being applied to the chaotic modulator. If the propagation channel is not ideal, the transmitted signal
is distorted and must be corrected before the chaotic demodulation process. Distortion correction is known as
channel equalization. Channel equalization in which the parameters of the channel are unknown is called blind
channel equalization. Such methods utilize channel capacity more efficiently compared to the methods using
training signals to estimate the unknown channel.
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Channel equalization algorithms are classified as single-input single-output (SISO) and multiple-input
multiple-output (MIMO). There exist numerous nonchaotic (equivalently classical) blind equalization algo-
rithms. The approach based on inverse filtering criteria (IFC), super-exponential algorithm (SEA), and constant
modulus algorithm (CMA) are the well-known blind equalization solutions in the case of SISO [10].

Blind equalization of MIMO channels with a finite impulse response (FIR) is encountered frequently.
Second and higher order statistics-based blind equalization algorithms developed by utilizing some properties
of the source signals exist for MIMO systems [11].

In classical digital communication systems, proposed statistics-based SISO and MIMO channel equal-
ization algorithms may not yield desired results for chaotic systems since a discrete-time chaotic signal is
deterministic. Therefore, algorithms must be derived by exploiting inherent properties of chaotic signals to
obtain acceptable performance for chaotic communication systems.

Recently, chaos-based blind equalization algorithms have been developed. However, a SISO model is
assumed for the channel in most works [12–17]. For the MIMO channel case, there are only a few nonblind
algorithms developed by using training sequences [18, 19]. In previous studies [18, 20], a trellis diagram is
substituted for a multiuser communication system. The corresponding trellis diagram is obtained by using a
special representation for chaos signals called symbolic dynamic representation. Then the maximum likelihood
estimates of the transmitted signals are obtained by the Viterbi algorithm. Correlation delay shift keying
(CDSK) using the 2× 2 MIMO technique to increase the capacity of data is proposed [19]. Two distinct state-
space models are combined with a dual unscented Kalman filter for MIMO systems [21]. The filter estimates
the channel coefficients undergoing fading.

The chaotic MIMO blind equalization problem was addressed first by Cetinel and Vural [22]. The present
study is an extended version of that previous study in several respects such as inclusion of the derivation of the
optimum filter design, stationary point analysis, and more simulation studies.

In MIMO communication systems, multiuser interference (MUI) is another interference that degrades
the receiver performance together with intersymbol interference (ISI). Hence, channel equalization must be
performed by eliminating the effects of both ISI and MUI to achieve reliable and high-speed communication.

In the present study, a chaotic MIMO blind equalization algorithm is proposed. The proposed objective
function is composed of two terms. The first one is obtained from nonlinear predictability of chaotic signals and
overcomes the effect of ISI. The second one, which minimizes the effect of MUI, is based on the orthogonality
property of chaotic signals. Furthermore, an optimum filter that gives the best equalization results is designed to
evaluate the performance of the proposed adaptive algorithm. Finally, the conditions under which the stationary
points of the proposed algorithm are equal to those of the optimum filter are obtained.

The present manuscript consists of the following sections. Section 2 states the problem to be solved. If
the impulse response of the channel is known, an optimum equalization filter, which is discussed in Section 3,
can be derived. The proposed chaos-based MIMO adaptive blind equalization algorithm is discussed in Section
4 and its stationary point analysis is performed in Section 5. Section 6 gives the results obtained by computer
simulations. Conclusions are drawn in Section 7.

2. MIMO chaotic blind channel equalization problem
Chaos-based communication systems take into account the inherent properties of chaotic signals to achieve
optimum transmission accuracy. In these systems chaotic input signals can be generated by differential equations
or iterative maps depending on the working principle. Similar to the classical communication systems, chaos-
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based communication systems consist of three main blocks: modulator, channel, and demodulator. A model of
a chaos-based MIMO communication system is given in Figure 1. First, chaotic modulators convert information
carrying messages mj [n] into chaotic signals sj [n] , where j=1, 2, ...p. Then modulated signals are sent
over FIR channels with impulse responses cij [n] , where i=1,2,...,M. Zero-mean additive white Gaussian noise
(AWGN) zi[n] corrupts the output of the channels. The tent, saw tooth, logistic, or Chebyshev mappings
are the most frequently used maps to realize chaotic modulators. A nonlinear dynamical equation such as
s[n] = f(s[n− 1], ..., s[n− d]) is used to express these maps, where d is the embedding dimension of the system.

