
Turk J Elec Eng & Comp Sci
(2020) 28: 821 – 835
© TÜBİTAK
doi:10.3906/elk-1904-49

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Hyperheuristics for explicit resource partitioning in simultaneous multithreaded
processors

İsa Ahmet GÜNEY1,∗, Kemal POYRAZ1, Gürhan KÜÇÜK1, Ender ÖZCAN2
1Department of Computer Engineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey

2School of Computer Science, University of Nottingham, Jubilee Campus, Nottingham, United Kingdom

Received: 05.04.2019 • Accepted/Published Online: 31.10.2019 • Final Version: 28.03.2020

Abstract: In simultaneous multithreaded (SMT) processors, various data path resources are concurrently shared by
many threads. A few heuristic approaches that explicitly distribute those resources among threads with the goal of
improved overall performance have already been proposed. A selection hyperheuristic is a high-level search methodology
that mixes a predetermined set of heuristics in an iterative framework to utilize their strengths for solving a given
problem instance. In this study, we propose a set of selection hyperheuristics for selecting and executing the heuristic
with the best performance at a given stage. To the best of our knowledge, this is one of the first studies implementing
a hyperheuristic algorithm on hardware. The results of our experimental study show that hyperheuristics are indeed
capable of improving the performance of the studied workloads. Our best performing hyperheuristic achieves better
throughput than both baseline heuristics in 5 out of 12 workloads and gives about 15% peak performance gain. The
average performance gains over the well-known hill-climbing and adaptive resource partitioning heuristics are about 5%
and 2%, respectively.
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1. Introduction
Simultaneous multithreaded (SMT) processors aim to improve system throughput by issuing instructions from
multiple threads within a clock cycle [1]. The SMT architecture is simply a modified superscalar processor
with shared issue queue (IQ), re-order buffer (ROB), physical register files (PRF), load/store queue (LSQ),
arithmetic logic units (ALUs), and caches. In a typical superscalar processor, the data path resources are also
shared by multiple threads, but each thread waits its time for the total control of all data path resources. At
the end of each context switch, the running thread is suspended and the next scheduled thread starts executing
its instructions. In such a scheme, between two context switches, only one thread can claim its monopoly on
all resources. However, in SMT processors, multiple threads must simultaneously share the available resources.
Fair sharing of the resources among threads while maximizing the processor throughput is a major challenge,
and today, most of the research effort is focused on this issue.

There are many ways to improve the effectiveness of SMT processors. For instance, various SMT fetch
policies attempt to load-balance the stream of instructions introduced at the processor pipeline [2, 3]. These
fetch-oriented techniques are known as implicit methods for improving resource utilization since they implicitly
manage the distribution of shared resources among working threads. Beside these implicit techniques, there
∗Correspondence: iguney@cse.yeditepe.edu.tr
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are explicit resource partitioning methods that partition shared resources according to runtime behavior of
running threads. These are examples of explicit techniques applying heuristics over resource partitioning and
distribution problems.

Heuristics are inexact, rule of thumb computational methods, tailored for a specific problem in hand.
Dynamically controlled resource allocation (DCRA) [4], hill climbing [5], and the adaptive resource partitioning
algorithm (ARPA) [6] are examples of heuristic approaches for partitioning SMT resources. There are many
different heuristics for many different computationally hard problems in the literature. Considering a single
problem domain, it has been frequently observed that different heuristics yield different performance figures
across given instances. For each instance, a different heuristic might perform the best. Hyperheuristics have
emerged as general high-level methods searching the space generated by a set of low-level heuristics compared to
solutions that target a direct solution for a given problem [7]. Here, the main strategy is combining the strengths
of various heuristics and avoiding their weaknesses for both solving seen and, most importantly, unseen problem
instances. Hyperheuristics are already successfully applied for numerous static problems. However, there are
only a few examples of their use in dynamically and continuously changing problems [8, 9].

Our preliminary studies gave us very promising results on performance improvements of SMT processors
using hyperheuristics. In the literature, there are two major heuristics proposed for solving the resource
partitioning problem in SMT processors. Here, we aim to improve the throughput of SMT processors by
partitioning shared resources among threads using hyperheuristics in a multistage framework. Since both hill
climbing and adaptive resource partitioning heuristics have periodic nature, we study mixing them using several
hyperheuristic approaches in this study.

