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Abstract: In recent years, with the increase of available digital information on the Web, the time needed to find
relevant information is also increased. Therefore, to reduce the time spent on searching, research on automatic text
summarization has gained importance. The proposed summarization process is based on event extraction methods and
is called an event-based extractive single-document summarization. In this method, the important features of event
extraction and summarization methods are analyzed and combined together to extract the summaries from single-source
news documents. Among the tested features, six features are found to be the most effective in constructing good
summaries. The constructed summaries are tested on benchmark Document Understanding Conferences 2001 and 2002
datasets, and the results outperformed most of the other well-known summarization methods.

Key words: Event-based summarization, event extraction, feature selection, single-text summarization, extractive
summarization

1. Introduction
Advances in information technology enable us to share enormous amount of data on the web and its applications.
Therefore, managing and using vast amounts of data for the needs of users becomes an important research area.
Automatic document summarization is used to extract the main idea of the document by eliminating the less
significant and redundant parts of the information. Depending on the number of documents it processes,
automatic summarization is categorized as single or multidocument summarization. In 2000, the National
Institute of Standards and Technology (NIST) introduced the Document Understanding Conferences (DUCs)
[1] to encourage researchers to work on text summarization. However, in 2002, the DUC stopped supporting
research on single-document summarization, considering that it is harder to extract summaries. Since then,
most of the research has focused on multidocument summarization.

Although today there is a need for accessing lots of information in a short time, regardless of its
presentation in multiple sources, this research uses single-document summarization. One of the best application
areas of the summarization is information retrieval. In retrieving information, search engines (Google, Yahoo,
etc.) use automatic summarization to help users find the most relevant information for their searches. Besides
search engines, summarization can be used for social media marketing, automated content extraction for writing
a good blog, tailoring financial documents for decision making, gathering important information for political
moves, and detecting the emotions of users, among others.

Today online news sources provide instant information about the events around us, which feeds the artic-
ulations in social media channels such as Facebook and Twitter. Although summarization of news documents is
∗Correspondence: ftabak@eul.edu.tr
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studied intensively, few works have been conducted on event-based news summarization. As the summarization
techniques aim to extract the main ideas of documents, analyzing an event and its context elements from news
articles is not far from finding the most important information conveyed in the text. Therefore, in this research,
an event-based summarization technique is used to extract the most meaningful information from long articles
to ease the work of readers.

The rest of the paper is arranged as follows: Section 2 presents related work and Section 3 introduces the
proposed method. The experimental setup and results of event-based extractive single-document summarization
(EBDS) are explained in Section 4. Lastly, Section 5 is the conclusion.

2. Related work
In this paper, two related research tasks, event extraction and summarization, are combined together in the
news domain to extract important parts of the text. Therefore, the research in both fields is investigated to be
merged.

2.1. Summarization
The main goal of automatic text summarization is to construct a brief and coherent summary of one or more
documents. The process of automatic summarization can be categorized in different ways: based on structure
(extractive/abstractive) [2–5], the number of source documents, the use of external resources (knowledge-poor
techniques, knowledge-rich techniques) [6], features such as query words [7], and chronological news.

Summarization can also be processed by supervised and unsupervised techniques. Supervised techniques
[8,9] use a classifier trained on a set of documents. On the other hand, unsupervised techniques eliminate the
need for training data for identifying the prominent sentences [10]. Graph-based methods are unsupervised
extractive methods. There are many summarization algorithms that use graph methodology in their processes.
A graph is a mathematical structure consisting of a set of vertices connected by edges [7]. The most frequently
used graph-based ranking algorithms are Kleinberg’s HITS [11] and Google’s PageRank [12] algorithms. HITS
and PageRank both operate on a set of pages connected by hyperlinks. The TextRank [10] and LexRank [13,14]
algorithms are both graph-based algorithms derived from PageRank for ranking sentences and are frequently
used in summarization. In both algorithms, vertices represent sentences and edges show the semantic similarity
between the sentences. The two methods differ in similarity algorithms, such that the LexRank algorithm uses
cosine similarity of TF-IDF vectors while TextRank uses varying similarity measures. Garcia et al. [15] also
proposed a graph-based methodology to estimate the coherence of the sentences. Their method uses integer
linear programming (ILP) for optimizing the selection of sentences based on maximizing the relevant concepts
while minimizing the size of the summary.

