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Abstract: Modern distribution systems are equipped with various distributed energy resources (DERs) because of
the importance of local generation. These distribution systems encounter more and more uncertainties because of the
ever-increasing use of renewable energies. Other sources of uncertainty, such as load variation and system components’
failure, will intensify the unpredictable nature of modern distribution systems. Integrating energy storage systems into
distribution grids can play a role as a flexible bidirectional source to accommodate issues from constantly varying loads and
renewable resources. The overall functionality of these modern distribution systems is enhanced using communication and
computational abilities in smart grid frameworks. Robust operation of these systems is effectively taken into consideration
to manage the uncertainty, which offers an explicit way to control the desired conservativeness. This paper presents an
optimal operating program for smart grids equipped with wind generators, controllable distributed generators, energy
storage systems, and reactive power compensators. In order to make the studies more practical, uncertainty about
wind generators and grid loads is taken into account. Furthermore, the presented operating program is robust in various
conditions, i.e. there is no need to change the operating program in a wide range of probable states. The point estimation
method and fuzzy clustering method are used for probabilistic assessment of the distribution system in the presence of
uncertainties. The IEEE 37-node standard test system, which is a highly unbalanced system, is selected for the case
study and the results are discussed comprehensively.

Key words: Fuzzy clustering method, particle swarm optimization, point estimation method, probabilistic assessment,
robust operating, smart distribution grid

1. Introduction
1.1. Motivation
Conventional power grids have a hierarchical structure, transferring electricity through the upstream transmis-
sion networks to the loads in distribution networks. The conventional structure of power grids has remained
unchanged for many years. Some of the most important problems in these grids are inefficiency of the power
grid in managing the maximum demand, control of renewable energy sources, exchanging reliable information,
withstanding some probable events, and so on. In smart distribution grids, many of these problems can be
efficiently managed by reliable control of power generation, storage, and consumption using communication and
computational abilities.

Distributed energy resources (DERs) have salient technical and economical benefits in distribution sys-
tems such as increased resiliency and reduced losses. They are divided into two general groups: control-
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lable/dispatchable and noncontrollable/nondispatchable. Dispatchable ones such as combined heat and power
(CHP) generators can change their output fairly quickly in order to meet electricity demands. However, nondis-
patchable ones are completely unpredictable and intermittent, and they are not continuously available due to
factors that cannot be controlled, such as weather conditions. Their unpredictable nature brings out many
challenges in operating programs. These challenges are made more complicated by other uncertainty sources
such as load variations and system components’ failures. Energy storage systems (ESSs) have become a critical
issue in balancing the generations and the loads since they provide the ability to reach maximum efficiency from
renewable resources with a more uniform output profile. On the other hand, robust operating programs can
also effectively deal with uncertainties and satisfy a wide range of probable operating conditions.

Based on the mentioned points, optimal operation is of great importance in smart distribution grids as
it includes probabilistic constraints and is robust in different operating conditions (so that with adjustment of
control variables once, more hours of grid conditions are covered), and it reduces the risk of decision-making
for grid operators. In this relation, probabilistic evaluation methods will be more efficient if they can produce
accurate results with little computational complexity [1].

1.2. Literature review
Many studies have addressed the operation of smart distribution systems. In some references, energy man-
agement in microgrids, including ESSs, has been studied and the uncertainty associated with renewable-based
generators and loads has been considered. However, none of these studies considered the grid model and its
associated operating constraints.

In this regard, [2] focused on reducing the final cost of energy supplies, while [3] paid attention to various
components of operational cost, such as the cost of thermal generation, the cost of purchased power from the
upstream grid, and the cost of energy storage resources. The work in [4] investigated reliable energy supplies
with the lowest cost. In [5], the cost of pollution and maintenance costs associated with power generation were
considered along with other cost components. In [6], long-term costs including investment, maintenance, fuel,
and emission costs were also considered. The authors of [7] referred to the cost of distributed generation power
plants and the purchase of power from the upstream grid. In [8], the economic component was taken into
account with respect to the optimal cost of energy storage, while [9] examined the reduction of the total cost
of energy supplies with respect to the price of energy usage time. The work in [10] evaluated the reduction of
the energy imbalance caused by the online differences of energy between conventional supply, real demand, and
corresponding costs. Reducing the expected cost during the grid planning horizon was discussed in [11]. In [12],
creating a trade-off between reducing the cost of power generation and the amount of charging and discharging
the energy storage was considered. The authors of [13] focused on increasing the profit and reducing the total
cost of thermal power plant operation.

Furthermore, in many other references, energy management in distribution systems including ESSs was
taken into account and the uncertainty caused by renewable generators and load was considered. None of these
studies paid attention to the robustness of the operating program.