Our main motivation in this study is to combine the power of these two algorithms by integrating them
into a hyperheuristic framework. In the end, we show that our proposed hyperheuristic algorithms successfully
switch to the best performing heuristic when really needed.

The organization of the manuscript is as follows: Section 2 provides an overview of related work cov-
ering SMT resource management and hyperheuristics in general. Section 3 presents results from preliminary
experiments, which provides the motivation of using hyperheuristics for SMT resource partitioning. Section 4
elaborates our proposed design. In Section 5, experimental results are presented. The last section, Section 6,
concludes our study.

2. Related work
2.1. Heuristics for SMT resource management
One of the major design challenges in SMT processors is on the pipeline front end. Here, the fetch stage has
to decide what to fetch next so that the resource utilization is improved and either throughput or fairness (or
maybe both) criteria are satisfied. Tullsen et al. showed that fetching the right instructions has a great effect on
performance and proposed a variety of algorithms for selecting instructions for the fetch stage [3]. BRCOUNT
promotes threads with the fewest unresolved branches to mitigate the effects of mispredicted branch instructions;
MISSCOUNT prioritizes threads with the fewest outstanding D-cache misses to reduce IQ-clogging; IQPOSN
gives a lower priority to threads with instructions closest to the head of IQ; and ICOUNT favors efficient threads
by prioritizing threads with the least number of instructions on the fly.

Tullsen and Brown discussed the effects of long-latency instructions, with a focus on long-latency load
instructions, on SMT processors in [2]. Once a long-latency instruction is identified (by either an L2 cache miss
or the instruction spending more than a predetermined number of cycles), either instructions from the thread
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that owns the long-latency instruction are flushed or the thread is prevented from fetching more instructions
for a certain amount of time.

Eyerman and Eeckhout pointed out that previous fetch policies do not take memory level parallelism
(MLP) into account [10]. As a matter of fact, by stalling fetch or flushing instructions, these previous
policies serialize the penalty of the long-latency load instructions. The study proposes an MLP-aware fetching
mechanism, which aims to overlap the penalties of long-latency loads by executing them simultaneously, if
possible. Once a long latency instruction is identified, the MLP-distance is predicted to determine how much
further the processor should go to exploit MLP. Threads with such load instructions are either prevented from
fetching more instructions than the MLP-distance or instructions beyond the MLP-distance are flushed.

Vandierendonck and Seznec proposed a framework called speculative instruction window weighting
(SIWW) for applying different fetch policies and resource limitations on the SMT architecture [11]. In this
framework, SIWW fetch policy gives priority to instructions from threads with the minimum amount of work
remaining in the pipeline. The work identifies several types of instructions and each type is assigned a weight.
The amount of work remaining for an individual thread is computed by adding predetermined weights of re-
maining instructions that belong to that thread in the pipeline. Resource limitations can be applied by defining
an upper limit for the amount of work. A thread that exceeds this limit cannot fetch any more instructions
until it commits and releases some instructions. Assigning different weights to different instruction types allows
SIWW to apply different fetch policies without making any changes to the existing hardware. For example,
assigning a weight of 1 to all instruction types results in a fetch policy equivalent to ICOUNT [3].

Besides these implicit techniques, there are explicit resource partitioning methods that partition shared
resources according to the runtime behavior of each thread. The mechanism known as dynamically controlled
resource allocation (DCRA) is one of these explicit methods [4]. DCRA dynamically tracks down the behavior
of each thread and the use of data path resources with the help of various hardware counters. Here, a data path
resource becomes inactive when it is not referenced for a predetermined timeout period. Meanwhile, a thread
becomes a slow thread when it has a pending cache miss. Then DCRA allocates more resources to slow threads
by taking some portion of resources from fast or inactive threads. The rationale behind this mechanism is as
follows: a fast thread is already fast, and so there is no harm in stealing a few resource entries from it and
giving them to the slow threads. Similarly, when a thread is labeled as inactive for a resource, then there is no
harm in giving its share of that resource to a thread that actually needs it.

