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Abstract: This article introduces the ternary logical naming convention, which was newly discovered in the study of
logical units of ternary optical computers (TOCs). First, the design principle and design specification of the ternary
logical naming convention are elaborated in detail and several examples are given to illustrate the use of the naming
convention. Second, taking the modified signed-digit (MSD) adder of the TOC as an example, the naming convention
is applied to build four ternary logical units of the MSD adder, and the implementation method of pipelined addition is
introduced. Finally, the correctness of the ternary logical naming convention proposed in this paper and the usability of
the adder built according to this convention are illustrated by experiments. The ternary logical naming convention can
easily obtain the relationship between the ternary logic transforms, thus judging the characteristics of the logic units of
TOCs, which is helpful to promote the in-depth study of TOCs in the field of numerical calculation.
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1. Introduction
Logic is an old and dynamic field of study, which addresses judgment or reasoning and serves as the common
foundation of various scientific theories [1]. Among them, discrete-valued logic problems, and especially binary-
valued logic problems, are closely related to the application of electronic computers and have become the basis of
modern computer-based transaction processing [2–4]. The complexity of the logic system expands exponentially
as the number of logical variables increases. For example, a binary logic system has only 2(2×2) = 16 kinds of
logic operation rules, but a ternary-valued logic system has 3(3×3) = 19683 kinds of operation rules. Generally
speaking, the n-valued logic system has a total of n(n×n) operation rules. For binary logic, people have named
16 operating rules with proprietary names, such as the well-known AND, OR, NAND, and XOR. The source of
these names should be closely related to the “on, off” states in the circuit, so binary logic was called “switching
logic” for a long period of time. For n (n>2) value logic, it is obviously impossible to give each operation an
exclusive name. Therefore, truth tables are still widely used to express the n -valued logic operation rule. This
expression method is not only difficult to remember, but also difficult to communicate, and it is not easy to
recognize the similarities and differences between different logic operations. On the other hand, after giving
n values different characteristics, some logic operations lose their actual value, some logic operations change
duality, and some logic operations change other aspects of the property. Therefore, the use of truth tables and
value features to indicate logical operations is not only complicated but also difficult to discuss.

In the work of studying the ternary logic optical operator, the author finds that with the ternary optical
computer entering the application field, various calculation routines and application algorithms using ternary
∗Correspondence: lslsshuang@126.com
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logic operations continue to emerge. Therefore, it is very necessary to establish a unique scientific name for each
ternary logical operation. This means that a convenient and practical ternary logical operation naming scheme
must be developed, which must be satisfied: make each ternary logical operation have a corresponding standard
name; Regardless of the symbol used by the user to express a three-valued operation in the actual problem,
the logical operation rule can be quickly given by its standard name, thereby avoiding academic confusion; The
naming convention must also be able to extend the naming of the n(n×n) operation rules for n -valued logic.

2. The naming principle of ternary logical

2.1. Definition
The ternary logical rules can always be expressed in a three-row, three-column truth table, as shown in Table 1,
where A and B are two independent variables of ternary logical and Y is a ternary logical function. The ranges
of A, B, and Y are collections {a, b, c}.

Definition 1. The different restrictions between the three symbols are called the characteristic name of
the value (CNV) in the ternary logical transform.

Definition 2. The rules used in logical reasoning for ternary logical transforms are called available rules
(ARs).

Definition 3. The name of the transform result obtained by the ternary logical naming convention is the
name of the transform rule (NTR).

The CNV is different and the AR is different when inferring. For example, when the three symbols
of ternary logic are completely unrelated, the dual rule cannot be used for the ternary logic transform when
inferring, but when one symbol is defined as the median and the other two symbols are the dual value, the dual
rule can be used. Therefore, it is not only required to write the NTR, but also to write the CNV when naming
the ternary logic.