In this regard, [14] considered the reduction of total costs and losses, while [15] reduced operational
costs and improved the performance quality of distribution systems. Reducing losses by maintaining all grid
operating limits was addressed in [16], while [17] studied the improvement of voltage and current controllabil-
ity. In [18], loss reduction and more profitability were considered with energy arbitrage. In [19], increasing
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reliability was considered. In [20], similar to [19], increasing profitability was considered. Controllable power
plant cost, blackout, and start-up costs were taken into consideration in [21]. The reliability assessment of
distribution systems having both controllable and uncontrollable resources was investigated in [22]. In [23],
more participation of energy storage systems in the energy management of distribution grids was considered.
The work in [24], considering reactive power compensators and energy storages, reduced the active power losses
in distribution grids. In [25], reducing the cost of exchanging power between energy storage systems with a
robust approach was considered. The formulation of a short-term load shedding program was reviewed in [26].
In [27], the reduction of the unbalancing amount of main feeder flow, losses, and greenhouse gas emissions was
investigated. Although grid models, losses, and related operational limitations were considered in these studies,
the robustness of the operating point has not been contemplated, as previously said.

On the other hand, obtaining a fast operating program is very important especially in online applications.
Calculation burden reduction will be more necessary in probabilistic studies. Recently, clustering methods have
been considered in power system probabilistic studies [28–32]. The task of organizing a collection of objects
in such a way that objects within the same group are more similar to one another than to those in other
groups is called clustering. In probabilistic studies of power systems, researchers have employed different kinds
of clustering methods. There are five different clustering categories: partitional clustering such as K-means,
agglomerative clustering such as hierarchical, fuzzy clustering such as fuzzy C-means, neural network-based
clustering such as self-organizing maps, and various types of bioinspired clustering methods [33]. Clustering
methods require a very low calculation burden, they have acceptable levels of accuracy, they can be applied to
every type of uncertain variables, and consequently they are suitable for online and practical applications.

1.3. Paper contribution

As can be seen from the review of related publications in recent years, introducing an operating program for
smart grids in the presence of uncertainties is very important.

As its main contribution, this paper provides a robust optimal operating program in the presence of
nondispatchable renewable-based distributed generators, ESSs, dispatchable power generation sources such as
CHP generators, and reactive power compensators while satisfying all operational constraints. The proposed
operating program does not need to change in various time intervals in which the condition of the distribution
system is continuously changing. In addition, two efficient methods are used for probabilistic assessment of the
distribution system in this work: the point estimation method (PEM) and fuzzy clustering method (FCM). PEM
and FCM have been previously used for probabilistic assessment of power systems, but their applications in
robust operation of distribution systems are being evaluated for the first time in this paper. These methods are
comprehensively compared to each other regarding calculation time aspects. None of the references mentioned
above considered these related issues all together.

1.4. Paper structure

The rest of the paper is organized as follows. In Section 2, uncertainties are modeled mathematically. In
Section 3, the probabilistic assessment method used in this paper is presented. The problem formulation is
given in Section 4. Then the optimization method is discussed in Section 5. Section 6 presents the case study
and the obtained results. Finally, the conclusion is given in Section 7.
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2. Uncertainty modeling

2.1. Loads
Load uncertainty is often modeled by a normal probability distribution. In this study, active load demand is
considered as a normally distributed random variable, and reactive load demand is obtained by considering a
constant power factor. The probability density function (PDF) of the ith bus’s active load demand is formulated
according to 1 [34]:

PDF
(
Pi

Load
)
=

1
√
2πσ

[
Pi

Load
]e (Pi

Load−E[Pi
Load])

2

2σ[Pi
Load]2 , (1)

where Pi
Load is the active load demand at the ith node, and σ [] and E [] denote the standard deviation and

mean value operators, respectively.

2.2. Wind generation

The Weibull distribution is conventionally used for modeling of wind speed PDF. However, wind generator
output is commonly expressed by this PDF as in 2 [34]:
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where Pi
Wind is the active power generation of the wind generator located at the ith node. λ and k are the

scale parameter and the shape parameter of Weibull distribution, respectively.

3. Probabilistic evaluation of power systems

Power systems are encountered with high levels of uncertainties due to the unpredictable output of renewable
generations, loads variation, probable failure of system components, etc. Several methods have been used for
probabilistic assessment of power systems in the presence of uncertainties. These methods are generally classified
into three categories of Monte Carlo simulations (MCSs), analytical methods, and approximation methods. The
MCS method has been widely used to assess uncertainties in power systems. The basic weakness of the MCS
method is requiring a large number of simulations in order to achieve convergence. Analytical methods are very
efficient in terms of computational burden but these methods also require some mathematical simplifications
such as the linearization of the problems. Approximation methods provide an approximate description from
the probabilistic properties of output random variables. These methods require much lower computational
complexity and do not require full information about the probability distribution of input random variables
compared to the MCS method.

Data clustering and PEMs are two types of approximation methods that have been widely used in
probabilistic assessment of power systems. PEMs are very simple and do not require the computation of
derivatives [35, 36]. However, the accuracy of these methods is low in estimating high-order moments of
probability distributions. Also, their calculation burden rapidly increases for large systems with many input
random variables. Data clustering methods are very easy to implement and they are very efficient in large
systems with many input numbers [37].
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3.1. Point estimation method
The purpose of all PEMs is to calculate the statistical moments of the output random variable Z , which is a
function of M input random variables Pm as in (3):

Z = F (p1, p2, ..., pm, ..., pM ) . (3)

The point estimation methods concentrate the statistical information of the input random variables
(which is available via several central moments) on K points, which are called the concentrations.