Dimension reduction methods are also used to eliminate the least important features to gather the
important sentences for summaries. Latent semantic analysis (LSA) [16] was introduced to use semantic
relations among the words and sentences in the text. By the usage of singular value decomposition (SVD)
in LSA, orthogonal dimensions ensure the sentence by eliminating the redundancy, which is important for
multidocument summarization. Gong and Liu [16] applied SVD together with LSA for an automatic summary
generation. Steinberger and Karel [17] combined the SVD method of Steinberger and Karel [18] with a sentence
compression algorithm to remove unimportant parts of sentences. In order to capture the latent topics in the
documents, Hidayta et al. [19] used the latent Dirichlet allocation (LDA) [20] statistical model and Lee et al.
[21] used nonnegative matrix factorization (NMF) [21,22] to produce additive parts-based representation of data
for interpretation of semantic features.
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Mendoza et al. [23] introduced a memetic optimization model based on weighting of statistical features of
each sentence (position, sentence length, sentence to title relationship, cohesion, and coverage) combined with
group features (candidate sentence to summary/original document similarity). Their experiments showed that
position, title to sentence relationship, and length features have the best influence to get improved results. Long
et al. [24] investigated the relation of the sentences in a document and used entailment among the sentences
in extracting the important sentences from the text. Their method was based on the assumption that the
words in a sentence can be aligned with the other words in the other sentences. Once the sentences are scored,
greedy or ILP approaches are used to select the sentences for summaries. Through the tests they evaluated
combined scoring methods and the best results were obtained by the model that combined the entailment scores
normalized by logarithmic functions and position scores.

More recent studies on summarization use hybrid methods including machine learning techniques. Al-
guliyev et al. [25] proposed a method named COSUM, which uses two stages for sentence selection. In the first
stage sentences are clustered based on k-means. In the second stage, salient sentences are selected from the
clusters based on a proposed optimization algorithm that focuses on the coverage and diversity of the selected
sentences. Mao et al. [26] combined graph-based techniques along with supervised learning and unsupervised
learning to produce extractive single-document summaries. In this method, the importances of sentences are
measured by exploring statistical features and the relationships between sentences obtained by using graph
methods. Mao proposed three techniques to score the sentences: a graph-based model and supervised model, a
graph-based model and independent feature of the supervised model, and sentence importance with supervised
model. Liu et al. [27] proposed a learning-based algorithm called the structured summarization model (SUMO).
SUMO uses iterative refinement to induce the multiroot tree into summaries by repeatedly refining the results
predicted in the previous iterations.
2.2. Event detection
Starting from the early 1990s with the widespread usage of the Internet, research on event extraction and rep-
resentation gained acceleration. In 2005, the Automatic Content Extraction (ACE) program annotated events
from broadcast transcripts and newswire [28] for specific domains with intense annotation work. Consequently,
Li et al. [29] used a cooccurrence graph between named entities and event terms. They assigned initial rel-
evance scores to each of the named entities and event terms and ran the PageRank algorithm to define the
context-dependent relevance of named entities and event terms. Kolya [30] used semantic role-labeling (SRL)
[31], WordNet [32], and handcrafted rules with machine learning techniques to extract deverbal nouns as events
from the TempEval 2010 dataset.

Similarly, event detection has been studied in information retrieval to retrieve event-based documents as
a result of query searches [33]. Lin et al. [34] used semantic roles such as predicate-argument in queries with
the ones in the main document and proved that semantic roles perform better than syntactic dependencies. Pai
et al. [35] used predicate-subject-object triplets to construct content maps and find the similarity among the
triplets as a representation of the event score of the documents.

Recent research on detection of events also gains importance in behavior analysis of people [36]. Extract-
ing the reaction of people in regards to events and the effect of the conveyed information on people’s emotions
increases the need for combining event extraction methodologies with summarization methodologies.
2.3. Event-based summarization
While summarization and event detection research was ongoing in different fields, at the beginning of 2000,
researchers start to use event information in summarization. Filatova and Hatzivassiloglou [37] defined events
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as verbs/action nouns and named entities. They obtained the weight of events in sentences to identify the
important sentences for construction of the summaries from multidocument text.

