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Abstract: Evaluating low probability of intercept (LPI) performance is the first step to design parameters and arrange
radar resources. In the evaluation process it is hard to rely on the intercept receiver’s working scenarios and operating
parameters. On the other hand, indicators that affect the LPI performance of radiating side are difficult to consider
comprehensively. Thus, building an effective evaluation system is crucial. This research considers the natural parameters
of radar extracted from a radiating scenario. Subsequently, a number of criteria are selected, including spatial, time,
frequency domain, polarization status, energy status, and waveform features. A multidomain radar LPI performance
evaluation method is established, which is based on Pythagorean hesitant fuzzy sets (PHFSs). The paper is motivated
by other scholars’ research on fuzzy set theories and derives correlation coefficients as well as their properties for PHFSs.
Concretely speaking, this study takes account of membership degree, nonmembership degree, and the hesitation of
decision makers, so it integrates the benefits of correlation coefficients of hesitant fuzzy sets with Pythagorean fuzzy
sets. Meanwhile, weighted correlation coefficients of PHFSs and their properties are proposed in detail. This provides
a feasible approach for evaluation problems. For the sake of application, this article gives the specific LPI performance
evaluation process. Finally, a novel method is presented to evaluate four fire control radars’ LPI performances and is
proved to be viable.

Key words: Correlation coefficients, Pythagorean hesitant fuzzy sets, low probability of interception, multidomain
evaluation

1. Introduction
With the development of modern warfare, the low probability of intercept (LPI) performance of radar has become
more and more important [1]. Accurately evaluating the radar stealth performance of adversaries in complex
battlefields will guide real-time decision making. Therefore, establishing a reasonable LPI evaluation system
is the premise of radar low intercept performance design [2]. At present, the radar LPI evaluation methods
mainly concentrate on calculating interception factors and probabilities. The interception factors proposed by
Schleher use distance radio as a measure of the low intercept performance of radars [3]. According to the spatial
characteristics of radar signals, CEVR and SEVR used the radius of a circular area and sphere diameter as
the vulnerable area, respectively [4]. Shi et al. used intercept probability to evaluate LPI performance [5]. In
addition, scholars also analyzed different indicators that affect radar LPI performance. Li et al. divided the
LPI evaluation index system into three aspects, which include covering, detection, and interception layers [6].
Wang et al. took advantage of mutual information to evaluate radar LPI performance [7]. However, the above
∗Correspondence: 425253199@qq.com
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studies still have limitations because they require accurate radar signal real-time data and do not involve an
evaluation algorithm. They should be improved.

This study proposes a LPI performance evaluation system based on correlation coefficients of Pythagorean
hesitant fuzzy sets (PHFSs). Considering several aspects that may pose threats to radar stealth performance,
the paper uses a multidomain evaluation method, which gets rid of the “intercepting-receiving” scenario. This
method has six indices, including spatial, time, frequency, polarization status, energy status, and waveform
domains.

Correlation is often used in evaluation problems. According to correlation analysis, the interrelationship of
alternatives will be determined; that is to say, the correlation coefficient reflects the linear relationship between
two variables. However, decision makers often need to make judgments based on uncertain and imprecise
information. Therefore, the correlation coefficient extends into fuzzy set theory. In the past decade, hesitant
fuzzy sets (HFSs) made great progress, which were first proposed by Torra and widely applied [8]. By using
HFSs, Xu and Xia initially proposed formulas for the correlation coefficients [9]. Chen et al. extended the
correlation coefficients of HFSs [10]. Later, Liao et al. proposed an improved model corresponding to the
above research [11]. At present, correlation analysis for HFSs is widely used in clustering analysis, multiple
attribute decision making, and evaluation problems, but there are some drawbacks of those methods introduced
above. HFSs only contain the information about membership degree. Therefore, Yager [12, 13] introduced the
Pythagorean membership grades, based on which they proposed the Pythagorean fuzzy set (PFS) and its basic
operational laws. A PFS consists of the membership degree and the nonmembership degree. Furthermore, the
correlation coefficients for PFSs were defined in [14].

More recently, several authors separately derived the PHFS [15–17]. Their research combined HFS with
PFS for introducing hesitation to membership degree and nonmembership degree, i.e. the subsets of PHFSs
may have different crisp values. They also paid attention to the basic operation of PHFSs, such as aggregation
operators and practical applications. As discussed above, this paper proposes the correlation coefficients of
Pythagorean hesitant fuzzy sets and derives their properties. The method takes account of membership,
nonmembership, and hesitation information, which is suitable to evaluate the radar LPI performance. In
this article, four fire control radars from different countries are selected as examples. It was found that the
assessment results are in line with expert expectations. We also analyzed the impact of weight vector changes
on the evaluation results. The unique innovations and contributions of this article include:

·Extracting parameters from a radiating scenario and concluding the indices that influence radar LPI
performance comprehensively.

·Proposing the correlation coefficients of PHFSs and proving their properties.
·Integrating a multidomain evaluation system and correlation coefficients of PHFSs to solve the radar

LPI performance evaluation problem.
·The feasibility of the proposed method is demonstrated by using fire control radars as an example.
The present paper is organized as follows: Section 2 describes the multidomain radar evaluation system.