Table 1. Example of a ternary logical operation standard truth table.
HHHHH

A
B a b c

a a c c
b b c a
c a c b

2.2. Design and design specifications for ternary logical naming convention

2.2.1. Design of the NTR

The value of the ternary logical standard name is given by the column marker value of “a” or “b” of each row
of the standard truth table:

[N1 N2 N3 N4 N5 N6 Missing column mark (MCM)],
where the form contains six numbers N1–N6 and MCM, N1 denotes the “a” column mark of the first

row, N2 denotes the “b” column mark of the first row, N3 denotes the “a” column mark of the second row, N4
denotes the “b” column mark of the second row, N5 denotes the “a” column mark of the third row, and N6
represents the “b” column mark of the third row. To distinguish them from ordinary numbers, we put them in
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square brackets. The rules for the values of these six numbers, the missing column mark, and the missing row
mark (MRM) are shown in Table 2.

Table 2. The rule of each marked value in the names of the ternary logic operation rule.

Numeric value rules MCM value rules MRM value rules
The column number Marked Missing column MCM Missing row Replace the missing
where “a” or “b” appears value value row with X
1 1 c -c 1 N1 N2
2 2 b -b 2 N3 N4
3 4 a -a 3 N5 N6
null 0 c and a -ca - -
1 and 2 3 c and b -cb - -
1 and 3 5 a and b -ab - -
2 and 3 6 - - - -
1 and 2 and 3 7 - - - -

According to Table 2, there are the following constraints between the values of “a” and “b” in the same
row:

When “a” is 0, “b” can be any value from 0 to 7, a total of 8 values.
When “a” is 1, “b” can be 0, 2, 4, and 6, a total of 4 values.
When “a” is 2, “b” can be 0, 1, 4, and 5, a total of 4 values.
When “a” is 3, “b” can be 0 and 4, a total of 2 values.
When “a” is 4, “b” can be 0, 1, 2, and 3, a total of 4 values.
When “a” is 5, “b” can be 0 and 2, a total of 2 values.
When “a” is 6, “b” can be 0 and 1, a total of 2 values.
When “a” is 7, “b” can be 0, a total of 1 value.
Therefore, there are 27 cases for each row, and the ternary transform has 273 = 19683.

2.2.2. Design of the CNV

The characteristics of three symbols of ternary logic determine the mathematical operations that can be used
in the reasoning process. Therefore, a category of ternary transform is delineated and the three symbols are
named according to the type of the ternary transform so that the mathematical operation rules can be used
in the reasoning process. For example, use “L” to indicate that the characteristic of the value is logic, “C” to
indicate that the characteristic of the value is contain, “D” to indicate that the characteristic of the value is
digit, etc.

For the “C”-type, it is necessary to give the inclusion relationship of three symbols, and for the “D”-type,
the specific values of the three symbols must be given. Then set a pair of parentheses in the CNV, which
contains three elements corresponding to three symbols. For example:

L (x1, x2, x3), where x1, x2, and x3 are the three symbols actually used by the user, which represent one
of the three events that are not included in each other. This type of transform rule only indicates that when two
events are “true” (the value of two inputs), an event is also “true” (the output value of the logical transform),
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but it does not indicate that other events are “false” or “not sure”. The actual symbol x1 corresponds to the
symbol “c”, x2 corresponds to “a”, and x3 corresponds to “b”.

Propositional logic is a common example of the “L”-type. For binary propositional logic, one symbol is
0, which means the proposition is false, and the other symbol is 1, which means the proposition is true. For
ternary propositional logic, the third symbols can have multiple definitions, such as semi-true half-false (0.5),
or a certain degree of “true” (fuzzy logic), or may have nothing to do with true and false, etc. In this case, x1
is equal to 0, x2 is equal to 1, and x3 gives its definition.

For the “C”-type, there is a “true” inclusion relationship between the three symbols. One symbol that
is “true” contains one or two symbols as “true”. If you add the “true inclusion” relationship in parentheses, it
can have the following types:

C (x3, x2 <, <x1): “c” corresponds to x3 and has no true contain relation; “a” corresponds to x2 and is
contained; “b” corresponds to x1, and true contains “a”.

C (x3, <x2, x1 <): “c” corresponds to x3 and has no true contain relation; “a” corresponds to x2, and
true contains “b”; ”b” corresponds to x1 and is contained.

C (x1, x2 <, <x3): “c” corresponds to x1 and has no true contain relation; “a” corresponds to x2 and is
contained; “b” corresponds to x3 and contains “a”.

