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Abstract: Recently, there has been a growing interest in association rule mining (ARM) in various fields. However,
standard ARM algorithms fail to discover rules for multitask problems as they do not consider task-oriented investigation
and, therefore, they ignore the correlation among the tasks. Considering this situation, this paper proposes a novel
algorithm, named multitask association rule miner (MTARM), that tends to jointly discover rules by considering multiple
tasks. This paper also introduces two novel concepts: single-task rule and multiple-task rule. In the first phase of the
proposed approach, highly frequent local rules (single-task rules) are explored for each task separately and then these
local rules are combined to produce the global result (multitask rules) using a majority voting mechanism. Experiments
were conducted on four different real-world multitask learning datasets. The experimental results indicated that the
proposed MTARM approach discovers more information than that of traditional ARM algorithms by jointly considering
the relationships among multiple tasks.
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1. Introduction
Association rule mining (ARM) has been extensively used to extract hidden and interesting rules from a large
collection of data [1]. It has been an active research area owing to the challenges it presents and to its wide
applications in various fields such as market basket analysis [2], recommendation systems [3], anomaly detection
[4], bioinformatics [5], and text mining [6]. The ARM process involves finding patterns whose support and
confidence values are at least the user-defined thresholds. For example, an association rule “milk → eggs
(support = 0.2, confidence = 0.8)” for market basket analysis may indicate that 20% of all transactions contain
both milk and eggs, and that 80% of all transactions that contain milk also contain eggs.

Current ARM studies discover rules from the entire dataset; they do not consider task-based investigation
and they ignore intertask relations. However, real-world datasets sometimes include situations where there are
multiple tasks available and these tasks are related to each other. From a general perspective, it would seem
that jointly discovering association rules from these related tasks would help us uncover common knowledge
and improve generalization performance. In fact, this perspective is supported by empirical evidence provided
by recent developments in multitask learning [7].

Unlike the traditional (single-task-based) ARM, the novel approach proposed in this paper is “multitask-
based ARM,” which can discover more knowledge by jointly analyzing all tasks and by considering the relations
between these tasks. The underlying assumption of our approach is that the rules of all tasks, or at least a
∗Correspondence: derya@cs.deu.edu.tr
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subset of them, are familiar to one mutual rule set with a small difference. The proposed approach can discover
common association rules by responding to different tasks and by applying an algorithm to consider all the
tasks collectively. Accordingly, the rule X → Y can have high support and confidence in a task. A rule may
not be frequent in the entire dataset; however, it may be frequent in several specific tasks. Therefore, finding
task-based frequent rules in an effective way is important.

This paper proposes a novel algorithm, named multitask association rule miner (MTARM), that tends to
discover rules by jointly considering multiple tasks. The proposed algorithm mines datasets that include task
information. The MTARM approach consists of two phases. In the first phase, the algorithm discovers local
frequent rules (single-task rules) from the data of each task separately, and in the second phase, it combines
these local rules to produce the global result (multitask rules). The discovered multitask rules can be used to
deploy information systems that support the execution of their associated task or to improve decision-making
in applications.

The main contributions and novelty of this study are threefold: (i) this is the first study that applies
ARM to multitask problems; (ii) it proposes the MTARM approach, which attempts to find intertask rules
based solely on the task identities and the observed data for each task; and, finally (iii) it also introduces two
novel concepts: single-task rule and multitask rule. This paper also provides a brief survey of ARM as it is an
active research area of data mining. In addition, it presents the results of experimental studies conducted on
four different real-world datasets to demonstrate the capability of the proposed algorithm.

The rest of the paper is organized as follows. Section 2 summarizes the related works on the subject.
In Section 3, we first briefly introduce ARM and then explain the multitask-oriented ARM concept with its
definitions. This section also describes our novel algorithm, namely MTARM, and discusses its advantages.
Section 4 presents the experimental studies and discussions about the obtained results. Finally, concluding
remarks and future directions are presented in Section 5.

2. Related works
ARM is one of the most important data mining techniques. It was introduced by Agrawal and Srikant in
1994 [8]. ARM finds the interesting relationships among a large set of data items. In previous studies,
various algorithms, including Apriori [8], frequent pattern (FP)-growth [9], and equivalence class clustering
and bottom-up lattice traversal (Eclat) [10], have been proposed to efficiently discover association rules in
various applications. Available ARM algorithms can be classified into two general categories: breadth-first
and depth-first search-based ARM algorithms. In breadth-first search-based ARM algorithms such as Apriori,
k-itemsets are used to generate (k+1)-itemsets. On the other hand, depth-first search-based ARM algorithms
such as FP-growth and Eclat are more efficient methods as they apply subset checking at any depth.

The ARM problem has been addressed by some researchers, and different types of association rules have
been proposed such as multilevel association rules [11], multidimensional association rules [12], multirelational
association rules [13], multiclass association rules [14], multiobjective association rules [15], multimode associa-
tion rules [16], multigranule association rules [17], multimodal semantic association rules [18], multilevel fuzzy
association rules [19], and multiagent association rules [20]. In contrast to these present types, the new type
proposed in this paper is a multitask association rule. A multitask rule presents all the knowledge between the
tasks, whereas a traditional (single-task) rule only gives the information about an independent task.

Multitask learning (MTL) is an active area of research in machine learning and is concerned with
simultaneously learning multiple related tasks from a common dataset [21]. Inspired by this idea, many methods
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have been developed to determine multiple tasks simultaneously rather than separately [22]. All these techniques
have the tendency to jointly determine multiple tasks within a common environment, which can complicate the
learning process, but can enhance the performance of single-task learning models. MTL has been proven
to increase the learning capability of each individual task, as reported by many studies via both extensive
experiments and theoretical analysis [7, 22]. Multitask classification [23] and multitask clustering [24, 25] are
two well-known types of multitask learning that have been recently presented in the literature. On the other
hand, multitask-oriented ARM has not been studied until now. To the best of our knowledge, this is the first
study that proposes multitask-oriented ARM.

As mining association rules are computationally time-consuming and the datasets to be mined are
often very large, parallel/distributed ARM (P/D ARM) algorithms have recently been developed [26–28].
These algorithms can be grouped into three categories: count distribution, data distribution, and candidate
distribution methods [27, 29, 30]. In count distribution, the dataset is partitioned equally among the nodes
of the parallel system; each node computes the local support for every candidate k -item set; and at the end
of each iteration, global support is generated by exchanging and summing up the local supports. In data
distribution, the set of candidate item sets is partitioned among the nodes and each node counts mutually
exclusive candidates. In candidate distribution, the algorithm partitions both the data and the candidates in
such a way that each processor proceeds independently with a load balancing strategy. A comparison of these
methods has been presented in several papers [29, 31].