Figure 1. MIMO chaotic communication system model.

At time n, let sj [n] and cij [n] , where i=1,2,...M and j=1, 2, ...p, denote the j-th input vector and the
channel response coefficient vector, respectively. They are given by

sj [n] := [sj [n] sj [n− 1] ... sj [n− L1 + 1]]
T (1)

cij := [cij [0] cij [1] ... cij [L1 − 1]]
T (2)

In (1) and (2), L1 is the length of the channel. With the definitions in (1) and (2), the i-th received
signal can be expressed as

ri[n] =

p∑
j=1

cT
ij sj [n] + zi[n] (3)

(3) can be reorganized in the following form:

ri[n] = cT
i1 s1[n] +

p∑
j=2

cT
ij sj [n] + zi[n] (4)
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Substituting (1) and (2) in (4) gives

ri[n] = ci1[0] s1[n] +

L1−1∑
k=1

ci1[k] s1[n− k] +

p∑
j=1
j ̸=1

cT
ij sj [n] + zi[n], (5)

where the first term on the right-hand side of the equality is the desired term for the corresponding transmitted
signal. However, the second and third terms are undesired terms resulting from a nonideal transmission channel
and other users. They are called ISI and MUI for the corresponding signal, respectively. ISI and MUI can
be defined for other transmitted signals similarly. Undesired terms must be eliminated to reconstruct the
transmitted messages reliably.

As illustrated in Figure 1, a MIMO equalizer composed of FIR filters with length L2 is realized to
obtain reliable signals for chaotic demodulators. In the rest of this section, relationships among the signals in
Figure 1 will be written in vector-matrix form by defining appropriate vectors and matrices. The vector-matrix
representation will be useful when deriving the optimum and the proposed adaptive filters. Let the received
signal vector at the input of the MIMO equalizer be given as

r[n] = [r1[n]...rM [n]...r1[n− L2 + 1]...rM [n− L2 + 1]] (6)

It is possible to write the received signal vector with respect to the channel coefficients and the chaotic
input signals by using (3). At time n let C, s[n] , and z[n] denote the channel coefficient matrix, input signal
vector, and noise vector, respectively. They are defined as

C :=


C[0] . . . C[L1 − 1] . . . 0

... C[0] . . . C[L1 − 1] 0

0 . . . C[0] . . . C[L1 − 1]


T

,C[k] :=


c11[k] · · · c1p[k]

...
...

cM1[k] · · · cMp[k]

 (7)

s [n]: = [s1[n] . . . sp[n], . . . , s1[n− L2 − L1 + 2] . . . sp[n− L2 − L1 + 2]] (8)

z [n] := [z1[n] · · · zM [n] · · · z1[n− L2 + 1] · · · zM [n− L2 + 1]] (9)

Then the vector corresponding to the received signal can be expressed as

r[n] = s[n]C + z [n] (10)

It is also possible to write the connection between the estimated chaotic input signals and the received
signals in vector-matrix notation. In Figure 1, M corrupted signals are applied to the MIMO equalizer block
to recover chaotic input signals. Let the MIMO equalizer coefficient vector g ji and i-th received signal vector
si[n] be defined as

gji := [gji[0] gji[1] ... gji[L2 − 1]]
T
, j = 1, 2, ...p. (11)

ri[n] = [ri[n] · · · ri[n− L2 + 1]]
T
, i = 1, 2, ...M. (12)
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Using these definitions leads to the following expressions for output of the j-th equalizer:

ŝj [n] =

M∑
i=1

gT
ji ri[n], j = 1, 2, ...p. (13)

The estimated chaotic input signals vector at the output of the equalizer is given below

ŝ[n] := [ŝ1[n] . . . ŝp[n]] (14)

By defining equalizer coefficient matrix G as

G: = [G [0] G [1] ...G [L2 − 1]
T
, G [k] :=


g11[k] · · · g1M [k]

...
...

gp1[k] · · · gpM [k]

 (15)

the equalizer output vector is expressed as

ŝ[n] = r[n]G (16)

Finally, substituting (10) in (16) yields

ŝ[n] = s[n]C G + z[n]G (17)

In the remainder of the paper, (17) will be the basis to describe the optimum filter in the case of a known
channel and to derive the adaptive filter in the case of an unknown channel.