The K th concentration of the random variable Pm (pm,k, wm,k) is defined as a pair of location pm,k

and weight wm,k . The location of pm,k is the K th amount of random variable Pm and weight wm,k is the
coefficient that shows the relative importance of this location.

Using the Hong method, the F function is evaluated K times for each input random variable Pm in the
K points. These points are formed from the k th place of the Pm (pm,k) and the average value of other M − 1

random input variables (E [p1] ,E [p2] , ..., pm,k, ...,E [pM ]) .
The value of K for evaluating each variable depends on the type of used method. Thus, the total value

of F function evaluation is K ×M . The 2×M method is explained as follows. The locations pm,1 and pm,2

associated with the mth random variable are determined from input statistical information by (4) and (5):

pm,1 = E [pm] + ξm,1 × SD [pm] , (4)

pm,2 = E [pm]− ξm,2 × SD [pm] . (5)

In these equations, ξm,1 and ξm,2 are standard locations, E [pm] is the average value of pm , and SD [pm] is the
standard deviation amount of the random variable pm .

The standard locations are obtained from (6) and (7):

ξm,1 =
λm,3

2
+

√
M + (

λm,3

2
)
2

, (6)

ξm,2 =
λm,3

2
−

√
M + (
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2
)
2

, (7)

where λm,3 is the third central moment of pm .
Also, the weight coefficients are obtained from (8) and (9):

wm,1 = − 1

M
× ξm,2

ξm,1 − ξm,2
, (8)

wm,2 = − 1

M
× ξm,1

ξm,1 − ξm,2
. (9)

After obtaining all locations and their weights the function F is evaluated in the (E [p1] ,E [p2] , ..., pm,k, ...,E [pM ])

point and Z(m, k) = F (E [p1] ,E [p2] , ..., pm,k, ...,E [pM ]) is obtained. Finally, using the weight coefficients, the
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j th moment of the output variable Z can be obtained according to (10), in which Z is the vector of the output
variables [36]:

E
[
Zj
]
=

M∑
m=1

2∑
k=1

wm,k × Zm,k
j. (10)

Figure 1 shows the flowchart of the two-point estimation method.

Initializing

m = 1 & E[Z j] = 0

Select input random variable pm

Compute:

Standard central moment λm,j

Standard locations ξm,k 

Weights wm,k

k = 1

First concentrations of variable pm

Determine the location pm,k

pm,k = E[pm] + ξm,k × SD[pm]

Solve deterministic power flow

Zm,k = F(E[p1], …, pm,k, …, E[pM])

Update raw moments

E[Z j] = E[Z j] + wm,k × Zm,k
j

k = K?

m = M?

Compute statistical output information from 

equation (8)

k = k + 1

m = m + 1

No

No
Yes

Yes

Figure 1. Flowchart of probabilistic assessment using PEM.

3.2. Fuzzy clustering method

The clustering technique refers to dividing data into subclasses called clusters based on their similarity. In each
cluster, data appear to be more similar to one another and less similar to other data. Euclidean distance is

804



ZARE SEHSALAR et al./Turk J Elec Eng & Comp Sci

generally used for stating the similarity. Objects that are closer to one another are considered as a cluster, and
an agent is designated to each cluster. Instead of analyzing all data, only agents are assessed. Fuzzy C-means
(FCM) is one of the data clustering methods introduced by Dunn in 1973 [38]. This algorithm presents fuzzy
behavior, and data are placed in clusters based on their membership coefficients. Membership coefficients are
numbers between 0 and 1 and represent the degree of membership between data and clusters’ agents. In this
method, one piece of data may belong to two or more clusters. The steps of this algorithm are summarized as
follows [39]:

Suppose P to be an M -dimensional vector of input random variables as P = [p1,p2, ...,pM]
T . Each pi

has N observations and P is an N × M matrix where each row is stated as on observation or datum called
dn , n = 1, 2, ..., N .

Step 1 K, the number of the clusters, is selected.

Step 2 An agent ak is randomly selected for each cluster from the entire data space where k = 1, 2, ...,K .

Step 3 The matrix of membership coefficients U is calculated. The nth row and k th column element of this
matrix is obtained according to (11):

unk =
1

K∑
l=1

(
|dn−ak|
|dn−al|

) 2
m−1

, (11)

where unk is the degree of membership of dn in ak . Also, dn denotes the nth data; ak and al indicate
the k th and l th agents, respectively; and m denotes fuzzification constant and 1 < m < ∞ . Higher
values of m lead to higher levels of fuzziness.

Step 4 Agents of categories are updated based on (12):

ak =

N∑
n=1

unk
m.dn

N∑
n=1

unk
m

. (12)

Step 5 Steps 3 and 4 are repeated until the changes in the agents are limited to a prespecified threshold.

Step 6 A probability is assigned to each agent as in (13):

p (ak) =
NGk

N
, (13)

Where NGk
is the number of data points belonging to the k th cluster and N is the total number of data.