Our proposed method (MTARM) differs from the previous P/D ARM methods in many respects (Table 1).
First, P/D ARM algorithms discover the same rules as those of the traditional ARM algorithms, but in a shorter
time by using multiple nodes; however, MTARM finds more rules than those of the standard ARM algorithms
by jointly considering the semantic relationships among tasks. Second, MTARM supports interparallelism
(multiple models are concurrently built, each model is assigned to a different processor, and then local models
are merged at the end), whereas P/D ARM supports intraparallelism (one model is built by executing multiple
processors in parallel). Third, MTARM does not require any message exchange between nodes, in contrast
to P/D ARM. Hence, the overall system performance can be enhanced by reducing the communication cost.
Fourth, synchronization between nodes is required only at the end, instead of after each pass. Fifth, P/D ARM
algorithms aggregate local results by performing a mathematical sum operation to obtain the global result at
each step, whereas MTARM combines local results by using a majority voting mechanism at the end. Sixth, in
P/D ARM, the dataset can be partitioned among n nodes in any way (i.e. equally); however, in MTARM, the
dataset should be semantically divided into parts according to the task information: node1 is assigned to task1
data, node2 is assigned to task2 data, etc.

Similar to our proposed approach, the split-and-merge (SaM) algorithm found in the literature applies
a split-and-merge paradigm to mine frequent rules [32]. This approach uses a data structure that is processed
using a general depth-first/divide-and-conquer scheme. Although the SaM algorithm resembles the proposed
MTARM algorithm in terms of the split-and-merge methodology, the latter algorithm divides the entire dataset
according to tasks, finds local rules individually, and then aggregates them by using a majority voting mechanism
to obtain globally frequent patterns. Furthermore, the MTARM method differs from the SaM algorithm in
many other respects such as in terms of data preprocessing, merge operation, execution time, time complexity,
and storage resource. First, while MTARM does not require any data preprocessing step, the SaM algorithm
requires some preprocessing of the dataset, which includes reordering the items according to their frequency
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Table 1. Comparison of ARM, multitask-ARM, and parallel/distributed ARM.
Method Type of

parallelism
Number of
messages
exchanged

Types of
messages
exchanged

Synchronization
required

Dataset
layout

Architecture Algorithms

ARM none none none no whole single node Apriori,
Eclat,
Fp-Growth

P/D
ARM

Count
Dist.

intra-model n(n-1)
(in each step)

local counts
(in each step)

yes
(after each step)

horizontal
(#nodes)

multiple nodes
shared-nothing

PEAR,
PDM,
NPA,
FDM,
FPM,
CCPD

Data
Dist.

intra-model n(n-1)
(in each step)

local frequent
itemsets
(in each step)

yes
(after each step)

horizontal
(#nodes)

multiple nodes
shared-nothing

SPA,
IDD,
PCCD

Cand.
Dist.

intra-model n(n-1)
(in initial step)

local frequent
itemsets for
initial step and
dataset is
repartitioned

no horizontal
(#nodes)

multiple nodes
shared-nothing

HPA,
HPA-ELD,
ParEclat,
ParMaxEclat,
ParClique,
ParMaxClique,
APM,
PPAR

Multitask ARM
(proposed
approach)

inter- model none none yes
(at the end)

horizontal
(#tasks)

multiple nodes
shared-nothing

MTARM

in the dataset [32]. Second, while the MTARM merges local rules by using a majority voting mechanism, the
SaM algorithm essentially uses a single phase of the mergesort sorting algorithm [32]. Third, the main lack of
the SaM algorithm is that this algorithm generally performs well on dense data but shows certain weaknesses
on sparse data [33]. The reason for this situation is that the merge operation of the SaM algorithm shows
higher performance when the transactions that will be merged have similar lengths. However, the performance
of the MTARM approach (i.e. MT-Apriori) is not especially dependent on the dense or sparse data since it
uses a different merge operation. Furthermore, our proposed method and the SaM algorithm have different
time complexities. The time complexity of the SaM algorithm would deteriorate from O(nlogn) to O(n2)

[33], where n is the number of transactions, because of the merge operation, while the execution time of our
proposed approach is dependent on the runtime of the preferred base ARM algorithm as mentioned in Section
3.4. Finally, the SaM algorithm uses a different data structure that is convenient to execute on external storage
or a (relational) database system if the data to mine cannot be loaded into the main memory [33].

The main contribution of the MTARM approach proposed in this paper is that it not only finds multitask
frequent rules throughout the dataset but also identifies single-task frequent rules in particular tasks. In a
multitask model, several particular tasks may contain different (or special) association rules. Given several
related tasks, our algorithm can discover rules for each task separately and also consider the relations between
these tasks.

3. Materials and methods
3.1. Association rule mining

Let I = {i1 , i2 , ..., ik } be a set of distinct items. Let D be a dataset that contains a set of records
{R1 ,R2 ,...,Rn}, where each record R is a set of items with a unique identifier such that R ⊆ I and where n
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is the number of records. A record R contains X and/or Y, and a set of some items in I, if X ⊆ R and/or Y
⊆ R . The most commonly used measures to indicate the strength of an association rule X → Y are support
(S) and confidence (C). Support is the probability of records that contain both X and Y item sets (X U Y ),
whereas confidence is the probability of transactions that contain X and also contain Y. The equations are as
follows:

S = Support(X → Y ) =
|X ∪ Y |
|D|

, (1)

C = Confidence(X → Y ) =
|X ∪ Y |
|X|

, (2)

where |D| is the number of records in the dataset D, |X| is defined as |{R |X ⊆ R&R ∈ D}| , and
|X ∪Y | is the number of occurrences of the related item sets. The ARM process consists of two main steps: (i)
find all frequent item sets, which must be at least as frequently supported as the minimum support (MinSup)
count, and (ii) generate strong rules from the discovered frequent item sets, where each rule in the generated
rule set (R) must satisfy the minimum confidence (MinConf ) and the number of rules is the size of the rule set
(R), i.e. the count of rules that are frequent and strong as in the following:

S = Support(X→Y) ≥ MinSup and C = Confidence(X→Y) ≥ MinConf . (3)

3.2. Multitask-oriented ARM
A task is addressed to the discovery of a subgoal as an outcome target by using only one input source in
general. Therefore, the term “multiple tasks” refers to the discovery of multioutput targets simultaneously by
utilizing task relatedness using a single input source. According to the definition of “multitask,” we can define
multitask-oriented ARM as follows: multitask-based ARM is a process of generating globally strong association
rules from large volumes of task-oriented data. Its aim is to find general (global) rules across tasks. The most
significant and difficult aspect of multitask-based ARM is how to determine the common knowledge between
tasks by protecting the independence of each task.