3. Optimum filter design for known channels

In this section, an optimum filter will be designed when the characteristics of the channel are known. The
first step is to construct an appropriate objective (cost) function. The objective function should be designed
such that both ISI and MUI are eliminated when it attains its minimum value. The proposed cost function
consists of two terms. One term tries to eliminate ISI while the other term aims to get rid of MUI. In the
following discussion, d (embedding dimension) is assumed to be 1. Note that the corresponding chaotic map
equation should be approximately satisfied if each equalizer output ŝi[n] , i=1,2,…p is a reliable estimate of the
i-th transmitted signal. Under this condition, f(ŝi[n− 1]) provides an estimate for ŝi[n] . Thus, the difference
ŝi[n] − f(ŝi[n − 1]) is a suitable error signal for ISI. The first term of the objective function is the sum of the
squared error signals over all chaotic signals and it is called the nonlinear prediction error (NPE). Minimizing
the NPE overcomes the effect of ISI as discussed previously [23]. Even if the NPE goes to zero, it is not possible
to recover transmitted signals reliably because of MUI resulting from the contribution of other chaotic input
signals. Thus, a term called cross-correlation term (CCT) is added to the NPE to eliminate the effect of MUI.
The CCT is derived by exploiting the orthogonality of chaotic signals and it is given by

p∑
i,j=1
i̸=j

δ2∑
δ=δ1

(ŝi[n] ŝj [n− δ] )
2
, (18)
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where [δ1 , δ2 ] is the channel delay span interval obtained from achievable delays among all chaotic inputs [24].
It is clear that the CCT is zero if and only if the outputs of the equalizer are orthogonal to each other. Thus,
the offered cost function that eliminates ISI and MUI effects simultaneously is

J(G) =
1

2

p∑
i=1

(ŝi[n]− f(ŝi[n− 1]))
2
+ 2

p∑
i,j=1
i ̸=j

δ2∑
δ=δ1

(ŝi[n] ŝj [n− δ] )
2
, (19)

where ŝi[n] is the estimate of the i-th chaotic signal and f (.) is a nonlinear chaotic mapping function used to
generate chaotic information signals.

The standard process will be performed to design the optimum filter. First, the objective function is
going to be reorganized in terms of the equalizer coefficients. For this purpose, (17) obtained in Section 2 can
be used. Then the mean of the objective function will be calculated. Finally, stationary points of the objective
function mean are the possible solutions. By (17), ŝi[n] can be reorganized in the following form:

ŝi[n] = r[n] Gi,n = s[n]C Gi,n + z[n]Gi,n, (20)

where Gi,n represents the i-th column of G. Substituting (20) in (19) yields

J(G) =
1

2

p∑
i=1

{ (s[n]C + z[n])Gi,n − f((s[n− 1]C + z[n− 1])Gi,n−1) }2

+ 2

p∑
i̸=j
j=1

δ2∑
δ=δ1

{ (s[n]C + z[n])Gi,n(s[n− δ]C + z[n− δ])Gj,n−δ}2
(21)

The mean of J(G) needs to be calculated. Then stationary points are obtained by equating the derivative
of E [J(G)] with respect to Gi,n to zero. However, it is possible to change the order of expectation and
derivative operators for simplicity as discussed previously [25]. (21) is a function of a matrix. The derivative
with respect to a matrix must be defined to proceed. Let G be a matrix whose column vector representation
is [G1, G2, ..., Gp ], where p is the number of columns, and let J(G) be a function of G. Then dJ(G)/dG is

defined as dJ(G)
dG =

[
dJ(G)
dG1

...dJ(G)
dGp

]
. In other words, the derivative with respect to a matrix is also a matrix

constructed by calculating derivatives of its columns. With this definition, we get

dJ(G)

dGi,n
= { (s[n]C + z[n])Gi,n − f((s[n− 1]C + z[n− 1])Gi,n−1) }

(s[n]C + z[n])T + 4

p∑
i ̸=j
j=1

δ2∑
δ=δ1

{ (s[n]C + z[n])Gi,n(s[n− δ]C + z[n− δ])Gj,n−δ}(s[n]C + z[n])T ,
(22)

where Gi,n−1 and Gi,n−δ are assumed to be independent of Gi,n . The exact form of the optimum filter equation
for a given chaotic map is obtained by substituting its mapping function in (22). Calculating E [J(G)/dGi,n]
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and setting it to zero gives

G∗
i,n = T[n, n]

−1E( f(s[n− 1]C + z[n− 1]Gi,n−1)(CT sT [n] + zT [n])