In Section 3, some concepts of HFS and PFS as well as their correlation coefficients are reviewed. In Section 4,
PHFSs and their basic concepts are introduced. In Section 5, correlation coefficients and weighted correlation
coefficients of PHFSs with properties are proposed, respectively. The radar LPI performance evaluation specific
process based on the correlation coefficients of PHFSs is presented in Section 6. The application of the proposed
novel method for fire control radars’ LPI performance evaluation is analyzed in Section 7. The conclusion and
future work are discussed in Section 8.
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2. Radar LPI performance evaluation methods

The current methods for evaluating LPI performance mainly involve calculating interception factors and proba-
bility. These methods have drawbacks as the analysis of factors affecting LPI performance is not comprehensive.
Zhao et al. used the intercept receiver and gave some evaluation indices, and they were the first to introduce
fuzzy set theory into LPI evaluation problems [18]. With the help of previous studies, this novel model extends
the classical evaluation problems, and we should analyze the factors that influence radar LPI performance first.

This paper, from the perspective of radar radiating, proposes a multidomain evaluation method, which
includes spatial, time, frequency, polarization, energy, and waveform domains. In the spatial domain, intercep-
tion occurs in the passive detection equipment points in the radar beam direction, which leads to the intercept
of the spatial domain, as shown in Figure 1. Hence, in order to enhance the LPI performance in the spatial
domain, narrow half-power beam width and ultralow side lobe techniques are used to concentrate radiant energy
in the main lobe and reduce the power of the side lobe radiation. Experts need to obtain radar beam width
and side lobe level according to the design parameters in advance, or estimate them by frequency, antenna size,
and structure of the enemy radar with unknown parameters.

Figure 1. Spatial interception figure.

Ideally, the intercept probability of the time domain is defined as

P =
TOT

TOT + ti + ts
, (1)

where TOT represents the time the radar beam remains pointing at the intercept receiver, i.e. dwell
time. ti represents radar beam emission interval and ts represents radar search time. ts depends on practical
application. Hence, by increasing TOT or decreasing ti , the time domain intercept probability will increase and
radar LPI performance will degrade.

The reasons for interception in the frequency domain include: (i) frequency bandwidth of the intercept
receiver is wide enough to distinguish the frequency currently used by the radar; (ii) when the radar beam is
illuminating the target, the intercept receiver turns to the right frequency. The intercept receiver sometimes
knows the radar parameters (e.g., pulse repetition frequency, wavelength) in advance through the intelligence
system. Modern radar uses a frequency hopping mechanism, which can reduce the probability of interception
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by increasing the band. Another antiintercepting method is spread-spectrum. With the derivation by Rajgopal
et al., spread-spectrum radar’s intercept probability is related to the waveform and energy domain [19]. Hence,
the multidomain evaluation indices are connected with each other and inextricably linked.

Let us suppose that a pulse radar radiation electric field detected by the intercept receiver is

−→
E (t) = Ê(t)

∞∑
n=0

Anrect

(
t− nTr

τ

)
cos(2πf0t+ ϕ), (2)

where Ê(t) denotes the signal electric field time-variable polarization status, An represents the nth
pulse amplitude, rect (∗) denotes rectangle function, τ denotes pulse width, and Tr denotes pulse repetition
frequency (PRF). ϕ represents the radar signal phase, and f0 denotes the carrier wave frequency.

The interception is related not only to radar signal but also to identifying and sorting. That is to
say, the passive detection equipment needs to perform coherent processing. If the polarization status of a
radiated signal remains unchanged during the detection process, whether it is horizontal polarization, vertical
polarization, circular polarization, or elliptically polarized, this determined polarization status is most easily
captured by the enemy. In contrast, complex polarization status leads to difficulty for the intercept receiver. For
example, the random changing polarization status will be harder to be intercepted than constant polarization
status.

In the energy domain, under the constraints of detection accuracy, lower transmit power can be difficult
to detect by the intercept receiver. Therefore, modern radar uses power management technology to improve
LPI performance, and the energy information is a key factor in LPI evaluation. Besides, the pulse train energy
changing period also affects the intercept probability. The signal is easily detected when the power of each pulse
of the radiated signal is the same. If the energy of the pulse train changes randomly, it is considered that the
signal is the most difficult to be detected, and the LPI performance is the best. Methods for extracting energy
domain indicators include airspace power measurement techniques and pulse energy spectrum analysis.

ϕ and f0 in (2) are the intrapulse characteristics of the waveform. The more complicated the waveform
feature is, the harder it will be for it to be identified by the intercept receiver. In addition, time-bandwidth
product and duty cycle are parts of the interpulse waveform characteristics. Peak power will decrease with the
reduction of time-bandwidth. Duty cycle is proportional to pulses that are emitted per unit time; therefore, by
increasing the duty cycle, the LPI performance degrades.

The proposed multidomain LPI performance evaluation system includes subindicators, as shown in
Figure 2. In addition to the six evaluation indices summarized above, the radar LPI performance also can
be studied from the modulation domain. However, the parameters of radar modulation domain can be mapped
to the six indices mentioned in this paper. For example, for analog amplitude modulated (AM) signal and analog
frequency modulated (FM) signal, the main LPI performance evaluation parameters include carrier frequency
and bandwidth, which can be described by waveform feature and frequency domain.

3. HFS and PFS with their correlation coefficients
3.1. HFS and its correlation coefficients of PFS
Definition 1 Let X be a finite set. The hesitant fuzzy set (HFS) on X returns a subject of [0, 1] ,

A = {⟨x, hA(x)⟩ |x ∈ X} , (3)
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Figure 2. Multidomain evaluation system.

where hA(x) denotes the possible membership degrees of element x ∈ X to set A by taking values in [0, 1] . Xu
and Xia called hA(x) a hesitant fuzzy element (HFE) [8].