In real-world applications, the dataset can include information about correlated multiple tasks. This
type of data requires the tasks to have some similarities. However, different tasks lead to different rules, which
is what this paper focuses on. It is preferable to discover common association rules by responding to different
tasks and performing an algorithm to consider all the tasks simultaneously. Motivated by this idea, this study
considered multitask problems to find more meaningful rules in an efficient way to improve the effectiveness of
knowledge discovery systems.

This paper proposes a novel multitask-based ARM approach that improves generalization by using the
domain information contained in the data records of related tasks. It does this by learning tasks in parallel while
using a shared representation. The basic assumption of multitask-based ARM is that all the tasks in mining are
related to each other, and, therefore, the common rules between various tasks could show more successful mining
performance if all these tasks are considered simultaneously, by comparing them independently. Therefore, the
mining of one task can lead to the enhancement of the performance of the mining of other tasks. In this way,
it is possible to mine all the tasks together, using the associated information between various tasks to improve
the mining of each task.
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Our approach, which aims to jointly find association rules for multiple tasks, can be a better method by
utilizing beneficial information obtained from related tasks to identify intertask relations. A key concept in our
framework is the idea of a multivariate “semantic descriptor” for tasks and domains.

This paper proposes two novel concepts: single-task rule and multitask rule.

Definition 1 (Single-task rule) A single-task rule is an implication of X
t→ Y discovered from the data

partition Dt of a particular task t , where X ⊆ I and Y ⊆ I are frequent item sets, and X ∩ Y = ⊘ and
its support and confidence values are equal to or greater than the minimal support (MinSup) and minimum
confidence (MinConf) thresholds, which are given by a user or an expert. Here, X is called the antecedent,
whereas Y is called the consequent of the single-task rule. The support and confidence values of a single-task
rule are calculated as follows:

S(Single− Task Rule) = Support(X
t→ Y ) =

|X ∪ Y |t
|DT |

, (4)

C(Single− Task Rule) = Confidence(X
t→ Y ) =

|X ∪ Y |t
|X|t

, (5)

where T is a set of tasks such as T = {t1, t2, ..., tm} .

Definition 2 (Multitask rule) Given m tasks {Ti}mi=1 , where all the tasks are related but not identical, a

multitask rule, which is denoted by X
T→ Y , is a frequent single-task rule that appears in more than half of the

tasks. Suppose all subsets of an item set X such as x1, x2, ..., xk are locally frequent; then item set X is a
candidate for the multitask frequent item set and subsequently refers to all participating tasks that need to sort
the support of item set X if it appears in the local datasets of any tasks. For each single-task rule discovered in
at least m/2 data partitions, a multitask rule is derived with the global support, which is the minimum support
and confidence values collected on the task partitions where the pattern is found to be frequent. The support and
confidence values of a multitask rule are calculated as follows:

S (Multi− task Rule) = Support
(
X

T→Y
)
= mint∈T

(
Support

(
X

t→Y
))

C (Multi− task Rule) = Confidence
(
X

T→ Y
)
= mint∈T

(
Confidence

(
X

t→Y
))  if

∣∣∣X t→Y
∣∣∣ ≥ m/2.

(6)
On the basis of these definitions, we can say that there are two elementary factors for multitask-oriented

ARM.
The first factor is the definition of a task. Many real-world learning problems can be divided into a

number of interrelated subtasks. The conventional ARM strategy considers each mining problem as a single
unit and does not incorporate information associated with the tasks that are closely related to each other. In
contrast, a multitask problem could share information across the tasks. This limitation has been addressed in
the multitask-based ARM paradigm, where the rules are discovered by using several associated tasks. Owing to
the task factor in ARM, a rule may not occur frequently in the entire dataset (meaning that it is not a global
pattern); however, it may appear frequently over specific tasks (meaning that it is a task-based pattern). Thus,
the multitask-based ARM paradigm improves the covering capacity of the association rules.
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The second factor is the task relatedness. In multitask-based ARM, we need to consider that all the
tasks are associated with each other and share a common set of rules. The task relationship is based on the
understanding of how different tasks are related, which will be encoded into a set of association rules. The way
to learn the relationship is to find hidden rules between these tasks.

Figure 1 shows a graphical representation of the proposed multitask-based ARM approach. First, data
partitioning is performed by horizontally splitting the set of records into m partitions according to their task
information, such that the combination of the partitions is the whole dataset. After that, the m sets of single-
task rules are obtained from m tasks’ data and then merged by majority voting to generate the set of multitask
rules. The multitask rules obtained following the majority voting procedure approximate the original rules that
can be possibly mined on the entire dataset. The check that the same single-task rule occurs more than m/2
times in different task partitions is based on an equivalence test between two rules. Single-task rules occurring
in less than m/2 partitions are filtered out.

Task mTask 2Task 1

...T1 Data

ARM ...

Single -Task 
Rules

...

Majority Voting

Multitask 
Rules

Dataset

Single -Task 
Rules

Single -Task 
Rules

ARM ARM

T2 Data Tm Data

Figure 1. Illustration of the proposed multitask-based ARM approach.

The multitask-based ARM generates a set of global rules for various tasks associated with a problem
under consideration by using the knowledge discovery between tasks. It is important to emphasize that the
proposed approach finds both task-dependent (single-task) and task-related (multitask) rules available in the
data. In our approach, multitask-based association rules are automatically generated without the need for any
domain knowledge.

3.3. Example illustrating the multitask-based ARM approach

This section illustrates the proposed multitask-based ARM approach by using an example. The multitask-
based ARM approach focuses on different objective tasks, as we will demonstrate in the example here. Whereas
traditional ARM and P/D ARM are performed on data records without any task information (left part of
Table 2), MTARM is applied on task-related data (right part of Table 2). Here, there are 15 records with their
unique identifiers and 4 distinct items I = {A,B,C,E} . Suppose there are three tasks t1 , t2 , and t3 such as
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T = {t1, t2, t3} , and each of them has its own dataset D1 , D2 , and D3 , respectively, where D = D1 ∪ D2

∪D3 . The minimum support is defined as 0.4 or 40% in percentage or 6 out of 15 records, whereas the minimum
confidence is specified as 0.65.

Table 2. Example dataset for ARM and P/D ARM (left), and data samples for MTARM (right).