1 + 4
p∑

i,j=1
i ̸=j

δ2∑
δ=δ1

(s[n− δ]C + z[n− δ]Gj,n−δ)
2

, (23)

where

T[n, n] = C sT [n] s[n]C + zT [n] z[n] (24)

and Gi,n−1 and Gj,n−δ are the corresponding columns of the equalizer coefficient matrix at time n-1 and n-δ ,
respectively. Note that when calculating the expectation s[n] and z[n] are assumed to be uncorrelated and z[n]
is assumed to be the zero-mean AWGN vector. Having found G∗

i,n for i=1,2,…,p, the optimum filter coefficient

matrix is obtained as G∗ =
[
G∗

1,n...G∗
p,n

]
. The optimum filter is not fixed. Hence, it must be calculated

at each time, while the Wiener filter is fixed. The reason can be explained as follows: the Wiener filter uses
the statistical characteristics of the transmitted signal that are fixed. In contrast, the chaotic equalizer uses
nonlinear dynamics of the transmitted signal, which are time varying.

4. The proposed adaptive algorithm

Terms assumed to be known in the optimum filter design are unknown in practice. Therefore, an adaptive
equalizer must be built. The cost function given in (19) is the basis to derive the proposed adaptive MIMO
blind equalization algorithm. The steepest descent (SD) method will be exploited to update the MIMO equalizer
coefficients because of its simplicity [25]. Thus, the form of the SD algorithm for our problem can be given as

Gn+1 = Gn − µ[Λ1(n) ...Λp(n)] (25)

In (25), Λi(n) (i=1,2,…,p) is the derivative of the objective function with respect to the i-th column of the
equalizer coefficient matrix G and µ is a small constant upper bounded by the maximum eigenvalue of the
covariance matrix of the observed data. Λi(n) can be calculated by using the chain rule of the derivative given
by

Λi[n] =
∂J(Gn)

∂Gi,n
=

∂J(Gn)

∂ŝi[n]

∂ŝi[n]

∂Gi,n
, i = 1, 2, ..., p. (26)

From (19), the first derivative in (26) is equal to

∂J(Gn)

∂ŝi[n]
= (ŝi[n]− f(ŝi[n− 1])) + 4

p∑
j=1
i̸=j

δ2∑
δ=δ1

(ŝi[n] ŝj [n− δ] )ŝj [n− δ]. (27)

The second derivative can be computed by using the relation given in (20). It can be shown to be

∂ŝi[n]

∂Gi,n
= rT [n] (28)
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Substituting (27) and (28) in (26) yields the desired derivative term in the adaptive algorithm as follows:

Λi(n) = (ŝi[n]− f(ŝi[n− 1]) )rT [n] +

p∑
j=1
i ̸=j

δ2∑
δ1

(ŝi[n] ŝj [n− δ] )ŝj [n− δ] rT [n] (29)

A rectangular window is used for calculating the cross-correlation term ŝi[n] ŝj [n − δ] in (29). Its value is
computed from the estimated signals within the window. The weight of the cross-correlation term in (19) was
set to 2, although it can be made variable.

5. Stationary point analysis
In the proposed algorithm, the equalizer parameters at the next iteration are obtained by adding a correction
vector in the opposite direction of the objective function gradient. The purpose of this section is to investigate
the conditions under which the stationary point of (25) is equal to the optimum filter.

By definition, Gn+1 should be equal to Gn for a stationary point at convergence. In other words, the
term in square brackets in (25) must be zero. Substituting (29) in (25) and then taking the mean values of both
sides at a stationary point yield

E [(ŝi[n]− f(ŝi[n− 1]) )rT [n] + 4

p∑
j=1
i ̸=j

δ2∑
δ1

(ŝi[n] ŝj [n− δ] )ŝj [n− δ] rT [n]] = 0 (30)

Substituting (20) in (30) gives

E [(r[n]G i,n − f(r[n− 1]Gi,n−1) )rT [n]] + 4

p∑
i,j=1
i ̸=j

δ2∑
δ=δ1

E[r[n]Gi,n (r[n− δ]Gj,n−δ)
2rT [n]] = 0 (31)

When µ is sufficiently small, G i,n can be assumed to vary considerably slowly relative to r[n] at convergence.
In other words, E [r[n]Gi,n] ∼= r[n]Gi,n.