C (<x3, x2 <, x1): “c” corresponds to x3, and true contains “a”; “a” corresponds to x2 and is contained;
“b” corresponds to x1 and there is no true contain relation.

C (<x3 <, x2 <, <x1): “c” corresponds to x3, and true contains “a” and is contained; “a” corresponds
to x2 and is true contained by “b” and “c”;“b” corresponds to x1, and true contains “c” and “a”.

For the “D”-type, three symbols of the ternary logic represent three numbers; that is, x1, x2, and x3 are
represented by three numbers. The “D”-type is a special case of “C”-type when considering numerical values.
For example:

D (5, 0.3, 7): in the ternary transform, “c” represents 5, “a” represents 0.3, and “b” represents 7.
It should be noted that the three elements of the CNV are the symbols used in the ternary logic transform,

and they are not related to the missing column and missing row in the NTR.

2.2.3. Design specification for ternary logical naming convention
According to the above analysis, the ternary logical naming design specification is as follows:

(1) Determine the correspondence between ternary logical symbols “a”, “b”, “c” and the actual symbols
x1, x2, x3;

(2) Arrange the ternary logic truth table in the order of “a”, “b”, and “c”;
(3) Determine the CNV;
(4) Determine the name of NTR according to Table 1.

3. Application of ternary logical naming convention in TOCs
3.1. Architecture of TOCs
A TOC uses no intensity light, horizontal polarized light, or vertical polarized light polarization directions of
light, as shown in Figure 1. The bit reconfigurable processor of the TOC is a product of the decrease-radix
design theory. The main conclusion of the theory is that if the D-state is included in n(n >1) physical states
that are used to represent information, each of n -valued logic operators with 2 inputs can be made of no more
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than n×(n -1) basic operation units via a determinate procedure, where there are up to n× n× (n -1) types
of basic operation units. The total number of different 2-input n -valued logic operators is known to be n (n ×
n). The D-state is a special physics state, which would still generate state λ as the result of superimposition
with any other physical state λ . A basic operation unit is an n -valued logic operator with the simplest structure
and the following feature: only one combination of input values would produce a non-D-state as the output,
whereas all the remaining input combinations invariably produce the D-state.

Figure 1. The processor structure of TOC. S: Surface light source, E: encoder, O: optical processor, D: decoder.

When applying the decrease-radix design theory to a TOC, there are 3(3×3) = 19683 ternary logic
operators and 18 basic operation units. Any ternary logic operation unit can be made of no more than 6 basic
operation units. After thorough research, we found there is a uniform structure for the 18 basic operation units
of the TOC as displayed in Figure 2. We can see in Figure 2 that there are two optical paths: one is the main
light path and the other is the control light path. These two optical paths are composed of a liquid crystal
array, and they have different polarizers. The liquid crystal of the main light path is divided into four parts
(HH, HV, VH, VV), and the liquid crystal of the control light path is divided into two parts (H, V), as shown in
Figure 3. The input signal “a” enters the main optical path, which involves two polarizers (P1 and P2) holding
a liquid crystal (LC) to form a sandwich-like structure. Another input signal, “b”, enters the control optical
path. The differences between basic operation units are that there are two opposite cases for the optical rotation
of LC in the static state, four combinations of P1 and P2 polarization directions, and three kinds of control
optical paths. The three control optical paths are produced by dividing input signal “b” into three subbeams
by two half-reflecting mirrors f1, f2 and mirror F. Because there is a vertical polarizer V in the top branch of
the control optical path, phototube g1 outputs high voltage only when “b” is vertical polarized light. Similarly,
for a horizontal polarizer H in the middle branch, g2 outputs high voltage only when “b” is horizontal polarized
light. For no polarizer in the bottom branch, g3 outputs high voltage when “b” is bright, whether vertical or
horizontal polarized light. Device S (three-choose-one multiplexer) selects the right one from the outputs of g1,
g2, or g3 according to the reconfigure directive bits k2 and k3 and sends the right signal to XOR gate Y. Y will
negate the output signal of S when the reconfigure directive bit k1 is 1, and will not negate when k1 is 0. The
output signal of Y controls the optical rotation of the LC in the main optical path, so the output signal “c”
is produced from the main optical path under the sway of the control optical path. The main optical path is
split into four kinds in accordance with the combinations of P1 and P2 polarization directions. When P1 is a
vertical polarizer and P2 is a horizontal polarizer, the main optical path is called VH; when P1 is a horizontal
polarizer and P2 is a vertical polarizer, it is HV. By that analogy, P1 and P2 are vertical polarizers as VV, and
P1 and P2 are horizontal polarizers as HH.