Filotova and Hatzivassiloglou [37] and Wu [38] showed that relevance between similar event terms
improves the performance of the summarization. Xu et al. [39] derived event relevance from event ontology
constructed with formal concept analysis (FCA) [29] from multidocument text. The ontology is built from a
set of relevant documents and according to the named entities associated with the events. They showed that
the relevant named entity recognition improves event-based summarization.

Liu et al. [40] worked on multidocument event-based summarization. They used semantic relevance
obtained from the VerbOcean external linguistic resource together with the PageRank algorithm to evaluate the
significance of sentences, in which the sentences with more event terms are assigned higher significance. Aksoy et
al. [41] used semantic features like agent, patient, and instrument features obtained from SRL [42] on the DUC
2004 dataset. They observed that the SRL-based sentence scoring approach outperformed a term-to-term-based
sentence scoring system. By considering the semantics of events, Glavas and Snajder [43] used event graphs to
obtain summaries from multiple texts. In their model, sentences are selected based on event importance, which
is constituted by participant importance, event informativeness, and temporal relations among events.

Many of the above event-based summarization techniques are used in multidocument summarization and
also require different methodologies to eliminate the redundancy in summarization. Through the summarization
methods, it is hard to identify event-based summarization of single documents. Therefore, despite event
identification not being mentioned in their processes, because of the relatedness of the used techniques, some
summarization methods are found to be related to event-based methods. One of the related method was
proposed by Ferreira et al. [14]. In the proposed system 15 sentence-scoring methods are combined within
three categories (word-based, sentence-based, graph-based) and tested on news articles, blogs, and scientific
documents. In the experiments some of the combinations of these methods are also tested. As a result, it
is observed that features such as TS-ISF, sentence position, lexical similarity, and sentence-title resemblance
achieved the best performance for the news articles in single-document summarization. Again Oliveira et al. [44]
presented the comparative analysis of 18 generic sentence-scoring techniques for single and multiple documents
as an extension to Ferreira et al.’s work [14]. In their experiments each individual technique and different
combinations of these techniques are tested on CNN, DUC 2001, and DUC 2002 news datasets. Although their
combined techniques had a better performance, none of the combinations performed the best for all datasets.

Through the literature, it is easy to observe that news documents are the main evaluation ground
for summarization methods. We believe that the main idea of news articles is highly dependent on events
and articulated in event-intense sentences. However, the research on detecting events in news documents for
summarization is still not well investigated. Therefore, in this project, summarization techniques are combined
with various event-extraction methodologies. The event features that are most prominent in determining the
main idea are identified to construct the most effective context elements of events to be used in obtaining the
relevant summaries from single-document articles.
3. Proposed method

News sites such as CNN,1 Rappler,2 and BBC 3 inform users about current events. An event can contain
several events or other dependent events, which indicates a semantic relationship among them [45]. Therefore,

1CNN - Breaking News, Latest News and Videos [online]. Website https://www.cnn.com. [Accessed 4 January 2019],
2News - Rappler [online]. Website https://www.rappler.com. [Accessed 4 January 2019].
3Home - BBC News [online]. Website https://www.bbc.co.uk. [Accessed 4 January 2019].
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in this research the relationships between events and event semantics are investigated to extract the meaningful
summaries as presented in the EBDS framework in the Figure.

 

Summaries

Sentence Selection

Feature Selection

Feature Detection

NER SRL EREE

Text Preprocessing

Tokenization POS Tagging

News Articles

Figure 1. Event-based extractive single-document summarization process.

The first step of the framework is to preprocess the text through tokenization and part-of-speech (POS)
[46] tagging to be used in further modules: feature detection, feature selection, and sentence selection of the
system.

3.1. Feature detection
The preprocessed data are used to find the different features in the area of event extraction and summarization
to be tested and used in the proposed summarization method.

The named entity recognition (NER) system is a well-known technique used for extracting meaningful
pieces from text that are concerned with events. Named entities are also known as “atomic elements” in a
sentence. In our study, 18 entity types of NER [47] such as person, organization, location, expressions of time,
and money are extracted from sentences to constitute the named entity features by using the NLTK tool that
is suitable for text processing libraries to provide tokenization, stemming, tagging, parsing, etc.