Consider the following facts:
i. s[n] and z[n] are uncorrelated and so E[s[n]z[n]]=s[n]E[z[n]]=0.
ii. s[n] is a deterministic signal, i.e. E[s[n]sT [n]]=s[n] sT [n]. Using these facts in (31) and going through

intermediate steps give

T[n, n]Gi,n − E [f(r[n− 1]Gi,n−1) )rT [n]] + 4T[n, n]Gi,n(

δ2∑
δ=δ1

(r[n− δ]Gj,n−δ)
2
) = 0, (32)

where T[n,n] is defined in (24). Now G i,n can be calculated from (33), easily leading to

Gi,n = T[n, n]
−1E [f(s[n− 1]G + n[n− 1]) ]Gi,n−1(CT sT [n] + zT [n])]

1 + 4
δ2∑

δ=δ1

(s[n− δ]C + z[n− δ]Gj,n−δ)
2

(33)

It is recognized that (33) is equal to the optimum filter derived in Section 3. Note that slow variation in G i,n

relative to r[n] is the only assumption for this equivalence to hold.
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6. Results
Six experiments were conducted to assess the performance of the proposed solution. We used MIMO FIR
channels having different lengths during the simulations. For each simulation, 1000 trials were performed and
average results are illustrated in the performance figures. Transmitted chaotic signals were generated by the most
commonly used chaotic maps, namely the logistic map, Chebyshev map, tent map, and Henon map. Nonlinear
mapping functions of the logistic, Chebyshev, tent, and Henon maps are given in (34)–(37), respectively:

s[n] = λs[n− 1](1− s[n− 1]), λ ∈ (3, 4) (34)

s[n] = cos(4 arccos(s[n− 1]) (35)

s[n] = b− 1− bs[n− 1], b ∈ [1.3, 2] (36)

s[n] = 1− 1.4(s[n− 1])
2
+ 0.3s[n− 2] (37)

As can be seen from the above equations, the embedding dimension of the logistic, Chebyshev and tent
maps is one and the embedding dimension of the Henon map is two. In the first and second experiments,
convergence behavior of the proposed framework is analyzed and it is contrasted with the classical blind MIMO
equalization algorithm given previously [24]. The impulse response of the overall system for a particular pair
of input and output signals defined in (38) is used as a performance measure.

hij [n] :=

M∑
m=1

gjm[n] ∗ cmi[n], i, j = 1, 2, ...p. (38)

By using the overall impulse responses, output signals can be expressed as

ŝj [n] =

p∑
i=1

L2+L1−1∑
l=0

si[l]hij [n− l]. (39)

From (39), the j-th equalizer output depends only on the j-th chaotic input signal if hij [n] = 0 for i ̸= j [26].
The proposed blind adaptive filter can recover the input signals provided that this condition is met.

In the first experiment, transmitted chaotic signals are produced with the logistic map by using several
initial conditions and a 2-input 3-output FIR model is used for the channel. Length of the FIR equalizer filters
was chosen as L2 = 20 . As mentioned in Section 4, µ in the SD algorithm has an upper bound determined
by the maximum eigenvalue of the covariance matrix of the observed data. In simulations µ=10−5 was found
to satisfy the convergence condition for all observed chaotic signals. Initial values of the equalizer coefficients
were g11 = g22 = δ[n− 10] . A 50-point rectangular window was used to calculate the cross-correlation in (18)
for δ1 = −24, δ2 = 25 . The impulse responses hij [n], j = 1, 2. at convergence are illustrated in Figure 2, from
which it can be seen that the condition h12[n] = h21[n] = 0 is almost satisfied. In other words, the first equalizer
block recovers the first input signal while the second equalizer block recovers the second input.

In the second experiment, the adaptive solution is contrasted with the classical blind MIMO equalization
method discussed previously [24]. In this experiment, a 2-input 4-output FIR model is used for the channel
and the length of the equalizer is L2 = 20 . Overall impulse responses of the chaotic and conventional MIMO
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communication systems are illustrated in Figures 3a and 3b. Figure 3 shows that signal recovery conditions are
not satisfied if conventional MIMO blind equalization is used. The underlying reason for this behavior can be
explained as follows. Note that chaotic signals take values in the interval [0, 1]. Hence, E[s2i ] cannot be zero
unless the signal is zero. One of the assumptions made about the transmitted signal previously [24] is violated.
Hence, conventional equalization methods are not expected to give satisfactory performance for chaotic signals.

Figure 2. The impulse responses of the overall system at convergence for the first experiment.

The computational complexity of the proposed algorithm for a 2-input 2-output FIR channel is about
14L2 + 2L1 multiplication and 4L1 + 2L2 + 50 summation for each iteration (L1 and L2 are the lengths
of channel and equalizer, respectively). According to this result we can clearly say that the computational
complexity is close to that of conventional equalization algorithms [24].