Each cluster agent is applied to the power flow problem as an input, and its corresponding output is
saved. The statistical moments of output variables Z are obtained according to (14):

E
[
Zi
]
=

K∑
k=1

p (ak) · F (ak)
i
, (14)
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where F (ak) indicates the output of the power flow problem by considering ak as the input.
Figure 2 shows the flowchart of the fuzzy clustering method.

Select number of the clusters, K

Select K random agents

Calculate matrix of membership

coefficients U using (9)

Update agents ak using (10)
Threshold

satisfied?

Assign a probability to each agent

p(ak) using (11)

k = 1

Solve deterministic power flow
Z
k=F(ak )

k = K?

k = k + 1

Compute statistical output

information using (12)

Figure 2. Flowchart of probabilistic assessment using FCM.

4. Problem formulation
4.1. Objective function

The objective function is defined according to (15). The objective function is the expected operating cost and
it has two components: the first component is the expected cost of active power bought from the upstream
transmission grid during the whole studying interval (t = 1, 2, ..., T ) and the second component is the expected
cost of active power generation in all CHP units (i = 1, 2, ..., NCHP ) during the whole studying interval
(t = 1, 2, ..., T ) :

F (x) =

T∑
t=1

(
w1t × E

[
Pt

Transmision
])

+

T∑
t=1

(
NCHP∑
i=1

w2t,i × Pt,i
CHP

)
. (15)

In this expression, T is the number of studied time periods and E
[
Pt

Transmision
]

is the expected amount of active
power taken from the upstream transmission grid at the tth time period. w1t is the active power conversion
coefficient taken from the upstream transmission grid to the cost. NCHP is the number of dispatchable (CHP)
generators available in the grid. Pt,i

CHP is the active power of the ith CHP generator at the tth time period.
w2t,i is the active power conversion coefficient of the ith CHP output to the cost at the tth time period.

In (15), it is assumed that renewable-based generators already exist in the grid. Hence, installation, start-
up, repairing, and maintenance costs as well as other costs associated with these generators are not present
in the objective function. It is also assumed that reactive power compensators already exist in the power grid
and are installed in certain places, so the costs associated with their installation and start-up, repairing, and
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maintenance are not present in the objective function. Also, assuming that energy storage systems already exist
in the grid and have been installed in certain places, the costs associated with their installation and start-up,
repair, and maintenance and other associated costs have not been included in the objective function.

4.2. Control variables
In (15), the control variables include the tap position of transformers in the distribution grid, the amount of
active power produced by CHP stations, the reactive power amount of VAr compensators, and the amount of
charge and discharge of energy storage systems during the study periods.

4.3. Constraints
Constraints related to this optimization problem include the constraints of nodal power balancing, the con-
straints on the control variables, and the constraints on the state variables. Power balancing constraints are
according to (16) and (17), the constraints of the control variables are in accordance with (18) to (20), and the
constraints of the power system state variables are in accordance with (21) to (25). However, in the probabilis-
tic environment, the magnitude of state variables like the voltage of the nodes or the current flow in feeders is
replaced by the average value of these variables. Also, in addition to the anticipated amount or average value,
the probability of state variables to be high or low from a given value must be considered:

PTransmision +

Nbus∑
i=1

Pi
CHP +

Nbus∑
i=1

Pi
Wind +

Nbus∑
i=1

Pi
Battery =

Nbus∑
i=1

Pi
Load + PLoss, (16)

QTransmision +

Nbus∑
i=1

Qi
CHP +

Nbus∑
i=1

Qi
Wind =

Nbus∑
i=1

Qi
Load +QLoss. (17)

In these two equations, P transmision and Qtransmision are the active and reactive power taken from the upstream
transmission grid, Nbus is the number of nodes, Pi

CHP and Qi
CHP are the active and reactive power of the ith

CHP generator if available, Pi
Wind and Qi

Wind are the active and reactive power of the ith wind generator if
available, Qi

Capacitor is the reactive power generated by the reactive power source of the ith node if available,
Pi

Battery is the amount of active power generated (or consumed) by the energy storage system of the ith node
if available, Pi

Load and Qi
Load are the active and reactive power of the load in the ith node, and PLoss and

QLoss are active and reactive power losses of the entire grid.

0 ≤ Pi
CHP ≤

max

Pi
CHP, (18)

where
max

Pi
CHP is the maximum producible active power by the CHP located at the ith node.

−
max

Pi
Battery ≤ Pi

Battery ≤
max

Pi
Battery, (19)

where
max

Pi
Battery and

max

−Pi
Battery are the maximum recharge ability and discharge ability of active power by the

energy storage system located in the ith node.

0 ≤ Qi
Capacitor ≤

max

Qi
Capacitor, (20)
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where
max

Qi
Capacitor is the maximum producible reactive power by the capacitor located at the ith node.

0.95 ≤ E [Vi] ≤ 1.05, (21)

where Vi is the voltage of the ith node and E [] is the operator of the expected or average value.

E [Il] ≤
max

Il , (22)

where Il is the current amount of the l th branch and
max

Il is the maximum allowable current of the l th line.

p (Vi ≥ 1.05) ≤ 0.05, (23)

p (Vi ≤ 0.95) ≤ 0.05, (24)

p

(
Il ≥

max

Il

)
≤ 0.05. (25)

In (23) to (25), p () is the probability operator of the specified conditions.