3.2. Comparison example of ternary logic naming convention and traditional truth table

The carry-in process of the addition operation severely delays the working speed of the adder. It was not
until 1950 that American-Lithuanian computer scientist A. Avizienis proposed the theory of carry-less addition
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Figure 2. Uniform structures of the TOC’s basic operation units.

Figure 3. Optical processor light path division.

with redundant values and designed the first MSD number parallel adder structure, which brought a bright
future for completely solving this thorny problem [5–7]. In 1986, the structure of the MSD adder of Avizienis
was transformed into a three-step logic transformation. Each step’s transform uses a different ternary logic
operation, sharing up to four ternary logic operations and calling these four logical operations T, W, T’, and
W’. In 2009, Professor Jin discussed the conditions and advantages of using the TW-MSD adder for TOCs in
theory [8–16]. In just three years, there have been a variety of adders, such as the improved MSD carry-free
adder for TOCs [17], the one-step binary MSD adder for TOCs, [18],modified signed-digit adders [19], and the
principle of a one-step MSD adder for TOCs [20]. The TW-MSD adder was implemented on ShangDa-16 (for
short, SD16: Shanghai University 2016) in March 2017, and only two months later, the theory that sufficient
conditions for a ternary logical transform could constitute an MSD adder was proposed. Ternary operation
constituting a sufficient condition for the MSD adder and the ternary optical JS-MSD adder [21], and other
series of theories, structures, and objects, were also proposed. It is very difficult to use the truth table of ternary
logic to determine the similarities, differences, and characteristics of various MSD adders [22–26]. However, after
writing the standard names of the ternary logic operations used by the respective MSD adder, the similarities
and differences between the various MSD adders and their respective features are clear at a glance. This not
only avoids unnecessary arguments, but more importantly, it provides a simple and effective tool for improving
the MSD adder.

For example, the truth table of four ternary logic operations of T, W, T’, and W’ are shown in Table 3.
The table of the ternary logic operation used by the SJ-MSD adder is shown in Table 4. It can be seen that
both expressions and comparisons are cumbersome. After changing to the standard name, their CNVs are the
same, as both are D (0, -1, 1), and the NTRs are different, as shown in Table 5. For an intuitive representation,
“a”, “b”, and “c” in the ternary logical naming convention are replaced with three physical states of H, V, and
D in the ternary optical computer [27–29].

The information expressed in Table 5 is the same as the information expressed in Table 3 and Table 4,
but Table 5 is much simpler and easier to write and discuss, and one immediately sees: (1) these two MSD
adders are different structures; (2) the output data of T’ will be only u in the second column of the second row,
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Table 3. Ternary logic operation truth table for TW-MSD addition.

T transform W transform T′ transform W′ transform
HHHHHHHH
s or w′

p or t′

u 0 1
HHHHH
s

p u 0 1
HHHHH
w

t u 0 1
HHHHH
w

t u 0 1

u u u 0 u 0 1 0 u u 0 0 u 0 u 0
0 u 0 1 0 1 0 u 0 0 0 0 0 u 0 1
1 0 1 1 1 0 u 0 1 0 0 1 1 0 1 0

Table 4. Ternary logic operation truth table for SJ-MSD addition.

S1 transform S2 transform J1/J2 transform J3 transform
HHHHH
b

a 0 1 u
HHHHH
b

a 0 1 u
HHHHH
s1

s2 0 1 u(J2)
HHHHH
j2

j1 0 1

0 0 0 u 0 0 1 1 0 0 u u 0 0 u
1 0 1 0 1 1 0 0 1 1 0 u 1 u 0
u u 0 u u 1 0 0 u u 0 0 u 0 1

Table 5. Ternary logical operation standard name used for TW-MSD addition and SJ-MSD addition.

value feature name :D(0, -1, 1). u stands for -1 in the truth table
TW-MSD addition SJ-MSD addition
T [24 30 05] S1 [20 30 04]
W [42 01 10] S2 [06 01 01]
T′ [00 20 04] J1/J2 [60 10 21]
W′ [24 10 01] J3 [40 04 10]

the third column and the third column are 1, and the rest are 0; (3) there is no u value in the output of S2; (4)
the input variables of J3 have only two values of 0 and 1.