Definition 2 Let A and B be two hesitant fuzzy sets in a finite set X = {x1, x2, · · · , xn} denoted as A =

{⟨xi, hA (xi)⟩ |xi ∈ X, i = 1, 2, · · · , n} and B = {⟨xi, hB (xi)⟩ |xi ∈ X, i = 1, 2, · · · , n} , respectively. Then two
kinds of correlation coefficients of HFSs between A and B are defined as

ρ1HFS(A,B) =

∑n
i=1

(
1
li

∑li
j=1 hAσ(j) (xi)hBσ(j) (xi)

)
√∑n

i=1

(
1
li

∑li
j=1 h

2
Aσ(j) (xi)

)√∑n
i=1

(
1
li

∑li
j=1 h

2
Bσ(j) (xi)

) , (4)

ρ2HFS(A,B) =

∑n
i=1

(
1
li

∑li
j=1 hAσ(j) (xi)hBσ(j) (xi)

)
max

{∑n
i=1

(
1
li

∑li
j=1 h

2
Aσ(j) (xi)

)
,
∑n

i=1

(
1
li

∑li
j=1 h

2
Bσ(j) (xi)

)} . (5)

l (hA (xi)) and l (hB (xi)) represent the number of values in hA (xi) and hB (xi) , respectively. Supposing
li = l (hA (xi)) = l (hB (xi)) , the size of values in h(x) is in descending order. Therefore, hAσ(j) (xi) and
hBσ(j) (xi) are the jth largest values in hA (xi) and hB (xi) , j = 1, 2, · · · , n− 1 , respectively.

3.2. PFS and its correlation coefficients
Definition 3 Let X be a finite set. A Pythagorean fuzzy set (PFS) P in X is defined as

P = {⟨x, µP (x), vP (x)⟩ |x ∈ X} , (6)

where µP denotes the degree of membership and vP denotes the degree of nonmembership of element x ∈ X

to the set P by taking values in [0, 1] , respectively, with the condition that 0 ≤ (µP (x))
2
+ (vP (x))

2 ≤ 1 . The

degree of indeterminacy πP (x) =

√
1− (µP (x))

2 − (νP (x))
2 .

Definition 4 Let A and B be two Pythagorean fuzzy sets in a finite set X = {x1, x2, · · · , xn} denoted as
A = {⟨xi, µA (xi) , vA (xi)⟩ |xi ∈ X, i = 1, 2, · · · , n} and B = {⟨xi, µB (xi) , vB (xi)⟩ |xi ∈ X, i = 1, 2, · · · , n} ,
respectively, where µA (xi) , vA (xi) , µB (xi) , vB (xi) ∈ [0, 1] for every xi ∈ X . Then the two kinds of correlation
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coefficients of PFSs between A and B are defined as

ρ1PFS(A,B) =

∑n
i=1

(
µ2
A (xi) · µ2

B (xi) + v2A (xi) · v2B (xi) + π2
A (xi) · π2

B (xi)
)√∑n

i=1 (µ
4
A (xi) + v4A (xi) + π4

A (xi))
√∑n

i=1 (µ
4
B (xi) + v4B (xi) + π4

B (xi))
, (7)

ρ2PFS(A,B) =

∑n
i=1

(
µ2
A (xi) · µ2

B (xi) + v2A (xi) · v2B (xi) + π2
A (xi) · π2

B (xi)
)

max {
∑n

i=1 (µ
4
A (xi) + ν4A (xi) + π4

A (xi)) ,
∑n

i=1 (µ
4
B (xi) + v4B (xi) + π4

B (xi))}
. (8)

4. Pythagorean hesitant fuzzy sets

Definition 5 Let X be a finite set. A Pythagorean hesitant fuzzy set (PHFS) F in X is described by

F = {⟨x, hF (x), gF (x)⟩ |x ∈ X} , (9)

where hF (x) and gF (x) are two sets denoting the possible degree of membership and nonmembership of element
x ∈ X in F by taking values in [0, 1] , respectively. For convenience, the pair (hF (x), gF (x)) is called a
Pythagorean hesitant fuzzy element (PHFE), with the condition that

0 ≤ µF (x), vF (x) ≤ 1, 0 ≤
(
µ+
F (x)

)2
+
(
ν+F (x)

)2
) ≤ 1, (10)

where µF (x) ∈ hF (x) and vF (x) ∈ gF (x) , µ+
F (x) ∈ h+

F (x) =
⋃

µF (x)∈hF (x) max {µF (x)} and v+F (x) ∈ g+F (x) =⋃
vF (x)∈gF (x) max {vF (x)} . For instance, when the decision makers assign the membership degree possible

values are 0.8, 0.7, and 0.5 and the nonmembership degree possible values are 0.3 and 0.1. We can write it as

F = {(0.8, 0.7, 0.5), (0.3, 0.1)} , µ+
F (x) = 0.8 , v+F (x) = 0.3 , and

(
µ+
F (x)

)2
+
(
v+F (x)

)2 ≤ 1 .

Definition 6 For any PHFS F = {⟨x, hF (x), gF (x)⟩ |x ∈ X} , the degree of indeterminacy is defined as

πF (x) =

√√√√√1−

1

l

∑
µF (x)∈hF (x)

(µF (x))
2
+

1

k

∑
vF (x)∈gF (x)

(νF (x))
2

, (11)

where l and k denote the number of values in hF (x) and gF (x) , respectively.