As verbs are the main entities of events, another set of features is extracted through SRL [42] to find
predicate-argument structures including main verbs and participants in each input sentence. The Practical
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Natural Language Processing Tools (practnlptools) are used for extracting SRL features. By using SRL, it is
possible to identify 17 features [48]. Among the 17 features the most relevant features to the event information,
namely agent (A0), patient (A1), and verb (V) and their adjuncts temporal (TMP) and location (LOC), are
chosen to be used in this work. The difference between the location attribute obtained by NER and SRL is that
NER-location detects the location names whereas SRL-location identifies the location or spatial orientation of
a state or action. An example of temporal and locative is presented in Example 1:

Example 1 John broke the window [at a school] SRL-LOC in the [Middle-East] NER-LOC.

To extract the events, which are the nominalization of the predicate (verb), semantic roles are used. Nomi-
nalizations are commonly known as nouns derived from verbs, with suffixation [49]. Three known categories
exist for nominalization. They are event, result, and agent/patient nominalizations. In this research, agent
nominalizations [50] (e.g., officer) are identified by suffixes such as ‘-or’, ‘-er’, ‘-itor’, ‘-eer’, ‘-ier’, ‘-ior’, or ‘-yer’,
while patient nominalizations [50] (e.g., employee) used end with ‘-ee’ or ‘-ed’ .

Also, additional features such as non-deverbal and deverbal nouns are obtained via WordNet [32] semantic
ontology. In the detection of events, some of the rules mentioned by Kolya et al. [30] and their variations are
used as follows:

Noun and Verb Senses (NAVS): The words that are in the form of a noun (NN) POS categories
are searched in WordNet and the ones with both noun and verb senses are considered as an event. For
example, film, dream, etc.

After Stemming Verb Senses (ASV): After stemming, nouns are looked for in WordNet. If the sense
of the obtained word is a verb, the word is also being considered as an event. For instance, landings,
heading, stands, etc.

Deverbal Nouns (DEV): Noun words that end with such suffixes as ‘ing’, ‘ly’, ‘ious’, ‘tion’, ‘ion’, ‘sion’,
‘ment’, ‘ance’, ‘ence’, ‘ancy’, or ‘ness’ are considered as events [50]. For example: agreement, opening,
direction.

Words After Preposition (WAPREPOS): The word tokens that come after prepositions such as
‘after’, ‘before’, ‘from’, ‘about’, ‘across’, ‘against’, ‘along’, ‘among’, ‘around’, ‘at’, ‘behind’, ‘below’,
‘beneath’, ‘beside’, ‘between’, and ‘during’ [50] are accepted as event words. For example: school,
Academy, six.

Overall, through the above-mentioned methods, 11 features (NOUN, NE, NAVS, ASV, DEV, WAPREPOS, A0,
A1, V, TMP, and LOC) are extracted to be candidates in the proposed event-based summarization as listed in
Table 1.

3.2. Feature selection
The feature selection module is used to obtain important event features for summarization. Feature selection
is an important process for data mining and pattern recognition. A good feature selection process helps to
increase the performance of summarization [51].

Many well-developed statistical and mathematical methods are offered for feature selection [23,52]. As
the aim of this work is to find the set of features that perform the best together, for selection of important
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Table 1. Candidate feature set.

Feature Order Abbreviation Name
0 NOUN Nouns
1 NE Named Entities
2 NAVS Noun and Verb Senses
3 ASV After Stemming Verb Senses
4 DEV Deverbal Nouns
5 WAPREPOS Words After Prepositions
6 A0 Agent
7 A1 Patient
8 V Verb
9 TMP Temporal Marker
10 LOC SRL-Location

features, genetic approaches are proposed. In genetic approaches, each solution is represented as a string of
binary numbers known as a chromosome. In this paper, since the initial set of features consists of 11 candidates,
the chromosome is interconnected with 11 genes. Each gene refers to a feature represented in binary format, in
which zero (0) refers to an inactive feature and one (1) an active feature (e.g., 10100101011). Since the aim is
to extract the best-performing subset of 11 features, 211 combinations of chromosomes are tested to determine
the best feature set.