The following is an example of the operation rule of T, which introduces the detailed steps of using the
ternary logic naming convention. For convenience in reading, the T operation truth table in Table 3 is rewritten
as the T(1) subtable of Table 6.

Table 6. Naming of T logical transforms.

T(1) T(2) T(3)
HHHHH
s

p u 0 1
HHHHH
s

p H D V
HHHHH
b

a D H V

u u u 0 H H H D D D H V
0 u 0 1 D H D V H H H D
1 0 1 1 V D V V V V D V

Step 1: Replace 0, u, and 1 in the T(1) subtable with symbols D, H, and V, respectively, and obtain the
T(2) subtable of Table 6;
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Step 2: Rewrite the T(2) subtable according to the order of D, H, and V to obtain the T(3) subtable;
the T(3) subtable is the standard truth table of the T operation;

Step 3: Determine the identification feature name D(0, u, 1) or D(0, -1, 1); see line 1 of Table 5;
Step 4: Give the identification values of the columns of the H and V symbols of each row in the T (3)

subtable.
In the first row, H is in the second column and V is in the third column, so the identifier of the first row

is 24. In the second row, H is in columns 1 and 2, and there is no V, so the identifier of the second row is 30.
In the third row, there is no H and V is in columns 1 and 3, so the identifier of the third row is 05.

Combine the three lines of identification and write the NTR: [24 30 05]. The above four steps are used
for the other ternary logic operations in Table 3 and Table 4, respectively, and the respective NTRs given in
Table 5 are obtained.

4. Experiment and analysis

4.1. Experimental preparation

This experiment uses the No. 1 machine of the TOC prototype system SD16; the shape is shown in Figure 4.
Among them, the liquid crystal (LC) array of the TOP (black area with bright spots in the middle) has 576
pixels arranged in a 24×24 array. The three adjacent pixels in each line form one bit of the optical processor,
so the experimental device has a total of 192 processor bits, meaning that 192 bits of data can be processed in
parallel [30]. The LC arrangement is shown in Figure 5. The LCD is divided into two parts, and the processor
bit number of each part is shown by the arrow in the figure. The three pixels in each processor bit in the left
half are D, V, and H from left to right, and the right half is H, V, and D; that is, the pixels on the left and
right are arranged in mirror image.

Figure 4. Shape of SD16’s No. 1 machine.

4.2. Experimental cases

We need to compute f1 = a + b , f2 = c + d , and f3 = e + g ; the number of bits of the independent
variables a , b , c , d , e , and g are 14, 14, 9, 9, 12, and 12, respectively. f1∼ f3 each contain 6 sets of data,
as shown in Table 7.

4.3. Experimental procedure

The ternary optical computer research team developed a programming platform for TOCs [31–35]. We applied
the programming platform to give the main experimental steps:

(1) The ternary logical standard names of the three adders of f1∼ f3 are organized into a reconstructed
frame to send to the TOP;
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Figure 5. Liquid crystal division.

Table 7. Experimental data.

Item f1 f2 f3

1 a(0u01111u110111)M c(11u11u1u1)M e(1011u110u110)M
b(01u01u11101uu1)M d(u11101u1u)M g(10u1u1u00110)M

2 a(01010110001011)M c(000000000)M e(0uu1100u0110)M
b(11011101010101)M d(000000000)M e(g(0u10u10u1110)M

3 a(0u01101u110111)M c(uuuuuuuuu)M e(10uu1u0u1010)M
b(01u01u11101u01)M d(uuuuuuuuu)M g(110uu100u111)M

4 a(11111111111111)M c(10uu1u0u1)M e(10uu1u0u1010)M
b(11111111111111)M d(u10u11u00)M g(u10u11u00u1u)M

5 a(uuuuuuuuuuuuuu)M c(1uu101u01)M e(011010011110)M
b(11111111111111)M d(01uu1u010)M g(110110010101)M

6 a(00000000000000)M c(0uu1100u0)M e(011000001111)M
b(00000000000000)M d(0u10u10u1)M g(111001011010)M

(2) The TOP reconstructs the corresponding ternary logic calculators (the processor allocation is shown
in Table 8);

(3) Original data b , d , and g are organized into data frames and sent to the main optical path coding
area;

(4) Original data a , c , and e are organized into data frames and sent to the control optical path coding
area;

(5) The decoder is started to obtain output light information of all bits of the processor and is converted
into corresponding electrical information to form output data of the processor.