5. Correlation coefficients of Pythagorean hesitant fuzzy sets

The values of a PHFE are usually in disorder. Motivated by [10], we arrange them in a descending order.
Let σ : (1, 2, · · · , n) → (1, 2, · · · , n) be a permutation satisfying µFσ(j) ≥ µFσ(j+1), j = 1, 2, · · · , n − 1 , and
let µFσ(j) be the j th largest value in hF ; let σ : (1, 2, · · · ,m) → (1, 2, · · · ,m) be a permutation satisfying
vFσ(k) ≥ vFσ(k+1), k = 1, 2, · · · ,m− 1 , and vFσ(k) be the k th largest value in gF .

Definition 7 Let A be a PHFS in a finite set X = {x1, x2, · · · , xn} denoted as A = {⟨xi, hA (xi) , gA (xi)⟩ |xi ∈
X, i = 1, 2, · · · , n} . Then the information energy of A is defined as

E(A) =

n∑
i=1

 1

li

li∑
j=1

(
µAσ(j) (xi)

)4
+

1

ki

ki∑
j=1

(
vAσ(j) (xi)

)4
+ π4

A (xi)

 , (12)

where li and ki represent the number of values in hA (xi) and gA (xi) , respectively.
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Definition 8 Let A and B be two PHFSs in a finite set X = {x1, x2, · · · , xn} denoted as A = {⟨xi, hA (xi) ,

gA (xi)⟩|xi ∈ X, i = 1, 2, · · · , n} and B = {⟨xi, hB (xi) , gB (xi)⟩ |xi ∈ X, i = 1, 2, · · · , n} . Then the correlation
between A and B is written as

C(A,B) =

n∑
i=1

 1

li

li∑
j=1

(
µAσ(j) (xi)

)2 · (µBσ(j) (xi)
)2

+
1

ki

ki∑
j=1

(
vAσ(j) (xi)

)2 · (νBσ(j) (xi)
)2

+ π2
A (xi) · π2

B (xi)

 ,

(13)
where li = max {l (hA (xi)) , l (hB (xi))} and ki = max {k (gA (xi)) , k (gB (xi))} for each xi in X , where
l (hA (xi)) and l (hB (xi)) denote the number of membership values in hA (xi) and hB (xi) , respectively.
k (gA (xi)) and k (gB (xi)) are the number of nonmembership values in gA (xi) and gB (xi) . If l (hA (xi)) ̸=
l (hB (xi)) or k (gA (xi)) ̸= k (gB (xi)) , we can add the minimum value of the element to the PHFE with less
value until the number of values in two PHFEs is equal. We call the above process a pessimistic principle [20].
For instance, if l (hA (xi)) < l (hB (xi)) or k (gA (xi)) < k (gB (xi)) , hA (xi) or gA (xi) should be extended by
adding the minimum value in it until it has the same length as hB (xi) or gB (xi) .

The correlation of PHFSs has the following properties:

(1)C(A,B) = C(B,A).

(2)C(A,A) = E(A).

Definition 9 Let A and B be two PHFSs in a finite set X = {x1, x2, · · · , xn} denoted as A = {⟨xi, hA (xi) ,

gA (xi)⟩|xi ∈ X, i = 1, 2, · · · , n} and B = {⟨xi, hB (xi) , gB (xi)⟩ |xi ∈ X, i = 1, 2, · · · , n} . Then the correlation
coefficient between A and B is defined as

ρ1(A,B) = C(A,B)

(C(A,A))1/2(C(B,B))1/2

=

n∑
i=1

[
1
li

li∑
j=1

(µAσ(j)(xi))
2·(µBσ(j)(xi))

2
+ 1

ki

ki∑
j=1

(νAσ(j)(xi))
2·(νBσ(j)(xi))

2
+πA

2(xi)·πB
2(xi)

]


n∑
i=1


li∑

j=1
(µAσ(j)(xi))

4

li
+

ki∑
j=1

(νAσ(j)(xi))
4

ki
+πA

4(xi)




1/2
n∑

i=1


li∑

j=1
(µBσ(j)(xi))

4

li
+

ki∑
j=1

(νBσ(j)(xi))
4

ki
+πB

4(xi)




1/2 . (14)

Theorem 1 The correlation coefficient between two PHFSs A and B satisfies the following properties:

(1)ρ1(A,B) = ρ1(B,A).

(2)0 ≤ ρ1(A,B) ≤ 1.

(3)ρ1(A,B) = 1, ifA = B.
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Proof (1) It is straightforward. (2) We will prove ρ1(A,B) ≤ 1 .

C(A,B)

=

n∑
i=1

 1

li

li∑
j=1

(
µAσ(j)(xi)

)2 · (µBσ(j)(xi)
)2

+
1

ki

ki∑
j=1

(
νAσ(j)(xi)

)2 · (νBσ(j)(xi)
)2

+ πA
2(xi) · πB

2(xi)


=

 1

l1

l1∑
j=1

(
µAσ(j)(x1)

)2 · (µBσ(j)(x1)
)2

+
1

k1

k1∑
j=1

(
νAσ(j)(x1)

)2 · (νBσ(j)(x1)
)2

+ · · ·+ πA
2(x1) · πB

2(x1)


+

 1

l2

l2∑
j=1

(
µAσ(j)(x2)

)2 · (µBσ(j)(x2)
)2

+
1

k2

k2∑
j=1

(
νAσ(j)(x2)

)2 · (νBσ(j)(x2)
)2

+ · · ·+ πA
2(x2) · πB

2(x2)