ID Transactions
1 X,Y,Z
2 X,Y,Z,W
3 Z,W
4 X,Z
5 X,Y
6 X,Y
7 X,Y,Z
8 X,Z
9 X,Y,Z
10 Y
11 Y
12 X,Y,W
13 X,Z
14 X,Y,W
15 X,Y,Z

ID Transactions Task
1 X,Y,Z t1
2 X,Y,Z,W t1
3 Z,W t1
4 X,Z t1
5 X,Y t1
6 X,Y t2
7 X,Y,Z t2
8 X,Z t2
9 X,Y,Z t2
10 Y t2
11 Y t3
12 X,Y,W t3
13 X,Z t3
14 X,Y,W t3
15 X,Y,Z t3

Figure 2 shows an example to illustrate the differences between ARM, MT-ARM, and P/D ARM rules
discovered from the dataset given in Table 2 with a minimum support of 0.4 and a minimum confidence of 0.65.

The ARM part in Figure 2 shows the rules obtained by a traditional ARM algorithm. The algo-
rithm uses only data transactions without considering any task information. If a rule contains k items,
it can be called a k-item rule. For instance, {X → Y } is an example of a two-item rule. The fre-
quent one-item rules mined from the data were ({X} , {Y } , {Z}) , whereas the frequent two-item rules were
({X → Y } , {X → Z} , {Y → X} , {Z → X}) . Totally, seven frequent rules were discovered here. For example,
the rule “X → Y S = 0.6 C = 0.75 ,” where S represents support and C stands for confidence, specifies the
coexistence of items “X ” and “Y ” in the transactions such that 60% of all transactions contain both X and
Y and that 75% of all transactions that contain X also contain Y . Totally, the number of rules that were
discovered in this part was only seven.

The P/D ARM part in Figure 2 shows the rules obtained by executing a count distribution-based parallel
ARM algorithm on multiple nodes (i.e. four processors). The algorithm discovers the same rules as those of the
traditional ARM algorithms, but in a shorter time by using multiple nodes. A MapReduce programming model
can be used for processing, which consists of two main parts, namely map and reduce. The mapper provides
parallelization to a system by computing the frequency of each item set in the subdataset and generates local
key/value pairs. The reducer sums up the local outputs of the mappers and generates the global counts of the
item sets at each iteration. When k -frequent item sets are found at the k th phase, (k − 1) -frequent item sets
are provided to the mappers by message passing.
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Figure 2. Example illustrating the proposed multitask-based ARM approach.

The “single-task rules” parts in the MTARM part of Figure 2 show the frequent rules obtained for each
task. Because the problem can be divided into T different tasks, our algorithm initially considers T tasks as
independent tasks and generates T sets of single-task rules, one for each task. In this phase, the algorithm uses
the local data of a particular task and finds the rules for each task individually. In this example, the first five
records belong to the first task (t1 ), and, therefore, single-task rules for t1 will be generated from this part of
the data. Consider the single-task rule “XY → Z S = 0.4 C = 0.67” for task 1. Because the support count
for {X,Y, Z} is 2 and the total number of transactions is 5, the support value of the rule is 2 / 5 = 0.4. The
confidence value of the rule is obtained by dividing the support count for {X,Y, Z} by the support count for
{X,Y } . Because there are three transactions that contain X and Y , the confidence for this rule is 2 / 3 =
0.67.

The “multi-task rules” part in the MTARM part of Figure 2 shows the frequent rules obtained by
incorporating the useful information from all tasks along with its own. During the process of aggregating all
local rules, all the participating tasks are considered. Let us discover the rules that appear two or more times in
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the various partitions. We obtain single-task rules with a count of at least 2. In other words, single-task rules
occurring in only one partition are filtered out. An example of a multitask rule is “Y Z → X S = 0.4 C = 1

{1, 2} ,” which describes the relationships between three items, namely X , Y , and Z . In this rule, {1, 2} means
that this pattern is found in the first and second partitions (task 1 and task 2, respectively). In the same rule,
S = 0.4 and C = 1 indicate the global support and confidence, respectively, which are obtained by selecting
the minimum values computed on the partitions. For instance, the global support value of the rule “Z → X ” is
0.4 because its support values in the partitions are {0.6, 0.6, and 0.4}, and the minimum value is 0.4. Totally,
11 frequent multitask rules were discovered here, whereas the standard ARM algorithm found only seven rules.
Therefore, the knowledge discovery from all the tasks helps to increase the covering capacity of association rules.
Thus, the multitask-based ARM approach has been successfully applied on real-world multitask problems.

3.4. MTARM: Multitask association rule miner
This paper proposes a novel algorithm, named multitask association rule miner (MTARM), that tends to discover
rules by jointly finding shared information across different related tasks. Our algorithm consists of iterations
on two subsequent local and global steps: local frequency computation and majority voting-based aggregation.
The algorithm first divides the entire dataset into data subsets according to the task information and then
calculates the frequencies in the data of each task separately; afterwards, it aggregates local information and
obtains globally frequent patterns in an effective way. Processing local rules to discover global ones requires a
way of combining distinct sets of patterns into a single set and finding global support and confidence values.

The pseudocode of the MTARM approach, which has three main steps, is given in Algorithm 1. First,
it scans the dataset D to horizontally divide it into m sets according to m different tasks, such that
D1, D2, ..., Dm . Therefore, each local dataset contains a set of task-related patterns. Second, the algorithm
generates single-task rules (STRi ) for each task individually, whose support and confidence values are greater
than the MinSup and MinConf thresholds, respectively, by running a standard ARM algorithm at the ith data
partition (Di ). The next phase is mainly an aggregation phase, in which the algorithm combines local frequen-
cies using a majority voting mechanism and generates global frequencies. Finally, multitask rules are obtained
by intersecting the single-task rules in different task partitions. A local frequent rule becomes globally frequent
if it occurs in more than half of the partitions. At the same time, the local rules are scanned to determine the
global support and confidence values by finding the minimum values, respectively.

The main aim is to find the global rules that should be locally frequent in at least m/2 data parts, where
m is the number of tasks. In the case where m is set to 1, this guarantees that the local solution is equal to
the global solution. However, a merge step with m > 1 may generate several false positives, i.e. rules that are
locally frequent but are globally infrequent. Hence, the value of m is an important parameter in determining
globally frequent rules. The combine stage also tries to approximate the support and confidence values for the
global rules by selecting the minimum support and confidence values of the local rules.