Lin et al. [53] experimented on the DUC 2001 and DUC 2002 single-document datasets to find the
Pearson correlation [54] between the ROUGE [53] performance evaluation measures and human summaries.
The correlations in the DUC 2001 dataset were obtained as 0.78 for ROUGE-1 and 0.86 for ROUGE-2, and
were outperformed by the correlation results of the DUC 2002 dataset, which were obtained as 0.98 for ROUGE-1
and 0.99 for ROUGE-2. Therefore, to get more accurate results in testing the performances of the chromosomes
with 11 event-related features, the ROUGE-2 evaluation metric is used with the DUC 2002 dataset.

In this method, for each chromosome, the set of terms corresponding to the active feature of the
chromosome is selected as a representative of each sentence, which then constitutes the summary of a text.
Later the summary constructed for each chromosome is compared with DUC 2002 reference summaries by
using the ROUGE-2 metric; Table 2 shows the ordered list of chromosomes based on their F-measures that are
most effective to obtain relevant summaries.

The “SequenceofFeatures” column in Table 2 represents the chromosomes with active features of sequence
such as {9, 10}, which corresponds to the chromosome (00000000011). Again the “Position” column represents
the order of the sequences in terms of F-measure values. Note that the selected sequences in the top 10 do
not have the first 10 position order. The selection of the sequences is based on position and also its identifying
features. For example, although the sequence {4, 7, 9, 10} has position 6, as a result of the evaluation, it is not
selected in the top 10 sequence list. The reason is that the sequence {4, 7, 9, 10} already contains the sequence
{9, 10}, which has a position 1, and inclusion of features 4, 7 does not add any improvement in F-measure
results.

Again in Table 2, since only a few feature terms are selected to represent a sentence, F-measure values are
very low. However, we would like to note that the presented F-measure results are not used to judge the success
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Table 2. Ordered list of selected sequence of features for summarization.

SequenceofFeatures Position F-measure
{9,10} 1 0.0931
{9} 18 0.0794
{10} 250 0.0581
{1,7} 996 0.0409
{1,6} 1285 0.0343
{1} 1321 0.0335
{6,7} 1493 0.0290
{7} 1596 0.0261
{5,6} 1761 0.0214

of summarization but rather to evaluate the effectiveness of the features, which is used for feature selection.
Therefore, from the top sequences, it is observed that summaries with various sequences of 6 features, namely
TMP (9), LOC (10), NER (1), A0 (6), A1 (7), and WAPREPOS (5), are effective in extracting event-based
summaries.

3.3. Sentence selection

In recent summarization tasks, the sentence position is widely used [55,56]. It has been argued that the first
sentence of the document contains the most important information about the document that is crucial for solid
summaries [57,58]. Therefore, in the constructed extract, the first sentence of the text is added to the summaries
regardless of the other features.

Apart from the first sentence, the other sentences in the document are evaluated based on the sequence
of features as presented in Table 2. From the top, each sequence of features is checked in a sentence as presented
in Algorithm 1, and once the feature sequence is detected, the rest of the sequences are neglected. Therefore,
the found features from a sequence are used to calculate the importance score of a sentence as follows:

SentenceImportanceScore =

n−1∑
i=0

F (i), (1)

where iε{0, 1, 2…..n-1}, and n is a number of features in a sequences for a sentence. F(i) is a number of
occurrences of the ith feature in a sentence. Once the sentences’ importance values are calculated, the sentences
with top scores are selected to construct the 100-word summaries of a document. To prevent the construction
of longer summaries, in case the added sentence exceeds 100 words it is eliminated from the summary.

4. Experiments

In this section, the performance of the proposed method is compared with different summarization approaches.
The evaluation is done based on the DUC [1] datasets.
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Algorithm 1 Sentence selection
Input:
A[i]: Sentence array of each sequence of feature from 0 to 9
B[i]: Frequency array of sequence of feature from 0 to 9
S[i]: Sorting array that sorts sentence and frequency array according to descending order
Output: Summary
Initialization:
s← 0 ; f ← 1 ; ct← 1
for k in range (2, len(filenam)) do

if s← no[k] then
first.append(senten[f ])
countsent← countsent+ 1
ct← ct+ 1
if temp[k] ≥ 1 and loc[k] ≥ 1 then