Another explicit mechanism, which proposes hill climbing for solving SMT resource partitioning problems,
runs in epochs (periodic intervals) [5]. The hill climbing heuristic is a greedy algorithm that aims to gradually
climb to a peak performance point by changing resource allocations at certain decision points. The execution
is divided into trial epochs, and at each trial epoch, an arbitrary thread receives more resources than its actual
portion. After running trial epochs for each thread, the decision point selects the best performing thread with
extra resources and gives that extra resource to that selected thread. These trial epochs and decisions are run
in a continuous manner in the SMT processor.

The adaptive resource partitioning algorithm (ARPA) utilizes a resource efficiency metric known as
committed instructions per resource entry (CIPRE) [6]. At the end of each epoch, the CIPRE of each thread is
calculated, and the thread with the highest CIPRE value receives proportionately more resources, whereas the
thread with the lowest CIPRE value receives the least amount of resources. This mechanism has a self-balancing
nature so that none of the threads can always dominate or starve. For instance, if a thread is provided with more
resources, its new calculated CIPRE becomes lower as long as its commit rate does not change. As a result, a
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thread with the worst CIPRE value can indirectly improve its efficiency later and receive extra resources in the
end.

In another work from the literature, Eyerman and Eeckhout proposed a method that estimates the
execution time of threads in SMT architecture if threads are run alone [12]. Weng and Liu provided higher
fetching priority to threads with fewer utilized resources by examining early stages of the pipeline as well as low-
level data cache misses [13]. Zhang and Lin limited the number of entries each thread can have in the issue queue
according to the previous allocation’s impact on performance [14]. Zhang and Lin improved SMT performance
by partitioning shared register files among threads [15]. Güngörer and Küçük utilized a hill-climbing algorithm
to dynamically partition the physical register files among threads in an SMT processor [16]. Finally, Sheikh and
Lin also proposed a dynamic physical register file capping scheme that allows thread-based individual capping
in SMT processors [17].

2.2. Hyperheuristics

Hyperheuristics are high-level methodologies that work on top of the heuristic search space for solving computa-
tionally difficult problems. The basic idea is to exploit the strength of multiple heuristics (move/neighborhood
operators), which dates back to early 1960s [18]. Mainly, there are selection and generation hyperheuristics,
which manage a set of low-level heuristics [19]. Currently, hyperheuristics are designed based on the notion of
a domain barrier, which separates the problem domain from any high-level method. The barrier acts as a filter
disallowing no problem-specific information from the problem domain to pass to the hyperheuristic level. This
approach provides a basis for an automated, adaptive, modular, easy-to-maintain, and flexible software design
that is enabled for reuse while solving an unseen instance from a domain and even other problem domains
without necessitating any modification.

A selection hyperheuristic is often an iterative search method, consisting of heuristic selection and move
acceptance methods that are invoked successively at each step [20]. This type of framework manages by mixing
and controlling a fixed set of low-level heuristics. Cowling et al. introduced almost all of the simple selection
hyperheuristic components [21]. For instance, the random permutation gradient selection heuristic first generates
a list of permutations of low-level heuristics. Consequently, it selects a low-level heuristic in that predetermined
order at any step to run on the current solution. Once a selected heuristic gives an improvement, it is utilized
one more time.

Some of the hyperheuristics can also make use of various machine learning techniques. Learning within
hyperheuristics takes place in an online or offline manner. Offline learning hyperheuristics are employed in
a train-and-test order, where the feedback from the search process is obtained during the training stage on
some sample problem instances. Online learning hyperheuristics receive feedback during the ongoing search
process for guidance. One of the best examples of this category of hyperheuristics is known as the reinforcement
learning-based hyperheuristic. In this approach, each heuristic is assigned a utility score that can either increase
as a rewarding mechanism after an improving move or decrease as a punishment mechanism after a worsening
move [22, 23]. The utility score is updated after each step of the algorithm, and the heuristic with the best score
can be selected as the default strategy. Moreover, a hyperheuristic can embed a delayed learning mechanism,
which, for example, scores low-level heuristics in a stage and then using those scores for choosing heuristics in
the following stage. Bai et al. successfully applied a reinforcement-based delayed learning hyperheuristic on a
timetabling problem as well as bin packing [24]. There is theoretical [25] as well as empirical evidence [26, 27]
that hyperheuristics are effective solution methodologies for solving combinatorial optimization problems. Even
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if the environment changes dynamically for a given problem, it has been shown that the hyperheuristics can
adapt and result in high-quality solutions [8, 9].