The main content of the experiment is to verify the correctness of the ternary logical naming convention
on the TOC; the TOP can reconstruct the corresponding ternary calculators according to the ternary logical
standard name accurately and these calculators are correct.
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Table 8. The processor bit allocation for the adder.

D (0,-1,1)[243005] D(0,-1,1)[420110] D(0,-1,1)[002004] D(0,-1,1)[241001] D (0,-1,1)[243005]
f1 1-14 15-28 29-43 44-58 59-74
f2 75-83 84-92 93-102 103 -112 113-123
f3 124-135 136-147 148-160 161-173 174-187

4.4. Experimental results and analysis

The theoretical values of the experimental examples are shown in Table 9. The images output by the optical
processor during the experiment are consistent with the theoretical values. This article takes the first set of
experimental data of f1 to illustrate: Figure 6 is the output of the first set of experimental examples of f1 and
the corresponding theoretical analysis diagram is shown in Figure 7, where the brightest point is the vertically
polarized light (V light state, expressed by 1), the second bright spot is the horizontally polarized light (H light
state, expressed by u), and the other is the no-light state (expressed by 0). The blue part in Figure 8 is the first
set of experimental results for f1 . In units of rows, from right to left, from bottom to top, every three adjacent
pixels are one bit and we can read a string: 00000010110u010, which is the resulting value expressed in MSD
form. Then we apply the method of converting MSD to a decimal number and convert (00000010110u010)M
to (346)D , which is consistent with the theoretical results. Experiments show that the ternary logical naming
convention proposed in this paper can be applied to the TOC, and reconstructed logical calculators can calculate
the data accurately.

Table 9. Theoretical results of experimental use cases.

Item f1 f2 f3

1 (00000010110u010)M (01011u0000)M (01001u10000100)M
2 (100110011100000)M (0000000000)M (00u01u1uu10100)M
3 (000000010011100)M (uuuuuuuuu0)M (01uu1u10u0011u)M
4 (111111111111110)M (0000011011)M (0000010u1u10u1)M
5 (000000000000000)M (0010001111)M (01010000110011)M
6 (000000000000000)M (00uu0uu0uu)M (01010001101001)M

5. Conclusion
This paper proposes a design method for a ternary logical naming convention: combining the CNV and NTR
to indicate the ternary logical operation rule. The design principle and design specification are introduced in
detail, and then the MSD adder is taken as an example to illustrate the application of the naming convention
on TOCs. Through the test experiment, it is verified that the TOP can reconstruct the corresponding logic
calculators according to the naming convention and calculate correctly. Compared with traditional ternary logic
truth tables, the method proposed in this paper is simple to write and easy to identify. As scholars continue
to delve into the MSD adder of TOCs, a large number of ternary logical transforms are used. Applying this
naming method can reduce the repetitive work during the research process. It is also preparing for TOCs to
enter the field of numerical calculation.
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Figure 6. Results of the first set of test cases for f1 .

Figure 7. Theoretical output diagram.

With the rapid development of artificial intelligence theory, technology, and applications, the complexity
of the problems people want to solve is dramatically increasing and the logical characteristics of practical
problems have long exceeded the scope of binary logic. New logic concepts such as fuzzy logic, uncertainty
reasoning, and rough set logic are also increasing, so multivalued logic has become a very hot topic of discussion.
However, the way to express multivalued logic rules has relied on truth tables, which has brought difficulties to
the characteristics of academic communication and judgment logic problems. The design principle and usage
specification of the ternary logical naming convention proposed in our paper can be directly extended to any
multivalued logic operations to form a standard name for various multivalued logic operations.
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