The time complexity of the proposed MTARM approach, in the worst case, is related to the number of
tasks, number of items, number of records, average length of the records, and time taken to merge single-task
rules. It is given by O(m.T (n/m) + s2) , where m is the number of tasks, n is the number of records, T

represents the time required for the execution of a standard ARM algorithm on n/m records, and s is the
number of single-task rules, and, therefore, s2 represents the time needed for the merge operation. The overall
execution time of the algorithm is dependent on the runtime of the preferred ARM algorithm (i.e. Apriori,
FP-growth, and Eclat). For example, the time complexity of the Apriori algorithm is O(n.q.w) , where n is the
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Algorithm 1 MTARM: Multitask association rule.
Inputs:
D: the dataset that contains a set of records
n: the number of records in the dataset D
T : a set of tasks such that T = {t1, t2, ..., tm}
m: the number of tasks
MinSup: minimum support value
MinConf : minimum confidence value

Output:
MTR: A list of multitask rules

Begin:
//Horizontally partition D into m sets
for i = 1 to n do

for j = 1 to m do
if (Ri belongs to Tj ) then

Dj .Add(Ri )
end if

end for
end for
//Discover single-task rules, STR
for i = 1 to m do

STRi = ARM_Algorithm(Di , MinSup, MinConf )
STR = STR U STRi

end for
//Find multitask rules, MTR
for i = 1 to STR.Length do

count = 0
rule=STRi .Sort()
for j = 1 to STRj .Length do

if (rule==STRj .Sort()) then
count++

end if
end for
if (count > m/2) then

MTR .Add(STRi )
MTR .Support = Min(STRi .Support)
MTR .Confidence = Min(STRi .Confidence)

end if
end for
End Algorithm

number of records, q = 2d − 1 is the total item set count, d is the unique item count, and w is the maximum
record length [34]. On the other hand, the time complexity of the FP-growth algorithm is O(n.d2) , where n is
the number of records and d is the number of unique items [35].

3.5. Advantages of MTARM

This paper introduces the concepts of single- and multitask rules and demonstrates the efficient implementation
of the MTARM approach to discover patterns in the datasets. MTARM discovers global rules by combining
the local rules obtained for each task. It has many advantages, including suitability for multitask problems,
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convenience for parallel processing, easy implementation, scalability, acceptable overall performance, and high
privacy protection.

•Task-based model: Standard ARM algorithms fail to discover rules for multitask problems. They do
not consider task-oriented information when finding association rules, and they ignore the correlation among
the tasks. However, in some contexts, task-based patterns may be more meaningful than all the other ones.
For example, two items may be seldom associated with the entire dataset; however, they can frequently exist
together in some task-based data. Our algorithm jointly finds association rules under the concept of multitask
learning. Therefore, it is particularly helpful when the tasks share important common information.

Recently, multitask learning has attracted attention because of the increased need for a simple and
convenient interface in multiple domains. For example, let us take a school dataset [36–38] that consists of the
examination records of 15,362 students from 139 secondary schools in London. The traditional ARM algorithm
finds association rules from the whole dataset to analyze the general performance of all students together.
However, MTARM discovers both local performances of students belonging to a specific school (single-task
rules) and global effectiveness of schools (multitask rules), if each school corresponds to a task and, thus, there
are 139 different tasks in total. The MTARM applies a majority voting mechanism to jointly consider the
relationships among multiple tasks; therefore, it can be able to detect any intertask rules between domains and
find more meaningful rules.

•Parallel processing: One of the main advantages of MTARM is that it may be executed in parallel.
Because the dataset is filtered according to tasks, multitask rule computation may be parallelized and distributed
on m nodes of a grid platform, i.e. one node for each task. In this way, MTARM can generate m parallel
executions at the same time and retrieve single-task rules that are frequent in the data partitions. Therefore,
significant gains may be possible by using a large number of processors. In parallel execution, data with m tasks
are not divided into n parts (m ̸= n); instead, they are filtered according to the tasks and, therefore, m data
partitions should always be generated for m tasks. In this way, data are semantically divided into interrelated
instances. Each task is identified and associated with a different role, subject, milestone, or subgoal; hence,
all tasks can be executed independently. In the literature, there are several parallel ARM studies that have
been conducted to solve the problem of discovering association rules from a large amount of data [26–30].
In one of these studies [29], three parallel algorithms, which assume a shared-nothing architecture using the
Apriori algorithm, were proposed and executed on a parallelized system to evaluate their performances. In
another study [28], the authors proposed a multiple local frequent pattern tree algorithm that was developed
for parallelizing the FP-tree algorithm. In their paper, they stated that their proposed approach overcomes
the lack of Apriori-based parallel ARM algorithms. Mueller [26] compared parallel ARM algorithms (PEAR
and PPAR) depending on the different numbers of processors. The present studies in the literature show that
the parallel implementation of ARM is approximately linearly proportional to the number of processors, and,
therefore, it provides speedups for extremely large datasets compared with traditional ARM studies. Therefore,
it is possible to provide similar performance for MTARM with its parallel version.

•Easy implementation: Because of the efficiency of multitask learning, various single-task approaches
have been extended to multitask approaches, including k -nearest neighbors and naive Bayes methods. However,
to consider the intertask relations, standard algorithms generally require modifications (nontrivial changes) in
the training phase. In contrast, the key feature of our approach is that there is no need to make any modification
to the underlying ARM algorithm. The main idea of the MTARM approach is simply to transform a multitask
problem into a series of single-task problems. Therefore, MTARM has advantages in terms of implementation.
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•Scalability: A new task can be easily inserted into the system without any modification. The results
obtained from other tasks remain the same.

•High overall performance: MTARM only needs to scan small partitions of the dataset to generate
all the single-task rules, and, therefore, it can perform operations with an adequate performance. This allows
for good flexibility when generating task-based rules while avoiding the need for large amounts of data for
modeling.

•Privacy: Discovery of hidden rules may often disclose some sensitive information. MTARM discovers
local rules for each task individually like a distributed manner. Because it stores partial information at different
partitions, data privacy is provided by the method itself.

4. Experimental study

The proposed MTARM method is a general approach that aims to jointly discover rules by considering multiple
tasks. Therefore, this approach is implemented by selecting a base algorithm. In the experiments of this study,
three well-known ARM algorithms (Apriori, FP-Growth, and Eclat) were chosen as base miners of MTARM
separately, referred to as MT-Apriori, MT-FP-Growth, and MT-Eclat. Unlike the traditional versions of them,
these algorithms can discover more knowledge by jointly analyzing all tasks and by considering the relations
between the tasks.

This section presents the experimental results of the proposed algorithm (MTARM) on four benchmark
datasets, namely the School, Solar Flare, Entree Chicago recommendation, and Coil 2000 datasets. These
datasets are publicly available and have been previously used in multitask problems [36–41].

4.1. Dataset description

In this study, experiments were performed on various benchmark multitask learning datasets, namely the School
Data, Solar Flare, Entree Chicago Recommendation, and Coil 2000 datasets.