More on hyperheuristics can be found in [7, 28, 29]. Sharing the SMT processor data path resources
among the threads of a given workload is a challenging task that needs to be addressed in a dynamically
changing environment. Moreover, even a small change in a workload, such as swapping the order of two
programs, could lead to a large change in the overall characteristics of the instance, making the problem even
more difficult to handle. Here, we use the previous work on selection hyperheuristics as an inspiration to design
a set of learning selection hyperheuristics to mix well-known SMT heuristics to improve the SMT throughput.

3. Motivation
Although we can try utilizing as many of the aforementioned heuristics as possible in our hyperheuristic
framework, there are two major obstacles ahead. First, a selection hyperheuristic asks for freedom to select
and utilize any of the heuristics that are under its control at any given time. However, each heuristic has
its own running strategy. For instance, all those in [5, 6, 16] have a periodic nature, whereas that of [4] is
based on instant decision and repartitioning. Second, the heuristics that we focus on may not always have the
same mindset. For instance, all those in [4–6] focus on resource partitioning, whereas those of [14–17] focus on
resource capping, which might be a quite different task compared to partitioning from time to time. In this
study, we focus on two well-known heuristics (i.e. hill climbing and adaptive resource partitioning) that fall into
the same category (i.e. resource partitioning with a periodic nature) to demonstrate the viability and feasibility
of hyperheuristics in the SMT domain.

We present the results obtained in our preliminary study, which revealed that neither of the heuristics
examined (hill climbing and adaptive resource partitioning algorithm) is better than the other in every case.1

Figure 1 shows the performance charts for some of the well-known benchmark workloads [30]. These results
present both cases where HILL outperforms ARPA and ARPA outperforms HILL, indicating that there is no
single heuristic that performs better than the others when all workloads are considered. The figure also presents
the BEST value, which depicts the throughput of an oracle selection hyperheuristic that successfully selects the
best performing heuristic in all cases. The duration of this preliminary analysis is only 8-heuristic periods
long, but it is sufficient to show the potential of our approach for improving throughput as long as the correct
sequence of heuristics is chosen.

As a case study, we examine how HILL, ARPA, and BEST perform when the three-threaded lbm-milc-
gobmk workload is run. Figure 2a shows the throughput of three threads when the optimal permutation of
heuristics (BEST) is used, and Figures 2b and c show the throughput results when ARPA and HILL are used,
respectively. By examining the results for HILL, it can be seen that giving extra resources to gobmk during the
first few epochs does not improve throughput. However, this is exactly what HILL does: it wastes resources on
threads that are unable to improve throughput with additional resources. Another shortcoming of HILL is that
it is slower than ARPA. In the first few epochs, the best allocation decision is to take as many resources from
lbm and gobmk and give them to milc. ARPA can reach this state as fast as in six epochs, whereas it takes
three times longer for HILL since there are three threads in this workload.

On the other hand, ARPA has its shortcomings, too. ARPA evaluates threads by their CIPRE value and
takes resources away from threads with low CIPRE values and allocates these resources to the one with the

1In order for our model to work, the processor should be able to run hill climbing and ARPA heuristics at each stage
interchangeably. To make both heuristics fully compatible, we made a few minor changes in our implementation of these heuristics.
From now on, we refer to our implementations of hill climbing and the ARPA as HILL and ARPA, respectively.
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Figure 1. Throughput of HILL, ARPA, and maximum possible throughput achievable by a perfect selection hyper-
heuristic, which we name BEST.

highest CIPRE. However, when ARPA takes resources away from a thread, the window in which that thread can
search for data-independent instructions shrinks and the thread starts to lose its ability to exploit instruction
level parallelism. The problem ARPA experiences in this workload is that it becomes harder for both lbm and
gobmk to improve their CIPRE values as they lose their resources, creating a harmful feedback loop for these
threads. It can be seen in Figure 2b that after epoch nine, ARPA is stuck with its allocation decision and
cannot increase the number of resources allocated to gobmk, which can improve throughput with additional
resources as can be seen in epochs 24 to 30 in Figure 2.