+ · · ·

+

 1

ln

ln∑
j=1

(
µAσ(j)(xn)

)2 · (µBσ(j)(xn)
)2

+
1

kn

kn∑
j=1

(
νAσ(j)(xn)

)2 · (νBσ(j)(xn)
)2

+ · · ·+ πA
2(xn) · πB

2(xn)


=

 l1∑
j=1

(
µAσ(j)(x1)

)2
(l1)

1/2
·
(
µBσ(j)(x1)

)2
(l1)

1/2
+

k1∑
j=1

(
νAσ(j)(x1)

)2
(k1)

1/2
·
(
νBσ(j)(x1)

)2
(k1)

1/2
+ πA

2(x1) · πB
2(x1)


+

 l2∑
j=1

(
µAσ(j)(x2)

)2
(l2)

1/2
·
(
µBσ(j)(x2)

)2
(l2)

1/2
+

k2∑
j=1

(
νAσ(j)(x2)

)2
(k2)

1/2
·
(
νBσ(j)(x2)

)2
(k2)

1/2
+ πA

2(x2) · πB
2(x2)

+ · · ·

+

 ln∑
j=1

(
µAσ(j)(xn)

)2
(ln)

1/2
·
(
µBσ(j)(xn)

)2
(ln)

1/2
+

kn∑
j=1

(
νAσ(j)(xn)

)2
(kn)

1/2
·
(
νBσ(j)(xn)

)2
(kn)

1/2
+ πA

2(xn) · πB
2(xn)

 .

According to the Cauchy–-Schwarz inequality,

(x1y1 + x2y2 + · · ·+ xnyn)
2 ≤

(
x2
1 + x2

2 + · · ·+ x2
n

)
·
(
y21 + y22 + · · ·+ y2n

)
,

where (x1, x2, · · · , xn) ∈ Rn and (y1, y2, · · · , yn) ∈ Rn , and we can get

C2(A,B)

≤

[(
l1∑

j=1

(µAσ(j)(x1))
4

l1
+

k1∑
j=1

(νAσ(j)(x1))
4

k1
+ πA

4(x1)

)
+

(
l2∑

j=1

(µAσ(j)(x2))
4

l2
+

k2∑
j=1

(νAσ(j)(x2))
4

k2
+ πA

4(x2)

)
+ · · ·

+

(
ln∑
j=1

(µAσ(j)(xn))
4

ln
+

kn∑
j=1

(νAσ(j)(xn))
4

kn
+ πA

4(xn)

)]
·

[(
l1∑

j=1

(µBσ(j)(x1))
4

l1
+

k1∑
j=1

(νBσ(j)(x1))
4

k1
+ πB

4(x1)

)

+

(
l2∑

j=1

(µBσ(j)(x2))
4

l2
+

k2∑
j=1

(νBσ(j)(x2))
4

k2
+ πB

4(x2)

)
+ · · · +

(
ln∑
j=1

(µBσ(j)(xn))
4

ln
+

kn∑
j=1

(νBσ(j)(xn))
4

kn
+ πB

4(xn)

)]
= C(A,A) · C(B,B).

Therefore, C2(A,B) ≤ C(A,A) · C(B,B) . Thus, ρ1(A,B) ≤ 1 , and the inequality ρ1(A,B) ≥ 0 is obvious.
(3) If A = B ⇒ hAσ(j) (xi) = hBσ(j) (xi) and gAσ(j) (xi) = gBσ(j) (xi) ⇒ ρ1(A,B) = 1 . 2
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Definition 10 Let A and B be two PHFSs in a finite set X = {x1, x2, · · · , xn} denoted as A = {⟨xi, hA (xi) ,

gA (xi)⟩|xi ∈ X, i = 1, 2, · · · , n}and B = {⟨xi, hB (xi) , gB (xi)⟩ |xi ∈ X, i = 1, 2, · · · , n} . Then the correlation
coefficient between A and B is defined as

ρ2(A,B) = C(A,B)
max{(C(A,A)),(C(B,B))}

=

n∑
i=1

[
1
li

li∑
j=1

(µAσ(j)(xi))
2·(µBσ(j)(xi))

2
+ 1

ki

ki∑
j=1

(νAσ(j)(xi))
2·(νBσ(j)(xi))

2
+πA

2(xi)·πB
2(xi)

]

max


n∑

i=1


li∑

j=1
(µAσ(j)(xi))

4

li
+

ki∑
j=1

(νAσ(j)(xi))
4

ki
+πA

4(xi)

,
n∑

i=1


li∑

j=1
(µBσ(j)(xi))

4

li
+

ki∑
j=1

(νBσ(j)(xi))
4

ki
+πB

4(xi)



. (15)

Theorem 2 The correlation coefficient between two PHFSs A and B satisfies the following properties:

(1)ρ2(A,B) = ρ2(B,A).

(2)0 ≤ ρ2(A,B) ≤ 1.

(3)ρ2(A,B) = 1, ifA = B.

Proof We can prove the properties (1)–(3) according to the same proof method as in Theorem 1. 2

Example 1 Assume A and B are two PHFEs in X = {x1, x2} , and

A = {⟨x1, {0.7, 0.6, 0.5}, {0.4, 0.3}⟩ , ⟨x2, {0.9, 0.6}, {0.3, 0.1}⟩} ,

B = {⟨x1, {0.7, 0.5}, {0.5, 0.4}⟩ , ⟨x2, {0.8, 0.7, 0.6}, {0.4, 0.2}⟩} .