A[i].append(senten[k])
B[i].append(tmp[k]+loc[k])

else if tmp[k] ≥ 1 then
A[i].append (senten[k])
B[i].append(tmp[k])

else if loc[k] ≥ 1 then
A[i].append (senten[k])
B[i].append(loc[k])

else if ne[k] ≥ 1 and a1[k] ≥ 1 then
A[i].append (senten[k])
B[i].append(ne[k]+a1[k])

else if ne[k] ≥ 1 and a0[k] ≥ 1 then
A[i].append (senten[k])
B[i].append(ne[k]+a0[k])

else if ne[k] ≥ 1 then
A[i].append (senten[k])
B[i].append(ne[k])

else if a0[k] ≥ 1 and a1[k] ≥ 1 then
A[i].append (senten[k])
B[i].append(a0[k]+a1[k])

else if a1[k] ≥ 1 then
A[i].append (senten[k])
B[i].append(a1[k])

else if waprepos[k] ≥ 1 and a0[k] ≥ 1 then
A[i].append (senten[k])
B[i].append(waprepos[k]+a0[k])

end if
else

f ← f + ct
ct← 1
f ← f + ct
ct← 1

end if
for i in range (0,8) do

S[i]← sorted(B[i], A[i])
allsent← first+ S[i]

end for
for j in range (0,len(allsent)) do

if len(sentall)← 100 then
sentall.append(all[j])

end if
end for

end for
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Table 3. Comparison of Rouge-1 and Rouge-2 performance evaluation results of summarization methods on DUC 2001
and DUC 2002.

METHODS DUC 2001 DUC 2002
R-1 R-2 R-1 R-2

EBDS (proposed) 0.451 0.202 0.481 0.232
COSUM [25] 0.472 0.201 0.490 0.230
WA-CombA [44] 0.449 0.201 0.477 0.223
MA-SingleDocSum [24] 0.446 0.201 0.481 0.226
RI-full [61] 0.458 0.199 0.486 0.225
Linear-NN-T [26] 0.446 0.196 0.472 0.217
Sup-NN-T [26] 0.444 0.195 0.472 0.217
Entail-BSM [24] 0.439 0.190 0.469 0.217
STEIN [17] 0.438 0.183 0.475 0.218
LSA [16] 0.435 0.180 0.477 0.216
Coh-SingleDocSum [55] 0.450 0.179 0.473 0.209
OZ [60] 0.424 0.171 0.462 0.206
Baseline 0.433 0.169 0.456 0.193
NMF [22] 0.425 0.162 0.458 0.194
TexRank [10] 0.434 0.157 0.462 0.194
LexRank [13] 0.408 0.151 0.438 0.179
LDA [20] 0.388 0.130 0.432 0.172
HP-UFPE [14] 0.357 0.118 0.456 0.205

4.1. Datasets
Since news articles explain daily events and happenings, the proposed method is tested on the benchmark
single-document summarizations datasets of the DUCs: DUC 20014 and DUC 20025. The DUC 2001 dataset
contains 30 clusters of news articles collected from the Text Retrieval Conference (TREC-9) with a total of
309 documents. The dataset also includes 100-word summaries of 3 evaluators (926 model summaries). On
the other hand, the DUC 2002 dataset consists of 567 news articles derived from 59 news clusters. Out of
567 news articles, since 34 articles of the dataset are repeated, 533 articles are used in the single-document
summarization. The dataset at the same time has 1047 model summaries that consist of 100 words.
4.2. Evaluation metrics
Over the years, different evaluation metrics [53,59] have been proposed to evaluate the quality of the generated
summaries. Among them, the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [53] is found to be
the most correlated to human evaluation [34]. ROUGE includes several measures such as ROUGE-N, ROUGE-
L, and ROUGE-SU. Liu [34] evaluated the Pearson correlation between the 17 ROUGE measures versus human
judgments on DUC 2001 and DUC 2002 datasets. Among the evaluated 17 ROUGE measures, with original
summaries (not stemmed/stopped) the ROUGE-2 measure shared the best performances. Therefore, in the
experiments we have used ROUGE-N, which is defined as:

ROUGE(N) =

∑
Sϵ{ReferenceSummaries}

∑
gramnϵS

countmatch(gramn)∑
Sϵ{ReferenceSummaries}

∑
gramnϵS

count(gramn)
, (2)

4DUC 2001- Document understanding conference 2001 [online]. Website http://www.nlpir.nist.gov/projects/duc/ [Accessed 22
September 2018].