Figure 3 shows the throughput results of all possible heuristic permutations for the bzip2-cactusADM-
hmmer workload for the first ten epochs. In the graph, the x-axis represents the first five heuristics selected in
the first five epochs, and the y-axis represents the last five heuristics selected in the last five epochs. Here, H
stands for HILL and A stands for ARPA. The colors represent the overall throughput in terms of instructions
per cycle (IPCs), where red means more IPCs and green means fewer. Lower-left and upper-right corners show
the actual throughputs of the original heuristics, ARPA and HILL, respectively. Simulation results show that
less than 11% of permutations are able to improve throughput compared to ARPA in this workload, meaning
that more than 89% of permutations hurt the performance. These results indicate that randomly selecting
heuristics to utilize is more likely to degrade system performance, and smarter selection of algorithms is needed,
instead.

Based on the insights gained by our preliminary analysis and previous work, which concur that there is
no single heuristic that will perform better than the rest in all cases, we propose using hyperheuristics to take
advantage of multiple heuristics. Furthermore, Figure 1 suggests that the performance of hyperheuristics can
even surpass the individual performance of each utilized heuristic.

4. The proposed hyperheuristic design

We start by creating a mechanism that can interchangeably run either adaptive resource partitioning or hill
climbing algorithms. ARPA and HILL heuristics are our faithfully implemented versions of these heuristics on
hardware. The relationship between the hyperheuristic and the underlying heuristics is shown in Figure 4. The
aim of ARPA and HILL heuristics is to find the thread that deserves extra resources the most. The hardware
counters are shared by all heuristics and the hyperheuristic that utilizes those heuristics. These per epoch
counters are IPC, CIPRE, and fetched instructions per cycle (FIPC). When the performance of a low-level
heuristic deteriorates and the indicator value reduces below a certain threshold, our hyperheuristic selects the
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Figure 2. Throughputs of individual threads under various heuristics for the workload lbm-milc-gobmk.

next one from the other available low-level heuristics. Therefore, we can say that our proposed hyperheuristic
presents similar characteristics of a permutation gradient hyperheuristic. In this study, we investigate various
runtime statistics as well as heuristic selection methods.

4.1. Mixing ARPA and HILL

The proposed hyperheuristic should be able to run both heuristics interchangeably and adaptively in epochs.
This is a challenging task, as additionally, this needs to be done in real time based on hardware entries. There
is a slight difference between HILL and ARPA: HILL needs a number of trial epochs to decide, whereas ARPA
can make permanent decisions at the end of a single epoch. If the system allows ARPA to run between two
trial epochs of HILL, this will have two severe consequences. First, it will increase the chances of a workload
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Figure 3. Throughput results of all possible heuristic permutations in bzip2-cactusADM-hmmer workload.

changing its behavior between the two trial periods, which leads HILL to compare trial performances of two
different program phases and renders it to be a totally different heuristic. This can be observed better in the
time line given in Figure 5. In this example, HILL is run in the first epoch, and HILL runs its first trial round.
Then the hyperheuristic decides that ARPA should be run for the next seven epochs. When HILL finishes its
trials and makes a decision, it has to compare performance results of epochs 0 and 8, which are quite far away
from each other, causing inaccurate evaluations that the original algorithm does not experience at all.

The second problem that may occur when ARPA is allowed to be run between two trial epochs of HILL
is that the processor may have to make radical changes in resource distribution if ARPA keeps changing the
distribution in a particular direction and HILL wants to return to its anchor state. This phenomenon would
cause the processor to act in a way against the nature of both heuristics.
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 Domain Layer

Set of low level heuristics: {ARPA, HILL}

Threads: {Th1,...,Thk,...,Thj,...,Thn}

Resources: IQ, ROB, LSQ

Methodologies to decide which low level heuristic to apply,

favouring which thread to run, allocationg more resources

Hyper-heuristic Layer

Shared Hardware

Counters

Figure 4. The proposed design.

HILL ARPA ARPA ARPA ARPA ARPA ARPA ARPA HILL

epoch 0 epoch 1 epoch 2 epoch 3 epoch 4 epoch 5 epoch 6 epoch 7 epoch 8

Figure 5. An example time line with heuristics running in arbitrary order.