First, we normalize A and B by pessimistic principle. In order to simplify the calculation process, we calculate
πA (xi) and πB (xi) as follows:

πA(x1) =

√
1− (

0.72 + 0.62 + 0.52

3
+

0.42 + 0.32

2
) = 0.713,

πA(x2) =

√
1− (

0.92 + 0.62 + 0.62

3
+

0.32 + 0.12

2
) = 0.663,

πB(x1) =

√
1− (

0.72 + 0.52 + 0.52

3
+

0.52 + 0.42

2
) = 0.682,

πB(x2) =

√
1− (

0.82 + 0.72 + 0.62

3
+

0.42 + 0.22

2
) = 0.635.

Then, by employing (12), the informational energy of A and B can be obtained as

E(A) = C(A,A) = 0.74+0.64+0.54

3 + 0.44+0.34

2 + πA
4(x1) +

0.94+0.64+0.64

3 + 0.34+0.14

2 + πA
4(x2) = 0.9218,

E(B) = C(B,B) = 0.74+0.54+0.54

3 + 0.54+0.44

2 + πB
4(x1) +

0.84+0.74+0.64

3 + 0.44+0.24

2 + πB
4(x2) = 0.8181.

The correlation between A and B can be computed as

C(A,B) =
0.72 · 0.72 + 0.62 · 0.52 + 0.52 · 0.52

3
+

0.42 · 0.52 + 0.32 · 0.42

2
+ πA

2(x1) · πB
2(x1)

+
0.92 · 0.82 + 0.62 · 0.72 + 0.62 · 0.62

3
+

0.32 · 0.42 + 0.12 · 0.22

2
+ πA

2(x2) · πB
2(x2) = 0.8540.
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Therefore, the correlation coefficients ρ1(A,B) and ρ2(A,B) are

ρ1(A,B) =
0.8540√

0.9218× 0.8181
= 0.9834,

ρ2(A,B) =
0.8540

max{0.9218, 0.8181}
= 0.9264.

In many practical applications, we should think about the influence of weights of different attributes.
Let ω = (ω1, ω2, · · · , ωn)

T be the weights vector of xi(i = 1, 2, · · · , n) with ωi ≥ 0 and
∑n

i=1 ωi = 1 . We can
extend correlation coefficients in (14) and (15) as

ρ1ω(A,B) = Cω(A,B)

(Cω(A,A))1/2(Cω(B,B))1/2

=

n∑
i=1

ωi

[
1
li

li∑
j=1

(µAσ(j)(xi))
2·(µBσ(j)(xi))

2
+ 1

ki

ki∑
j=1

(νAσ(j)(xi))
2·(νBσ(j)(xi))

2
+πA

2(xi)·πB
2(xi)

]


n∑
i=1

ωi


li∑

j=1
(µAσ(j)(xi))

4

li
+

ki∑
j=1

(νAσ(j)(xi))
4

ki
+πA

4(xi)




1/2
n∑

i=1
ωi


li∑

j=1
(µBσ(j)(xi))

4

li
+

ki∑
j=1

(νBσ(j)(xi))
4

ki
+πB

4(xi)




1/2 ,

(16)

ρ2ω(A,B) = Cω(A,B)
max{(Cω(A,A)),(Cω(B,B))}

=

n∑
i=1

ωi

[
1
li

li∑
j=1

(µAσ(j)(xi))
2·(µBσ(j)(xi))

2
+ 1

ki

ki∑
j=1

(νAσ(j)(xi))
2·(νBσ(j)(xi))

2
+πA

2(xi)·πB
2(xi)

]

max


n∑

i=1
ωi


li∑

j=1
(µAσ(j)(xi))

4

li
+

ki∑
j=1

(νAσ(j)(xi))
4

ki
+πA

4(xi)

,
n∑

i=1
ωi


li∑

j=1
(µBσ(j)(xi))

4

li
+

ki∑
j=1

(νBσ(j)(xi))
4

ki
+πB

4(xi)



. (17)

It is obvious that when ωi =
1
n (i = 1, 2, · · · , n) , (16) and (17) reduce to (14) and (15), respectively, and

the weighted correlation coefficients ρ1ω(A,B) and ρ2ω(A,B) satisfy the following properties:

(1)ρω(A,B) = ρω(B,A).

(2)0 ≤ ρω(A,B) ≤ 1.

(3)ρω(A,B) = 1, ifA = B.

We can prove the properties (1)–(3) according to the same proof method as in Theorem 1.

Example 2 Let us suppose the weight is ω = (0.4, 0.6)T and the two PHFEs are as in Example 1. Then we
can get the weighted informational energy as follows:

Eω(A) = Cω(A,A) =

(
0.74 + 0.64 + 0.54

3
+

0.44 + 0.34

2
+ π4

A (x1)

)
× 0.4

+

(
0.94 + 0.64 + 0.64

3
+

0.34 + 0.14

2
+ π4

A (x2)

)
× 0.6 = 0.4692,

Eω(B) = Cω(B,B) =

(
0.74 + 0.54 + 0.54

3
+

0.54 + 0.44

2
+ π4

B (x1)

)
× 0.4

+

(
0.84 + 0.74 + 0.64

3
+

0.44 + 0.24

2
+ π4

B (x2)

)
× 0.6 = 0.4144.
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The correlation between A and B can be computed as

Cω(A,B) =

(
0.72 · 0.72 + 0.52 · 0.52 + 0.52 · 0.52

3
+

0.42 · 0.52 + 0.32 · 0.42

2
+ π2

A (x1) · π2
B (x1)

)
× 0.4

+

(
0.92 · 0.82 + 0.62 · 0.72 + 0.62 · 0.62

3
+

0.32 · 0.42 + 0.12 · 0.22

2
+ π2

A (x2) · π2
B (x2)

)
× 0.6 = 0.4335.