5DUC 2002- Document understanding conference 2002 [online]. Website http://www.nlpir.nist.gov/projects/duc/ [Accessed 22
September 2018].
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where N is the length of an N-gram, countmatch(gramn) refers to the maximum length of n-grams appearing
in both a candidate summary and reference summaries, and count(gramn) in the denominator Equation (2)
refers to the n-grams appearing in the reference summary. Based on the similarity to human judgment and the
popularity, the performance of the proposed method in this paper is compared with ROUGE-1 and ROUGE-2
evaluation metrics. The system evaluation is done between the generated summaries and the total number of
model summaries of each dataset by using the ROUGE 2.0 Java Package.

4.3. Performance evaluation
The proposed EBDS system’s performance is compared with 17 well-known or recent single-document summa-
rization methods that are explained in Section 2. Comparison of the proposed method is made against the
following methods: (a) well known graph-based methods of TextRank [10], LexRank [13], and Garcia’s [15] co-
herence scoring method (Coh-SingleDocSum6); (b) state of the art dimension reduction methods including LSA
[16], LDA [20], NMF [22], STEIN [17], and OZ [60]; (c) the best results of Long et al. [24] (Entail-BSM6 ); (d)
Oliveira et al.’s [44] best-performing combination “weighted avg. CombA” (WA-CombArefno1); (e) Alguliyev
et al.’s [25] proposed method (COSUM) and Mendoza et al.’s [23] proposed method (MA-SingleDocSum); (f)
Long et al.’s [24] best-performing entailment-based scoring method (Entail-BSM6 ); (g) Mao et al.’s [26] best-
performing combination method (Sup-NN-T and Lin-NN-T); (h) reinforcement learning with full features (RL-
Full) [61]; (i) Ferreira et al.’s [14] best sentence-scoring combination for news articles (HP-UFPE FS); and (j)
the baseline, which is the first n sentences that do not exceed 100 words.

Table 3 present the results obtained by EBDS and other methods in terms of the recall values of ROUGE-
1 (R-1) and ROUGE-2 (R-2) metrics on the DUC 2001 and DUC 2002 datasets. In addition to the proposed
method, the benchmark algorithms TextRank and LexRank, dimension reduction methods, and baseline are
reimplemented in this study. The provided results of the recent methods are used for comparison.

As the results demonstrate, the proposed EBDS system outperformed the other methods in the R-2
measure while falling behind COSUM and RL-Full in the R-1 measure on both datasets. The top 5 results of
the experiments are shared by the recent methods, namely COSUM, EBDS, RL-Full, MA-SingleDocSum, and
WA-CombA. The success of the top algorithms differs with small R-1 value ranges of [0.446–0.472] and [0.477–
0.490] in the DUC 2001 and DUC 2002 datasets. Even smaller value ranges of [0.199–0.202] and [0.223–0.232]
are observed for R-2 in the DUC 2001 and DUC 2002 datasets, proving the competitiveness of the EBDS and
recent methods in obtaining the summary sentences. In the tests, summaries obtained by dimension reduction
methods fall behind many of the machine learning and recent methods while performing better than the graph-
based methods. As a related method to EBDS, WA-CombA is able to get into the list of the top best-performing
algorithms while the other related method, HP-UFPE FS, did not achieve comparable results.

5. Conclusion
In this study, a summarization method that takes into account the tight relationship between news and events
is used. Although most of the datasets used in summarization include news articles, the relation between the
main idea of the news and the event context has not been investigated in much detail. By the introduced
EBDS framework the most effective event extraction and summarization features are combined together to
extract summaries from single documents. Among the various event features, six features, TMP, LOC, NER,

6Named assigned in this paper to ease the comparison.
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A0, A1, and WAPREPOS, are found to be effective for producing coherent summaries. In particular, sentences
containing TMP, LOC, A0, and A1 features together with the first sentence have been proven to be the most
effective in representing the relevant summaries.

The proposed EBDS method is evaluated by R-1 and R-2 performance measures on the DUC 2001 and
DUC 2002 datasets. In the experiments, the presented EBDS method outperformed all the compared methods
in the R-2 measure and obtained comparable results in the R-1 measure by achieving the third highest score
in the ranking. The analysis of the results indicates that the features relating to the context of events has a
close relation to the main idea in the text, which can further be analyzed in more detail to better improve the
quality of summaries.
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