Throughout this process, we tried our best to faithfully implement the algorithmic behavior of each
heuristic to be consistent with its original implementation. To overcome the problems described above, we
define big epochs. Big epochs consist of T epochs, where T is the number of threads running simultaneously
in the system. Only a single type of heuristic runs within a big epoch, as shown in Figure 6. Therefore, the
hyperheuristic makes decisions only at the beginning of big epochs. To provide the hyperheuristic with accurate
data on how heuristics perform, all evaluations are done using performance values of heuristics gathered in big
epochs, although the heuristics still make their decisions in the traditional epoch granularity.

HILL HILL HILL ARPA ARPA ARPA HILL HILL HILL

epoch 0 epoch 1 epoch 2 epoch 3 epoch 4 epoch 5 epoch 6 epoch 7 epoch 8

Big Epoch 0 Big Epoch 1 Big Epoch 2

Figure 6. An example time line where the hyperheuristic decides HILL, ARPA, and HILL should be run on the SMT
processor with 3 threads.

As stated earlier, the nature of utilized heuristics must have a certain similarity so the system can
accommodate all heuristics at the same time without major difficulties. For example, DCRA is another promising
heuristic with different qualities compared to HILL and ARPA, but it is different from the others due to its
nonperiodic nature [4]. Thus, DCRA and such other heuristics are left out in this research. However, it is
certainly a prominent future research direction to include heuristics of different natures into the mix.

4.2. Proposed hyperheuristics

In this section, we focus on hyperheuristics for selecting a heuristic that allocates SMT resources among
concurrently running threads. For the selection process, simpler rules usually produce more effective results as
more complex hyperheuristics are more likely to introduce many corner cases where the hyperheuristic fails to
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choose the right heuristic for the job. Although we tested dozens of hyperheuristics with different metrics and
for different reasons, we only present three hyperheuristics that sufficiently represent the effect of hyperheuristic
usage on SMT resource partitioning.

4.2.1. HH1: A throughput-oriented hyperheuristic
Our first proposed hyperheuristic is the most straightforward one as it directly uses the end result as a decision
parameter. At the end of a decision period, HH1 toggles the heuristic that is being used if the current heuristic
causes a throughput drop compared to the previous decision period. By introducing a threshold rate, HH1 can
be more forgiving to heuristics, which cause a small throughput drop, or more greedy, by punishing heuristics
that fail to improve throughput above the threshold. The algorithm for HH1 is shown in Algorithm 1.

Algorithm 1 Algorithm for HH1.
1: IPCi : Throughput of ith Big Epoch
2: procedure HH1(bigepoch: current big epoch number)
3: target_ipc← IPCbigepoch − 1 ∗ threshold
4: if IPCbigepoch >= target_ipc then
5: Keep heuristic
6: else
7: Switch heuristic

4.2.2. HH2: An efficiency-oriented hyperheuristic
Our second hyperheuristic, HH2, evaluates heuristics based on their ability to help threads commit most of their
instructions that they fetch. Speculative instructions from mispredicted paths do not make any contribution
to the throughput metric. These instructions are fetched into the pipeline but are not committed. Hence,
such instructions cause shared pipeline resources to be wasted. HH2 aims to keep the ratio of the number
of instructions committed to the number of instructions fetched as small as possible by switching to the next
heuristic if the current heuristic fails to improve this ratio above a certain threshold. The algorithm for HH2 is
shown in Algorithm 2.

Algorithm 2 Algorithm for HH2.
1: commiti : Number of instructions committed in ith Big Epoch
2: fetchi : Number of instructions fetched in ith Big Epoch
3: procedure HH2(bigepoch: current big epoch number)
4: FIPCbigepoch − 1 ← commitbigepoch − 1 / fetchbigepoch − 1

5: FIPCbigepoch ← commitbigepoch / fetchbigepoch

6: target_fipc← FIPCbigepoch − 1 ∗ threshold
7: if FIPCbigepoch >= target_fipc then
8: Keep heuristic
9: else

10: Switch heuristic

4.2.3. HH3: A hybrid solution

Finally, HH3 borrows metrics from both HH1 and HH2; thus, it is a mixture of these two heuristics. A heuristic
may help improve the number of instructions committed but degrade the ratio of the number of instructions
committed to the number of instructions fetched, or vice versa. HH3, therefore, constitutes a more aggressive
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approach by switching the heuristic if it causes performance degradation on either of these metrics. Similar to
HH1 and HH2, HH3 utilizes a threshold ratio to adjust the level of tolerance (or intolerance) against performance
drops. The algorithm for HH3 is shown in Algorithm 3.