Correlation coefficients ρ1ω(A,B) and ρ2ω(A,B) are as follows:

ρ1ω(A,B) =
0.4335√

0.4692× 0.4144
= 0.9831,

ρ2ω(A,B) =
0.4335

max{0.4692, 0.4144}
= 0.9239.

6. Proposed method

This paper is aimed at solving the radar LPI performance evaluation problem by using expert judgment.
According to the multidomain evaluation system, we propose a method using the correlation coefficient of
Pythagorean hesitant fuzzy sets to rank different radar LPI performances as follows:

Step 1: Decision makers need to know the LPI multidomain performance parameters of the radars to be
tested. The main criteria for judging include beam width and side lobe level in the spatial domain, dwell time
and radar beam emission interval in the time domain, frequency agility in the frequency domain, polarization
status changing mode in the polarization domain, transmit power and pulse train energy changing period in
the energy domain, and intrapulse and interpulse characteristics in the waveform domain.

Step 2: According to the multidomain evaluation system, experts give the estimated value of the radar
LPI performance to be tested. Then a Pythagorean hesitant fuzzy set decision matrix is formed.

Step 3: The decision matrix is normalized according to the pessimistic principle, and the values in the
PHFE are arranged in order. Afterwards, we can obtain the normalized decision matrix.

Step 4: Experts consider the importance of indicators in this assessment comprehensively based on the
professional knowledge and application background, then assign the attribute weights.

Step 5: Calculate the correlation and correlation coefficient between radars to be evaluated and the
positive ideal alternative according to (14) and (15), respectively.

Step 6: On the basis of (16) and (17), we further compute the weighted correlation coefficient between
radars to be evaluated and the positive ideal alternative.

Step 7: Compare the calculation results of the above two steps and analyze the similarities and differences.
Then rank the radar LPI performance to be tested by the values of correlation coefficient and weighted
correlation coefficient. Finally, a reasonable evaluation result is obtained.

7. Application of proposed method for radar LPI performance evaluation

In this section, we choose four kinds of airborne fire control radars as the numerical example. The AN/APG-
69 and AN/APG-66 are produced by the United States, which began serving in 1983 and 1978, respectively.
Furthermore, the AN/APG-69 is a modular airborne coherent multifunction digital fire control radar using
a PD system. Fighters equipped with AN/APG-69 mainly perform tasks such as short-range air support

979



YANG et al./Turk J Elec Eng & Comp Sci

and identification. AN/APG-66 is a multifunction all-digital coherent PD radar designed by Westinghouse
Electric. The whole machine adopts component design, which has the characteristics of small size, light weight,
high reliability, and convenient maintenance [21, 22]. EL/M-2021 is an Israeli-made radar that began service in
1977, which uses digital technology for coherent processing. During air-to-air combat, the radar performs search
and automatic tracking tasks. Meanwhile, it provides ranging information to the bombing computer during air-
to-ground combat. RDM was made in France and served in 1983; it is a multifunction digital airborne fire
control radar developed by Thomson-CSF with more than 20 modes of operation. It can complete air defense,
air-to-ground attack, and air-to-sea attack missions. These four fire control radars have performed well in war,
but no one has compared their LPI performance before. The main parameters of these radars to be tested are
shown in Table 1.

Table 1. Radar parameters to be evaluated.

Radar Frequency working
system

Pulse width
(µs)

Average power
(W )

Beam width
(◦)

The aircraft
used in

AN/APG-69 Frequency agility 0.25-13 160 azimuth:4.5
pitch:7.7

F-5E

AN/APG-66 Frequency agility
and fast phase
shift

0.81-4 250 azimuth:1.8
pitch:3

F-16

EL/M-2021 Spread Spectrum 0.95-3 200 azimuth:1.4
pitch:5

F-4

RDM Frequency agility 0.5,0.65,4.5 360 azimuth:3
pitch:4

Mirage 2000

For simplification we define the LPI evaluation indices as follows: C1 (spatial domain), C2 (time domain),
C3 (frequency domain), C4 (polarization status), C5 (energy status), and C6 (waveform domain). A group of
experts in the field of radar and electronic countermeasures was invited to select the best LPI performance radar
among them. They compared the radars’ search and automatic tracking statuses according to the multidomain
evaluation indices. Next, the attribute weight vector is obtained as ω = [0.13, 0.2, 0.14, 0.18, 0.16, 0.19]T . We
replace the four fire control radars with Ri(i = 1, 2, 3, 4) , i.e. R1 (AN/APG-69), R2 (AN/APG-66), R3 (EL/M-
2021), R4 (RDM). The results evaluated by the experts are contained in a Pythagorean hesitant fuzzy decision
matrix, as shown in Table 2. Then we normalize the decision matrix by pessimistic principle. The normalized
decision matrix is shown in Table 3.

We define the positive ideal alternative as follows:

R+ = (F ({1, 1, 1}, {0, 0, 0}), F ({1, 1, 1}, {0, 0, 0}), F ({1, 1, 1}, {0, 0, 0}),

F ({1, 1, 1}, {0, 0, 0}), F ({1, 1, 1}, {0, 0, 0}), F ({1, 1, 1}, {0, 0, 0})).