5. Problem solving method (particle swarm optimization algorithm)

Various techniques have been introduced for optimization problems to date. Analytical methods that are
traditionally based on derivations are robust and effective. However, they encounter some complications such
as getting trapped in local minima, increasing computational complexity, and not being applicable to certain
classes of objective functions. Heuristic optimization techniques can overcome most of the mentioned difficulties.
They are derivative-free, less sensitive to the convexity or continuity nature of the objective functions, able to
escape from local minima, and not requiring a good initial solution for starting [40].

Particle swarm optimization (PSO) is a population-based evolutionary optimization technique introduced
by Kennedy and Eberhart in 1995. It is easy to implement with few parameters to adjust. Compared with
other heuristic methods such as the genetic algorithm (GA), PSO has better computational efficiency and more
stable convergence characteristics [41].

In this algorithm, the global optimal solution is obtained using a population of particles. Each particle
represents a possible solution of the problem. The algorithm begins with N particles. Each particle in the
search space has a current position xi and a velocity vector vi . The fitness function of each individual is
specified by F (x) . The best individual experience of each particle xi

Localbest corresponds to the best fitness
function of that particle during repetitions. The best collective experience xGlobalbest corresponds to the best
individual experience of all particles during repetitions. The steps of this algorithm are as follows:

1. Formation of initial population and initial velocity vectors randomly.

2. Calculating fitness function value of particles according to the current position of each particle.

3. Getting the best individual experience of each particle, xi
Localbest .

4. Getting the best collective experience xGlobalbest .
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5. Updating the position of particles and velocity vectors based on the best individual and collective expe-
riences in accordance with (26) and (27).

6. Repeating Step 2 until achieving the convergence condition [42].

xi
n+1 = xi

n + vi
n+1, (26)

vi
n+1 = vi

n + ρ1 × r1 ×
(
xi

Localbest − xi
n
)
+ ρ2 × r2 ×

(
xGlobalbest − xi

n
)
, (27)

where xi
n and xi

n+1 are the ith individual or particle in the nth and n+ 1th generations, respectively. vi
n

and vi
n+1 are the velocity corresponding to the ith particle in the nth and n + 1th generation, respectively.

ρ1 and ρ2 are learning factors of the PSO algorithm. r1 and r2 are independent uniform random numbers.
xi

Localbest is the best individual experience of the ith particle and xGlobalbest is the best collective experience
of particles.

Figure 3 shows the flowchart of problem-solving by PSO method.

Initialize population (control variables), 

randomly

Initialize velocity vector, randomly

Calculate objective function (Eq. 15)

using PEM (Eq. 10) or FCM (Eq. 14)

Find the individual best of each particle

Find the collective best of particles 

Return collective best as final solution 

Max iteration 

reached?

Update particles and velocity vector

using Eq. 26 and Eq. 27

No

Yes

Figure 3. Flowchart of problem-solving by PSO method.

As seen in this figure, objective function calculation needs probabilistic assessment of the distribution
system, which can be conducted via (10) or (14).

6. Simulation results and discussions
The IEEE 37-node standard test system is a real distribution system in California. In this system, nominal
voltage of the grid is 4.8 kV and the loads are connected in delta ∆ configuration. Also, all loads are concentrated
and combine active and reactive loads with constant power and the grid is completely unbalanced [43].
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A one-line diagram of this system is presented in Figure 4.1 The values of base active and reactive
loads are presented in Table 1. Also, the assumed locations of CHP generators, wind turbines, energy storage
systems, and reactive power compensators are shown in this figure. These components’ locations are assumed
to be distributed all over the grid.

Wind Turbine

CHP

Battery

Capacitor Bank

Figure 4. One-line diagram of IEEE 37-node standard test system.

Figure 5 shows the load curve for the studied grid without considering the uncertainty of loads in a 6-h
time interval based on the coefficient of the base load amount. In this figure, the amount of grid load in each
node, in each phase, and in each hour is obtained by multiplying the kt coefficient by the base load amount as
in (28) and (29):

Pt,i
Load = kt × P0,i

Load, (28)

Qt,i
Load = kt ×Q0,i

Load, (29)

where i = 1, 2, ..., T , the superscript 0 refers to the base case, t is the time interval index, and i is the node
index. The kt coefficient is obtained from Figure 5, as said.

Also, it is assumed that the loads on nodes 13, 14, 15, 16, 19, 20, 22, 27, 32, and 37 are random variables
that follow normal distribution [34]. It is supposed that the expected values of these variables in various time
intervals are equal to their values obtained from (28) and (29). The value of the standard deviation of each
load in each time interval is equal to its related expected value divided to 5.

Table 2 shows the probabilistic information related to the wind generators connected to different nodes.
The probabilistic distribution of these generators is considered similar to the probability distribution of wind
speed. Since the Weibull probability distribution is usually considered for wind speed, this probability distri-
bution is also considered in the generators’ output [34].

1http://sites.ieee.org/pes-testfeeders/resources/.
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Table 1. The value of base active and reactive loads.