To the best of our knowledge, there is no study that evaluates the performance of its chaos-based MIMO
blind channel equalization method by using metrics similar to those in our paper. Thus, in the third experiment,
the performance of the proposed study is compared to that of the optimum filter, which is expected to give
the best performance since it has information about the characteristics of the channel. In the comparisons, the
mean square error (MSE) is used as the performance measure. At the end of the k-th iteration, let ŝj,k denote
the estimated signal vector for the j-th input signal. Then the MSE between the j-th input and output vectors
is defined as

MSEj,k =
1

L1
∥sj − ŝj,k∥, (40)

where L1 is the length of the vectors and ∥.∥ denotes the norm operator. Figures 4a and 4b illustrate MSE
variations as a function of iteration number for adaptive equalizer outputs obtained from the proposed adaptive
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Figure 3. The overall impulse responses for the second experiment (a) chaotic, (b) conventional MIMO communication
systems.

and optimum filters, respectively. In this experiment, a 2-input 3-output FIR model with L2 = 20 is used for
the channel. Results of the proposed adaptive filter are in harmony with those of the optimum filter.

The proposed adaptive filter is applied to several chaotic communication systems in Experiment 4.
Chaotic input signals are generated by logistic, Chebyshev, and tent maps in the simulations. For this and
the following experiment, a 2-input, 4-output FIR model is used for the channel. L2 and µ are chosen as 20
and 10 −5 , respectively. Figures 5a and 5b show the MSE variations for the corresponding equalizer outputs.
As the figures show, the tent map gives better results than the others but, in general, similar behaviors are
obtained for different chaotic maps since the proposed algorithm exploits the properties of chaotic maps.

In the fifth experiment, the effect of the embedding dimension of chaotic maps is investigated. For this
purpose, two different chaotic communication systems with different embedding dimensions are considered.
Transmitted chaotic signals are generated by the Henon map with d=2 in the first system and the logistic maps
with d=1 in the second system. Figures 6a and 6b illustrate the MSE variations for the equalizer outputs. Again,
behaviors are similar regardless of the chaotic maps and the embedding dimensions since adaptive equalizers
are built upon information provided by the chaotic maps used at the transmitter.

In addition to the above experiments, the performance of the proposed algorithm is evaluated by cal-
culating the bit error rate (BER), which can be expressed as the ratio of the number of errors to the total
number of bits sent. For this purpose, a chaos shift keying (CSK) modulation–demodulation process is applied
as shown at the input and output of Figure 1. The operating principle and block diagram of the CSK system
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(a) (b)

Figure 4. The overall impulse responses for the second experiment (a) chaotic, (b) conventional MIMO communication
systems.

(a) (b)

Figure 5. MSE values for different chaotic mapping functions in the fourth experiment: a) between the first information
signal and the first equalizer output and b between the second information signal and the second equalizer output.

can be found elsewhere [1]. BER performance curves of the proposed scheme are illustrated in Figures 7 and 8.
In Figure 7, BER versus different signal to noise ratio (SNR) values for both the proposed algorithm and the
optimum filter is given. BER values are calculated by averaging the results obtained for the first and second
outputs. Similarly, in Figure 8, BER values are shown for different chaotic maps. As can be seen from the
figures, BERs are at an acceptable level for reliable communication. Note that the BER performance of the
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proposed algorithm can be improved by applying different modulation–demodulation scenarios. However, this
is outside the presented paper’s scope.

(a) (b)

Figure 6. MSE values for the Henon map with d=2 and the logistic map with d=1: a) between the first information
signal and the first equalizer output and b) between the second information signal and the second equalizer output.

Figure 7. BER versus SNR for the proposed algorithm
and optimum filter.

Figure 8. BER versus SNR for different chaotic maps.
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7. Discussion
An adaptive chaotic blind equalization approach to combat ISI and MUI for MIMO systems was proposed in
this work. In addition, given that the impulse response of the channel is known, an optimum filter was derived.
The proposed approach was contrasted with the optimum filter in terms of MSE performance. The stationary
point of the adaptive algorithm was shown to be equal to that of the optimum filter provided that the adaptive
filter coefficients change sufficiently slowly by means of stationary point analysis. The proposed algorithm gives
results close to those obtained by the optimum filter. It can also reconstruct all input signals at the same time.
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