School Dataset1: This dataset has been extensively utilized for appraising many multitask learning
techniques [36–38]. The data came from the Inner London Education Authority (ILEA). The dataset consists
of the examination records of 15,362 students from 139 secondary schools during the years 1985, 1986, and 1987.
It has been used to study the effectiveness of schools and predict the performances of students belonging to a
specific school. Each record consists of the task information, eight features, and the corresponding examination
scores. The features are the year of examination, three student-specific features (gender, verbal reasoning (VR)
band, and ethnic group), and four school-specific features (percentage of students eligible for free school meals,
percentage of students in the VR band, school gender, and school denomination). Here, each school corresponds
to a task; thus, there are 139 different tasks in total.

Solar Flare (SF) Dataset2: This dataset is publicly available and has also been used in the context
of multitarget learning [39, 40]. It is concerned with how often solar flares occur in a 24-h period on the basis
of the observed characteristics of the Sun. This dataset has nine feature variables describing the active regions
on the Sun, three potential types of solar flare (common, moderate, and severe), and six task codes (B, C, D,
E, F, and H).

1Goldstein H (1991). School Dataset [online]. Website http://www.bristol.ac.uk/cmm/learning/support/datasets/ [accessed
17 February 2020].

2UCI (1989). Solar Flare Dataset [online]. Website http://archive.ics.uci.edu/ml/datasets/solar+flare [accessed 17
February 2020].
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Entree Chicago Recommendation (ECR) Dataset3: This dataset, which is publicly available for
noncommercial use, contains a record of user interactions with the Entree Chicago restaurant recommender
system on the Web over a 2.5-year period. The system recommends restaurants to users according to restaurant
features such as cuisine, price, style, glamor, and atmosphere. The dataset consists of eight parts (tasks), each
of which contains restaurant features in a region (e.g., Atlanta, Los Angeles, and New Orleans) of the USA.
The combined dataset consists of 4160 transactions, each of which is a subset of 256 feature codes, where
each feature code represents a feature of the restaurant, e.g., “Mexican,” “romantic,” “good decor,” “excellent
service,” “dancing,” and “parking.”

Insurance Company (Coil 2000) Dataset4: This dataset has been previously used in multitask
learning [41]. It contains information on customers of an insurance company. It consists of 5822 customer
records, and each record consists of 86 attributes, containing sociodemographic data (attributes 1–43) and
product ownership (attributes 44–86), including the information of whether or not the customers have a caravan
insurance policy. Here, we followed the experimental setup used in [41], and out of the 86 variables, we used
6 categorical features, leaving the remaining 80 features as the joint dataset. Our target variables consisted of
attributes 1, 4, 5, 6, 44, and 86, which respectively indicate the customer subtypes, the customer age ranges,
the customer main type, a discretized percentage of Roman Catholics in that area, the contribution from a
third-party insurance, and a binary value that indicates whether the customer has a caravan insurance policy
or not. The tasks have a different number of output labels, although they share the same input data.

Before the ARM process, the datasets were generally passed through a data preprocessing step. The data
preprocessing step is one of the most essential steps of data mining, which makes the data suitable (ready) for
the input demands of ARM algorithms. It mainly consists of five substeps: data cleaning, data integration,
data transformation, data reduction, and data discretization. Data cleaning is an essential step to improve
data quality by performing various operations such as filling missing values, determining outliers, and fixing
inconsistent data. Data integration is the process of combining data residing at different sources and representing
them in a single format. In this study, the datasets obtained from different sources were used separately. Data
transformation is the process of transforming the data into the format that is required by the ARM algorithm;
the data undergo normalization, generalization, and aggregation operations. Data reduction is the simplification
of the complexity of the data by removing irrelevant attributes and focusing on meaningful ones. In this study,
the numerical attributes in the Coil 2000 dataset were eliminated in the data reduction step, as described in
[41]. Data discretization is the process whereby continuous data are split into discrete intervals, where each
interval is mapped into a partition label. ARM algorithms require categorical data, as continuous values cannot
be considered in finding relations. Therefore, ARM algorithms cannot directly deal with continuous values.
For this reason, in our study, the continuous values in the datasets were converted into discrete values using
a discretization method. The attributes that had continuous values were discretized into three bins using an
equal frequency technique; therefore, the number of instances in each bin was approximately equal.

The basic characteristics of the datasets used in this study are given in Table 3. These are the number
of instances, attributes, and tasks, as well as the domains they belong to. We used four datasets from different
domains to demonstrate that our algorithm automatically and efficiently generates all rules in an efficient manner
without prior domain knowledge.

3UCI (2000). ECR Dataset [online]. Website https://archive.ics.uci.edu/ml/datasets/Entree+Chicago+Recommendation+
Data [accessed 17 February 2020].

4UCI (2000). Coil Data [online]. Website https://archive.ics.uci.edu/ml/datasets/Insurance+Company+Benchmark+(COIL+
2000) [accessed 17 February 2020].
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Table 3. Basic characteristics of the datasets.

Dataset No. of instances No. of attributes No. of tasks Domain
School 15,362 10 139 Education
Solar Flare (SF) 1066 13 6 Astronomy
ECR 4160 irregular 8 Food
Coil 2000 5822 6 6 Insurance

4.2. Experimental results
This section describes in detail the experiments performed with the proposed MTARM approach. We imple-
mented the MTARM approach in the C# programming language by using the libraries provided by Borgelt [42].
We ran the algorithm with six parameters: −s and −c to set the minimum support and confidence, respectively;
−S to set maximum support to 100; −tr to find the association rules; −o to use the original definition of the
support of a rule (if-part and then-part); and −v to acquire a preferred output format. As recommended in
[42], we produced association rules with a single item in the consequent (also called the “then-part”). We tested
the algorithm on four benchmark multitask learning datasets described in the previous section. Experiments
were performed on a desktop computer with an Intel Core i7 Duo 2.85-GHz processor and 8 GB of memory. In
each experiment, the algorithms were executed 10 times and the average values are reported.

Using the proposed MTARM approach, we conducted six experiments to investigate the following: (i)
the relation between the number of frequent rules and the minimum support settings, (ii) the distribution of
k -item multitask rules, (iii) the comparison between single-task and multitask rules, (iv) the relation between
execution time and number of tasks, (v) the relation between execution time and minimum support settings,
and (vi) the relation between the execution times of the MT-Eclat and ARM algorithms (Eclat and SaM). All
standard ARM algorithms (Apriori, FP-growth, and Eclat) discovered the same rules from the utilized dataset,
but in different ways and at different execution times. Therefore, in the first four experiments, the Apriori
algorithm was only used as a base miner in both the traditional ARM and the proposed MTARM approach. In
the fifth experiment, all of them were compared in terms of running time, and in the last experiment, the Eclat
and SaM algorithms were preferred for the comparison of execution times.