Node Phase a Phase b Phase c
Active (kW) Reactive (kVAr) Active (kW) Reactive (kVAr) Active (kW) Reactive (kVAr)

1 0 0 0 0 0 0
2 140 70 140 70 350 175
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
13 0 0 0 0 85 40
14 0 0 0 0 85 40
15 17 8 21 10 0 0
16 85 40 0 0 0 0
17 0 0 0 0 85 40
18 0 0 140 70 21 10
19 0 0 42 21 0 0
20 0 0 42 21 0 0
21 0 0 0 0 42 21
22 42 21 42 21 42 21
23 42 21 0 0 0 0
24 0 0 0 0 85 40
25 0 0 85 40 0 0
26 0 0 0 0 42 21
27 85 40 0 0 0 0
28 0 0 0 0 42 21
29 0 0 0 0 85 40
30 0 0 42 21 0 0
31 140 70 0 0 0 0
32 126 62 0 0 0 0
33 0 0 0 0 85 40
34 0 0 0 0 42 21
35 8 4 85 40 0 0
36 42 21 0 0 0 0
37 0 0 0 0 0 0

The assumptions related to the CHP power plants are described in Table 3. In addition, assumptions
related to energy storage resources are described in Table 4. The assumptions related to the reactive power
compensators are described in Table 5.
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Figure 5. The coefficients of the load curve of the studied grid based on the base load.

Table 2. The probabilistic information of the wind generators connected to different nodes of the studied network.

Node Scale parameter Shape parameter Mean Standard deviation
7 15 1.8 13.34 7.67
12 15 1.8 13.34 7.67
21 15 1.8 13.34 7.67
24 15 1.8 13.34 7.67
31 15 1.8 13.34 7.67

Table 3. Location and capacity of CHP power plants.

Nodes Maximum producible power (kW)
8 25
10 25
28 25

Table 4. Location and capacity of energy storage resources available in the studied grid.

Nodes Maximum chargeability and dischargeability in an hour (kW).
5 15
23 15
34 15

As regards the cost coefficients in the objective function, it is assumed that the cost of power generation
in the CHP is equal to the cost of purchasing power from the upstream grid in the base load mode (the sixth
time interval of the studied period). The cost of purchasing power from the upstream grid in the first, second,
and third time intervals has 10% reduction compared to the base amount. Also, in the fourth and fifth time
intervals, there is 10% increase in comparison to base load mode.
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Table 5. Location and capacity of reactive power compensators.

Nodes Number and capacity (kVAr)
18 2 × 25
26 2 × 25
29 2 × 25
33 2 × 25
35 2 × 25

Regarding the PSO algorithm, the number of particles in the swarm is set to 100, the number of total
iterations is set to 750, and both of the learning factors (ρ1andρ2) are set to 2, as usual [42]. It is noticeable
that a great number of algorithm iterations can guarantee the convergence and optimality of the solutions.

Regarding probabilistic assessment methods, the number of points in PEM is 2 and the number of clusters
in FCM is 10.

In addition, this study is implemented on MATLAB software and the calculation is conducted on an Intel
core i7-6500U 2.5 GHz with 8 GB RAM system.

6.1. First scenario
In this scenario, it is assumed that the control variables, except for energy storage sources, have a constant
value and do not change over the entire period of the study. However, this type of operating can lead to getting
away from the global optimal operating point, but this scenario presents some benefits. The operating point
does not need to change and is kept constant during the whole operating interval, and this means that there
is no need to run the optimization program in different hours. Also, there are few control variables and less
computational complexity is required as a result.

Table 6 and Table 7 show the proposed control variables by the proposed method using PEM and FCM,
respectively.

Table 6. Obtained results from applying the proposed algorithm (first scenario) using PEM.

Control variable Node Time period
first second third fourth fifth sixth

Energy storage systems (kW)
5 -15.00 -15.00 -15.00 +15.00 +15.00 +15.00
23 -15.00 -15.00 -15.00 +15.00 +15.00 +15.00
34 -15.00 -15.00 -15.00 +15.00 +15.00 +15.00

CHP generators (kW)
8 2.13
10 22.76
28 0.46

Reactive power compensators (kVAr)

18 50.00
26 50.00
29 50.00
33 25.00
35 25.00
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Table 7. Obtained results from applying the proposed algorithm (first scenario) using FCM.

Control variable Node Time period
first second third fourth fifth sixth

Energy storage systems (kW)
5 -15.00 -15.00 -15.00 +15.00 +15.00 +15.00
23 -15.00 -15.00 -15.00 +15.00 +15.00 +15.00
34 -15.00 -15.00 -15.00 +15.00 +15.00 +15.00

CHP generators (kW)
8 4.41
10 19.12
28 1.76

Reactive power compensators (kVAr)

18 50.00
26 50.00
29 50.00
33 25.00
35 25.00

The results of Table 6 and Table 7 can be discussed as follows. As seen, the results of the two methods
are very close to each other and this shows the relative convergence of the optimization algorithm. All energy
storage systems are fully charged at low load hours (with less cost) like the first, second, and third hours and are
discharged at peak load hours (with higher cost) like the fourth, fifth, and sixth hours. This can be attributed
to the cost ignorance for charge and discharge of these systems.