Algorithm 3 Algorithm for HH3.
1: commiti : Number of instructions committed in ith Big Epoch
2: fetchi : Number of instructions fetched in ith Big Epoch
3: procedure HH3(bigepoch: current big epoch number)
4: FIPCbigepoch − 1 ← commitbigepoch − 1/fetchbigepoch − 1

5: FIPCbigepoch ← commitbigepoch / fetchbigepoch

6: target_fipc← FIPCbigepoch − 1 ∗ threshold
7: target_commit← commitbigepoch − 1 ∗ threshold
8: if FIPCbigepoch >= target_fipc and commitbigepoch >= target_commit then
9: Keep heuristic

10: else
11: Switch heuristic

5. Computational experiments

5.1. Experimental settings

In our study, we used M-Sim as our simulation environment.2 The configuration of the simulated processor
is shown in Table 1. hmmer (Hidden Markov Models for protein sequence analysis), lbm (Lattice Boltzmann
method for simulating incompressible fluids in 3D), mcf (single-depot vehicle scheduling in public mass trans-
portation), milc (Multiple Instruction Multiple Data Lattice Computation for quantum chromodynamics), namd
(a parallel program for simulating large biomolecular systems), sjeng (a chess application for exploring the tree of
variations resulting from a given position), and zeusmp (a program for solving the equations of nonresistive, non-
relativistic hydrodynamics and magnetohydrodynamics) benchmarks are randomly chosen from the SPEC2006
CPU suite to create multithreaded workloads. Twelve workloads are created using these benchmarks. For a fair
comparison, these workloads are organized as two 6-workload groups: WLHILL, which consists of workloads for
which HILL performs better than ARPA, and WLARPA, which consists of workloads for which ARPA performs
better than HILL. These workloads are shown in Table 2. For all workloads, the system is fast-forwarded for
100M cycles as a warm-up period followed by a cycle-accurate simulation for 200M cycles.

Epoch duration is chosen as 32K cycles. This is the epoch duration used in the previous work [5, 6]. We
also empirically determined that both HILL and ARPA work best with this duration. Since a big epoch consists
of epoch times number of threads, the big epoch duration becomes 128K cycles. As both heuristics move ROB,
IQ, and LSQ entries between threads, the number of entries moved for these resources at each step must be
proportional to their sizes. We determined these values as 4, 2, and 2 entries, respectively. The threshold values
for all hyperheuristics are empirically set as 1.0.

5.2. Results
In this section, we present the experimental results obtained from our simulation environment. The throughput
of the proposed hyperheuristics is examined in two different workload sets: 1) workloads for which HILL achieves
higher throughput compared to ARPA (WLHILL), and 2) workloads for which ARPA gives higher throughput

2M-SIM (2005): A Flexible, Multithreaded Architectural Simulation Environment [online]. Website
https://www.cs.binghamton.edu/ msim/documentation/msim_tr.pdf [accessed 11 November 2019].
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Table 1. Specifications of the simulated system.

Number of concurrent threads 4
Decode / Issue / Commit bandwidth 8
Number of memory ports 8
Register file 256 integer, 256 floating point
Re-order buffer size 64 entries
Issue queue size 32 entries
Load/Store queue size 40 entries
Number of integer ALUs 6
Number of integer multipliers 3
Number of floating point ALUs 3
Number of floating point multipliers 1
L1 Instruction cache size 32 KB, 2-way, LRU
L1 Data cache size 32 KB, 4-way, LRU
L1 Cache hit time 1 cycle
L2 Cache size 512 KB, 4-way, LRU
L2 Cache hit time 20 cycles
Main memory access time 300 cycles

Table 2. Workloads.