In the first experiment, we compared our proposed MTARM with the standard ARM using the Apriori
algorithm. The relation between the number of frequent multitask rules and the support settings was determined
by varying the minimum support thresholds with the same minimum confidence value. Figure 3 shows the
comparative results obtained by the multitask and standard (single-task) ARM algorithms for the datasets at
various minimum support (MinSup) values. The results clearly indicate that, for a given MinSup, MTARM
always discovered more frequent rules than those of the conventional ARM algorithm for all datasets. For
example, when MinSup was 0.25, MTARM discovered 28 frequent rules, whereas the standard ARM found 13
rules for the ECR dataset. In particular, MTARM outperformed the standard ARM by a factor of 2 to 3 when
MinSup was less than 0.25 for the same dataset. In this respect, the single-task and multitask algorithms had
comparable effects on the number of rules. The experiments herein revealed that it is possible to find more
potential association rules when the task concept is considered. If the records related to multiple tasks are
considered, then some missing rules can be detected.

As shown in Figure 3, the number of patterns decreases virtually exponentially when the minimum
support value increases. When the minimum support threshold decreases, the single-task approach can discover
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Figure 3. Comparison between MTARM and standard ARM algorithms in terms of the number of frequent rules
discovered.

enough knowledge from the data and, therefore, the multitask approach can obtain more rules. Thus, we can
say that we can obtain a large amount of frequent rules by executing the ARM algorithm with small support
values. For this reason, higher MinSup thresholds can be set to mine valuable frequent rules.

The MTARM approach performed better in finding patterns, especially when MinSup was low. This
effect is significant as most frequent rules were found with small MinSup and MinConf values. The main reason
for this result is that MTARM scans small partitions of the dataset to generate all the single-task rules, and,
therefore, it can discover task-oriented rules with an adequate performance. In addition, MTARM can discover
association rules that are frequent in some tasks but not throughout the entire dataset.

In the second experiment, the proposed MTARM approach with the Apriori algorithm was run on the
Solar Flare dataset with support values ranging between 0.4 and 0.9 in increments of 0.05. Frequent multitask
rules were obtained by the items whose support and confidence values were equal to or greater than the threshold
level. However, the other items that had lower support and confidence values than the threshold level were
discarded. Table 4 presents the numbers of obtained patterns separately, varying from one-item to seven-item
rules. The acquired results show that the number of rules obtained from the dataset was high when the minimum
support threshold was determined to be low, i.e. the number of four-item rules was 1180 when MinSup = 0.4.
Nevertheless, the algorithm generated a comprehensive number of rules, i.e. the number of four-item rules was
16 when MinSup = 0.9. In this way, the collection of frequent rules can be compressed in a more manageable
size.
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Table 4. Number of k -item multitask rules with different support thresholds.

Support Number of k-item multitask rules
k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

0.4 152 525 1040 1180 774 273 40
0.45 140 432 776 810 498 168 24
0.5 88 249 436 460 294 105 16
0.55 79 231 420 455 294 105 16
0.6 79 228 392 370 180 35 0
0.65 77 210 340 305 144 28 0
0.7 64 159 232 185 78 14 0
0.75 62 147 204 150 54 7 0
0.8 58 120 140 80 18 0 0
0.85 58 117 128 65 12 0 0
0.9 36 57 48 16 0 0 0

Figure 4 plots the number of multitask rules according to their lengths, ranging from one to seven, for
the Solar Flare dataset, with MinSup = 0.5 and MinConf = 0.5. The figure shows the experimental results for
different rule lengths: one-item, two-item, three-item rule, etc. The four-item rule was found to have the greatest
number of patterns. It can be observed that the numbers of the frequent two-item and five-item multitask rules
are close to each other. As shown in Figure 4, the MTARM approach generally constructed a form quite similar
to the bell curve. However, the skewness and kurtosis of the curve can change from dataset to dataset.
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Figure 4. Distribution of the number of multitask rules according to their lengths.

In the third experiment, we compared the number of single-task and multitask rules. The MTARM
approach with the Apriori algorithm was run on the Coil 2000 dataset with a support value ranging between 0.1
and 0.8 in increments of 0.1. Table 5 presents the changes in the number of frequent rules per task. According
to the results, we can say that MTARM is particularly helpful when the tasks share significant commonalities.

In the fourth experiment, the proposed MTARM approach with the Apriori algorithm was executed on
the dataset with varying numbers of tasks. Figures 5 and 6 show the efficiency of the algorithm when we again
set the minimum support and confidence thresholds to 0.5. As expected, the execution times increased along
with the number of tasks. For example, the School dataset contains 15,362 records, each of which belongs to one
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Table 5. Number of frequent rules per task for the Coil 2000 dataset.

Support Number of frequent rules per task
Task1 Task2 Task3 Task4 Task5 Task6 Multitask

0.1 174 76 92 90 106 285 61
0.2 89 26 27 29 29 73 23
0.3 48 15 17 15 16 50 15
0.4 26 8 7 7 5 21 8
0.5 23 7 5 7 4 12 7
0.6 4 1 2 4 1 7 1
0.7 1 1 1 1 1 5 1
0.8 1 1 1 1 1 4 1

of the 139 tasks, and, therefore, each task has about 110 records. According to Figure 5, a subset of the School
dataset that includes only 40 tasks (4400 records) was executed in 4 s, whereas another subset that includes 100
tasks (11,000 records) was executed in 9 s. If we increase the number of tasks, the dataset will contain more
records and, therefore, the execution time will also increase. The number of instances in the data of each task
is also important because it greatly affects the processing time. The empirical results showed that the proposed
MTARM approach requires a computation time that grows linearly with the number of tasks. Therefore, the
computation time will still be reasonable if we consider a large number of tasks.
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In the fifth experiment, the relation between execution time and support settings was determined by
varying the thresholds. In the first four experiments, we ran the MTARM approach with the FP-growth
algorithm [9] as a basic rule generator on the datasets horizontally partitioned according to the tasks; the
latter algorithm was selected because of its popularity and efficiency. However, in the last experiment, we used
alternative ARM algorithms such as Apriori [8] or Eclat [10] to compare with each other. Figure 7 presents
the results obtained for the datasets with varying minimum support values. Four main points emerge from this
figure.

� First, in the experiments, the running time increased as the minimum support value decreased. Lower
thresholds yielded more multitask rules. Therefore, the minimum support and confidence values were the main
factors that affected the execution time.
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Figure 7. Comparison between the multitask-based ARM algorithms in terms of computational costs.