Considering the fact that the cost of CHP generators is approximately equal to the cost of purchasing
power from the upstream grid, it is expected that there will be a greater tendency to use the full capacity of
these generators. However, according to Table 6 and Table 7, the full capacity of these generators is not used.
If the total capacities of these generators are used at low load hours, more cost will be imposed to the grid
operator. However, the grid operator has a tendency to buy power from the upstream grid during low load
hours due to the low energy prices at these hours.

In addition, in the proposed solution, the maximum values for reactive power compensators have not
been allocated. In most nodes the load amount is zero and dedicating the possible maximum values for reactive
power compensator resources will exceed the voltage range beyond the upper limit.

6.2. Second scenario
In this scenario it is assumed that all control variables can be varied during all the study time periods like energy
storage systems. This scenario presents some benefits. The operating program in this scenario is completely
flexible and it is possible to reach the global optimum operating points. Also, there are some drawbacks and
difficulties in this scenario. The optimization program must be run every different hour. A large number of
control variables are involved and computational complexity is increased consequently. The operating point
needs to change continuously over the whole time interval.

Table 8 and Table 9 show the obtained results of applying the proposed algorithm using PEM and FCM,
respectively.

The results of Table 8 and Table 9 can be described as follows. As seen, the results of the two methods
are very close to each other and this shows the relative convergence of the optimization algorithm. All energy
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Table 8. Obtained results from applying the proposed algorithm (second scenario) using PEM.

Control variable Node Time period
first second third fourth fifth sixth

Energy storage resources (KW)
5 -15.00 -15.00 -15.00 +15.00 +15.00 +15.00
23 -15.00 -15.00 -15.00 +15.00 +15.00 +15.00
34 -15.00 -15.00 -15.00 +15.00 +15.00 +15.00

CHP generators (KW)
8 0.00 0.00 0.00 25.00 25.00 25.00
10 0.00 0.00 0.00 25.00 25.00 25.00
28 0.00 0.00 0.00 25.00 25.00 25.00

Reactive power compensators (KVAr)
18 50.00 50.00 50.00 50.00 50.00 50.00
26 0.00 50.00 25.00 25.00 50.00 50.00
29 50.00 25.00 25.00 50.00 0.00 50.00
33 25.00 50.00 25.00 25.00 50.00 0.00
35 25.00 50.00 0.00 50.00 0.00 50.00

Table 9. Obtained results from applying the proposed algorithm (second scenario) using FCM.

Control variable Node Time period
first second third fourth fifth sixth

Energy storage resources (KW)
5 -15.00 -15.00 -15.00 +15.00 +15.00 +15.00
23 -15.00 -15.00 -15.00 +15.00 +15.00 +15.00
34 -15.00 -15.00 -15.00 +15.00 +15.00 +15.00

CHP generators (KW)
8 0.00 0.00 0.00 25.00 25.00 25.00
10 0.00 0.00 0.00 25.00 25.00 25.00
28 0.00 0.00 0.00 25.00 25.00 25.00

Reactive power compensators (KVAr)
18 50.00 50.00 50.00 50.00 50.00 50.00
26 25.00 50.00 25.00 50.00 50.00 50.00
29 50.00 25.00 25.00 50.00 0.00 25.00
33 25.00 50.00 25.00 25.00 50.00 0.00
35 50.00 50.00 0.00 50.00 25.00 50.00

storage systems are charged at low load hours like the first, second, and third hours maximally and are discharged
during peak load hours like the fourth, fifth, and sixth hours. This is because of the lack of consideration of
cost for charging and discharging of these resources.

According to Table 8 and Table 9, the output of CHP generators at low load hours is equal to zero, while
at peak load hours, the full capacity of these generators has been used. This is due to the lower price of power
purchased from the upstream grid in low load hours than the cost of power generation at CHP generators, and
the higher cost of purchased power from the upstream grid in peak load hours compared to the price of power
generation at these generators.

Also, at the sixth hour, when the cost of power purchased from the upstream grid is equal to the cost of
power generation in CHP generators, since more production of CHP generators leads to a further reduction in
losses, there is a tendency to use all the capacity of these generators.
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In the proposed solution, the maximum possible amounts for reactive power compensator sources have
not been allocated. The reason for this issue is related to the nature of grid loads, since in most nodes the
load amount is zero and assigning the maximum possible values for reactive power compensator sources can
cause the voltage range to exceed the upper limit of the voltage amount. Also, some values of reactive power
compensator sources are different by the two methods. This is due to this variable discrete nature that can only
get three 0, 25, and 50 values.

Various components of the objective function in the two mentioned scenarios by the mentioned methods
are compared in Table 10.

Recall that
T∑

t=1

(
NCHP∑
i=1

Pt,i
CHP

)
is the sum of all CHP generators’ active power generation in all time

intervals,
T∑

t=1

(
E
[
Pt

Transmision
])

is the expected active power taken from the upstream grid, and

T∑
t=1

(
w1t × E

[
Pt

Transmision
]
+

NCHP∑
i=1

w2t,i × Pt,i
CHP

)
is the objective function as in (15).