Workload no. WLHILL WLARPA
1 hmmer-mcf-milc-namd hmmer-lbm-mcf-sjeng
2 hmmer-mcf-milc-zeusmp hmmer-mcf-milc-sjeng
3 lbm-mcf-milc-zuesmp hmmer-mcf-namd-sjeng
4 mcf-milc-namd-zeusmp lbm-mcf-milc-sjeng
5 mcf-milc-sjeng-zeusmp lbm-mcf-namd-sjeng
6 mcf-namd-sjeng-zeusmp lbm-milc-namd-sjeng

compared to HILL (WLARPA). Figures 7 and 8 show the throughput obtained by utilizing HILL, ARPA, and
our proposed hyperheuristics on WLARPA and WLHILL workload sets, respectively.

It was shown in the previous work [5, 6] that both heuristics have their advantages and disadvantages
and may outperform each other in different workloads. This can also be seen in the results shown in Figures 7
and 8. In WLHILL, HILL outperforms ARPA by more than 3%, and, in WLARPA, ARPA outperforms HILL
by about 10% on average. Here, our main motivation is to be able to select and utilize the better performing
heuristic in a timely manner, so that we do not lose too much performance. From Figure 1 we also know that we
can even achieve a higher performance than both ARPA and HILL if we make this selection right and timely.

The results show that our proposed hyperheuristics can achieve throughput results quite close to the
results of the better performing heuristic, and, in almost all of the WLARPA workloads, they can even perform
slightly better than both heuristics. However, we also see that devising a perfect hyperheuristic, which always
gives higher performance than the heuristics that it operates on, is a challenging (if not impossible) task. As a
result, our best performing hyperheuristic (HH3) outperforms HILL by about 5% and ARPA by about 2% on

832



GÜ̈NEY et al./Turk J Elec Eng & Comp Sci

Figure 7. Throughput of HILL, ARPA, and hyperheuristics for workload set WLARPA.

Figure 8. Throughput of HILL, ARPA, and hyperheuristics for workload set WLHILL.

average. The peak performance gain over HILL is about 15% in the third workload of WLARPA, whereas the
peak performance gain over ARPA is slightly lower (5%) in the fourth workload of WLHILL.

We were also expecting that our hyperheuristics perform better than HILL and ARPA in occasional
cases. In the second, the third, the fourth, and the sixth workloads of WLARPA, we clearly observe this
phenomenon. Although the performance gain over both heuristics is small, these results are important to
demonstrate that hyperheuristics are tools for not only tracking better performing heuristics but also achieving
optimal or close-to-optimal results even better than the best heuristic that is under the hood.

In terms of hardware complexity, all hyperheuristics induce insignificant complexity for the system. HH3,
the most complex hyperheuristic among all proposed hyperheuristics, requires only one register to store the FIPC
value for the previous epoch. The computation required by HH3 consists of one division, two multiplication,
and two comparison operations, which can be carried out by the processor’s already existing functional units in
less than one hundred cycles. Considering that the control logic for both heuristics themselves introduce little
complexity, it can be said that the proposed hyperheuristics can be applied to SMT processors without any
significant costs in terms of hardware complexity.

6. Conclusion
It is shown in the literature that resource partitioning in SMT processors has an important impact on through-
put. In this research, we show that there is no single solution that works best in all situations, and we investigate
utilizing hyperheuristics to exploit the advantages of two well-known SMT resource partitioning algorithms.

Among various hyperheuristics that use different heuristic selection logic and feedback metrics evaluated
in this research, the three most prominent hyperheuristics are presented. The best performing hyperheuristic
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improves performance by 5% compared to hill climbing and by 2% compared to the ARPA on average across
all workloads that are studied. The peak performance gain reaches up to 15%.

We studied the usage of hardware hyperheuristics, and this is one of the first studies that implements
a selection hyperheuristic on such a restricted environment with limited resources. Implementing the hyper-
heuristic on hardware requires the decision logic to be fairly simple due to increasing hardware complexity and
power considerations. A future research direction would be to implement hyperheuristics as kernel modules,
allowing more complex hyperheuristics to be utilized.

Apart from using different selection algorithms and feedback metrics, one way to improve the potential
and effective throughput gain would be to introduce new low-level heuristics into the system. Such extra
heuristics can enable hyperheuristics to cover a larger search space with richer and better performance options.
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