� Another important factor that affected the execution time was the total number of records in the dataset.
For example, because the School dataset is larger than the other datasets, the time required to find multitask
rules from it is also higher.

� The number of tasks also affected the running time of the multitask-oriented ARM algorithm, such that
the execution times increased along with the number of tasks. At each different number of tasks, the dataset
was filtered to include only records related to these tasks. For example, the School dataset was first filtered with
the T1 task (110 records), then filtered with the T1 and T2 tasks (220 records), and then filtered according to
these three tasks (330 records), etc. Thus, as the number of tasks increases, the subdataset size also increases.
Therefore, we can say that the multitask-oriented ARM algorithm runs faster with a small number of tasks.

� Finally, the ARM algorithm selected to find frequent rules also affected the execution time. Figure 3
compares the multitask-based FP-growth, Apriori, and Eclat algorithms. It is obvious that MT-Eclat slightly
outperforms the other two methods. The MT-FP-growth algorithm has a comparable speed with that of
MT-Eclat on all the datasets and is much faster than the MT-Apriori algorithm. As long as the minimum
support threshold decreases, the running time of all multiple task approaches increases slightly. Nevertheless,
the execution time of MT-Apriori increases more greatly.

In the last experiment, parallel versions of the MTARM approach with the Eclat (MT-Eclat) and ARM
algorithms (Eclat and SaM) were executed on the Coil 2000, Solar Flare, and ECR datasets. The corresponding
execution times are listed in Table 6. The results indicated that, when the number of tasks increased, multitask
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Table 6. Comparison between the parallel versions of the algorithms in terms of execution times.

Execution times of the parallel versions of the algorithms (seconds)
Coil 2000 Solar Flare School ECR

S MT-Eclat Eclat SaM MT-Eclat Eclat SaM MT-Eclat Eclat SaM MT-Eclat Eclat SaM
0.4 0.365 0.179 0.223 0.378 0.247 0.258 4.879 0.274 0.287 0.431 0.227 0.235
0.5 0.359 0.170 0.217 0.367 0.238 0.245 4.723 0.264 0.272 0.425 0.215 0.220
0.6 0.349 0.162 0.189 0.360 0.221 0.231 4.685 0.256 0.267 0.419 0.186 0.203
0.7 0.341 0.179 0.186 0.355 0.200 0.223 4.660 0.236 0.258 0.396 0.183 0.188
0.8 0.335 0.177 0.174 0.340 0.197 0.215 4.554 0.223 0.247 0.385 0.173 0.185
0.9 0.327 0.162 0.171 0.331 0.181 0.193 4.330 0.198 0.211 0.376 0.169 0.177

mining led to a more time-consuming process. Although the execution times were slightly lower in the parallel
versions of the traditional algorithms, task-related data should be processed by considering the task information
in terms of semantic analysis.

Table 7 shows some examples of the multitask association rules discovered by the MTARM approach from
the School, Solar Flare, ECR, and Coil 2000 datasets. The number of items in the rule (the length of the rule)
is given in the first column of the table. For example, the rule { vrBandOfStudent = 3 → schoolDenomination
= England } is a frequent two-item multitask rule discovered from the School dataset. The results express the
relationships among the features in the datasets. For example, the rule { examScore = high gender = female
→ ethnic = ESWI } indicates that 10.17% of all students were female; were born in England, Scotland, Wales,
or Ireland (ESWI); and had high exam scores.

Table 7. Examples of the multitask association rules generated by MTARM.

Length Multitask rules S (%) C (%) Dataset (%)
2-item { vrBandOfStudent = 3 → schoolDenomination = maintained} 37.5 100 School
3-item { examScore = high gender = female → ethnic = ESWI } 10.17 32.43 School
2-item { Cflare = 0 → activity = reduced } 60.25 82.76 Solar Flare
3-item { Mflare = 0 previousFlareActivity = 1 → Xflare = 0 } 76.84 97.37 Solar Flare
4-item { areaLarge ≤ 5 historicallyComplex = 1

previousFlareActivity = 1 → Cflare = 0 }
62.56 86.84 Solar Flare

5-item { area = small areaLarge ≤ 5 Mflare = 0
previousFlareActivity = 1 → Xflare = 0 }

67.44 96.67 Solar Flare

6-item { areaLarg ≤ 5 complex = no Xflare = 0
previousFlareActivity = 1 spotDistribution = I → area = small }

40 81.48 Solar Flare

7-item { area = small complex = no areaLarge ≤ 5
evolution = nogrowth Mflare = 0 Xflare = 0 →previousFlareActivity = 1 }

40 91.3 Solar Flare

2-item { 075 → 250 } 30.92 61.97 ECR
3-item { 250 192 → 191 } 24.89 93.16 ECR
4-item { 053 075 250 → 205} 11.64 89.47 ECR
5-item { 075 205 191 250 → 192} 9.59 79.25 ECR
2-item { romanCatholic = 0 → caravan = 0 } 49.17 93.53 Coil 2000
3-item { contribution = 2 romanCatholic = 0 → caravan = 0 } 14.87 88.89 Coil 2000
4-item { customerMainType = 8 customerSubType = 33

romanCatholic = 0 → caravan = 0 }
8.95 91.43 Coil 2000
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5. Conclusion and future works
Standard ARM algorithms discover rules from an entire dataset, they do not perform task-based searches, and
they ignore intertask relations. This paper proposes a novel algorithm, named multitask association rule miner
(MTARM), that tends to discover rules by jointly considering multiple tasks. It also introduces two novel
concepts: single-task rule and multitask rule. The proposed MTARM approach consists of two phases. In the
first phase, the algorithm discovers highly frequent local rules (single-task rules) for each task individually, and
in the second phase, these local rules are combined to produce the global result (multitask rules).

Experiments were conducted on several real-world multitask learning datasets. Experimental results
revealed that our novel algorithm discovers more information than that of traditional ARM algorithms by
considering the relationships among multiple tasks available. MTARM can discover association rules that are
frequent in some tasks but not throughout the entire dataset. Therefore, it can be effectively used in real-world
applications for knowledge discovery when the task concept is considered.

Discovering association rules on a huge amount of data is a long and time-consuming process because
it gives a huge number of different rules. This process also requires a significant storage capacity. To handle
this challenge, we can implement closed and maximal versions of MTARM in future research to present concise
representations of all association rules. Moreover, mining multitask-based sequential patterns can also be one of
the future works. Therefore, multitask-based patterns can be discovered by considering the sequential ordering
between items.
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