T∑
t=1

E
[
Pt

Loss
]

is the

expected value of active power losses in all time intervals.

Table 10. The various component values of the objective function in two scenarios by two methods.

Method Scenario
T∑

t=1

(
NCHP∑
i=1

Pt,i
CHP

)
T∑

t=1

(
E
[
Pt

Transmision
]) T∑

t=1

(
w1t × E

[
Pt

Transmision
])
+

T∑
t=1

(
NCHP∑
i=1

w2t,i × Pt,i
CHP

) T∑
t=1

E
[
Pt

Loss
]

PEM First 456.2370 (kW) 1.2716 e+04 (kW) 1.3108 e+04 122.3806 (kW)
Second 675 (kW) 1.2491 e+04 (kW) 1.3048 e+04 116.1499 (kW)

FCM First 455.2200 (kW) 1.2653 e+04 (kW) 1.3105 e+04 122.3277 (kW)
Second 675 (kW) 1.2490 e+04 (kW) 1.3047 e+04 115.7852 (kW)

According to the values given in Table 6, Table 7, and Table 10, the total power generation at the CHP
generators in the first scenario is equal to 456.23 MW, which is lower compared to the maximum capacity of
total generation during all the studied periods, i.e. 1350 MW. The reason for this is the low price of energy at
low load hours and the tendency of the operator to buy the power from the upstream grid.

Moreover, based on Table 8, Table 9, and Table 10, the total power generation amount at CHP generators
in the second scenario is equal to 675 MW, which is lower compared to the total capacity of generation during
the whole studied periods, i.e. 1350 MW. The reason for this is the low price of energy at low load hours and
the tendency of the operator to buy the power from the upstream grid, as mentioned earlier.

From Table 10, the following cases can be deduced.
The expected cost in the first scenario is higher than the expected cost in the second scenario. In fact, this

higher cost is due to the constant production of CHP generators in the first scenario, which has less flexibility
than the second scenario.

Also, the expected value of the power purchased from the upstream grid in the first scenario is higher
than this value in the second scenario. This is due to the higher total amount of power generation at the CHP
generators in the second scenario compared to the first scenario. This issue causes the expected amount of
losses in the second scenario to be lower than in the first scenario, because in the second scenario, more CHP
generators are used.

816



ZARE SEHSALAR et al./Turk J Elec Eng & Comp Sci

Probabilistic information of the distribution system can be obtained from these studies. Table 11 shows
the probabilistic information of the amount of power obtained from the upstream transmission grid during the
studied time in two scenarios by PEM. The information of this table helps the operator to make risk-based
decisions.

Table 11. Probabilistic information of the amount of power obtained from the upstream transmission grid by PEM.

Hour First scenario Second scenario
Mean Standard deviation Mean Standard deviation

First 1620.2504 62.1591 1697.3197 62.2314
Second 1874.0747 64.9832 1951.2431 65.0030
Third 2128.5693 68.0498 2206.3522 68.1386
Fourth 2619.9443 78.2253 2466.9092 78.0596
Fifth 2364.0088 74.5873 2211.9059 74.4430
Sixth 2108.7592 71.1215 1956.8827 70.9757

Table 12 compares the performance of the PEM and FCM in the proposed method. As seen, the run
time of FCM is meaningfully less than PEM and it is more appropriate for online applications.

Table 12. Comparing the performance of PEM and FCM in the proposed method.

Method Scenario Calculation time (seconds)

PEM First 223.2
Second 280.8

FCM First 30.4
Second 43.1

7. Conclusion
In this paper, robust operation of smart distribution grids was considered. The studied distribution system is
an unbalanced system including wind generators with probabilistic output and also probabilistic loads that was
equipped with energy storage systems, CHP generators, and a reactive power compensator. As the situation of
the distribution system may vary in a wide range, the robustness of the operating point is very important. In
these studies, computational complexity of probabilistic assessment methods is remarkable besides their ability
in presenting accurate results.

An optimal operating program that can satisfy all possible conditions was considered in two scenarios.
In the first scenario, the operating variables were considered constant during the study period, and in the
second scenario, the control variables had the ability to vary during the operating time. The advantages and
disadvantages of the operating instructions were discussed. Keeping the control variables constant during the
study time (the first scenario) makes it less flexible than the state in which the control variables can change
during the study time (second scenario). This would increase the expected cost of operation in the first scenario
in spite of the simplicity of the operating instructions. In the first scenario, due to the constant amount of
control variables during the entire operating time, the amount of control variables has been affected by the entire
duration of the study, not just a specific hour. In the second scenario, due to greater flexibility, the objective
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function has been reduced to a greater extent. However, the second scenario encounters some problems such as
greater computational complexity, difficulties in implementing operating instructions, probability of failing to
implement these instructions, and so on.

In addition, the applications of two probabilistic assessment methods, i.e. the point estimation method
and fuzzy clustering method, were considered and compared in terms of calculation complexity and calculation
burden time aspects in this study.

Finally, the risk factors for buying power from upstream have been calculated in this paper, which can
be very important for the grid operator in terms of validity and certainty of decision-making.
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