By employing (14) and (15), we compute the correlation coefficients ρ1 and ρ2 as follows, respectively:

ρ1
(
R1, R

+
)
= 0.5642, ρ1

(
R2, R

+
)
= 0.4100, ρ1

(
R3, R

+
)
= 0.1420, ρ1

(
R4, R

+
)
= 0.2515;

ρ2
(
R1, R

+
)
= 0.4611, ρ2

(
R2, R

+
)
= 0.3211, ρ2

(
R3, R

+
)
= 0.1117, ρ2

(
R4, R

+
)
= 0.1872.

On the basis of ρ1 and ρ2 , the four fire control radars’ LPI performance sequencing is R1 ≻ R2 ≻ R4 ≻
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Table 2. Decision matrix.

C1 C2

R1 ({0.7, 0.6}, {0.4, 0.3, 0.1}) ({0.6,0.5},{0.3,0.1})
R2 ({0.7,0.6,0.4},{0.5,0.3,0.2}) ({0.6,0.4,0.3},{0.4,0.2})
R3 ({0.2,0.1},{0.9,0.7}) ({0.3,0.2},{0.9,0.8})
R4 ({0.5,0.3},{0.8,0.6}) ({0.6,0.4},{0.7,0.5})

C3 C4

R1 ({0.9,0.7},{0.2,0.1}) ({0.8,0.7},{0.3,0.2})
R2 ({0.8,0.7},{0.4,0.3,0.2}) ({0.6,0.5,0.3},{0.7,0.4})
R3 ({0.3,0.2,0.1},{0.8,0.7}) ({0.5,0.4,0.2},{0.6,0.4})
R4 ({0.5,0.3},{0.6,0.4}) ({0.6,0.5,0.3},{0.6,0.5,0.4})

C5 C6

R1 ({0.9,0.8,0.5},{0.2,0.1}) ({0.8,0.6},{0.4,0.3,0.2})
R2 ({0.7,0.6},{0.4,0.3}) ({0.6,0.4},{0.7,0.4})
R3 ({0.4,0.2,0.1},{0.9,0.8,0.7}) ({0.5,0.3,0.2},{0.5,0.4})
R4 ({0.5,0.4,0.3},{0.6,0.5}) ({0.6,0.3},{0.6,0.5})

Table 3. Normalized decision matrix.

C1 C2

R1 ({0.7, 0.6, 0.6}, {0.4, 0.3, 0.1}) ({0.6, 0.5, 0.5}, {0.3, 0.1, 0.1})
R2 ({0.7, 0.6, 0.4}, {0.5, 0.3, 0.2}) ({0.6, 0.4, 0.3}, {0.4, 0.2, 0.2})
R3 ({0.2, 0.1, 0.1}, {0.9, 0.7, 0.7}) ({0.3, 0.2, 0.2}, {0.9, 0.8, 0.8})
R4 ({0.5, 0.3, 0.3}, {0.8, 0.6, 0.6}) ({0.6, 0.4, 0.4}, {0.7, 0.5, 0.5})

C3 C4

R1 ({0.9, 0.7, 0.7}, {0.2, 0.1, 0.1}) ({0.8, 0.7, 0.7}, {0.3, 0.2, 0.2})
R2 ({0.8, 0.7, 0.7}, {0.4, 0.3, 0.2}) ({0.6, 0.5, 0.3}, {0.7, 0.4, 0.4})
R3 ({0.3, 0.2, 0.1}, {0.8, 0.7, 0.7}) ({0.5, 0.4, 0.2}, {0.6, 0.4, 0.4})
R4 ({0.5, 0.3, 0.3}, {0.6, 0.4, 0.4}) ({0.6, 0.5, 0.3}, {0.6, 0.5, 0.4})

C5 C6

R1 ({0.9, 0.8, 0.5}, {0.2, 0.1, 0.1}) ({0.8, 0.6, 0.6}, {0.4, 0.3, 0.2})
R2 ({0.7, 0.6, 0.6}, {0.4, 0.3, 0.3}) ({0.6, 0.4, 0.4}, {0.7, 0.4, 0.4})
R3 ({0.4, 0.2, 0.1}, {0.9, 0.8, 0.7}) ({0.5, 0.3, 0.2}, {0.5, 0.4, 0.4})
R4 ({0.5, 0.4, 0.3}, {0.6, 0.5, 0.5}) ({0.6, 0.3, 0.3}, {0.6, 0.5, 0.5})

R3 . The ranking results obtained by ρ1 and ρ2 are the same, indicating that ρ1 and ρ2 have consistency in
this example.

Considering weight, we can obtain the weighted correlation coefficients ρ1ω and ρ2ω by employing (16)
and (17) as follows, respectively:

ρ1ω
(
R1, R

+
)
= 0.5380, ρ1ω

(
R2, R

+
)
= 0.3800, ρ1ω

(
R3, R

+
)
= 0.1533, ρ1ω

(
R4, R

+
)
= 0.2537;

ρ2ω
(
R1, R

+
)
= 0.4513, ρ2ω

(
R2, R

+
)
= 0.3063, ρ2ω

(
R3, R

+
)
= 0.1227, ρ2ω

(
R4, R

+
)
= 0.1929.

According to (16), the ranking order of these four fire control radars is R1 ≻ R2 ≻ R4 ≻ R3 , which is
the same as the result calculated by (17). Therefore, the radar LPI performance rankings obtained by the four
correlation coefficients are consistent. On the other hand, this case demonstrates that the method mentioned
above is effective.
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There is no doubt that the weight vector plays a significant role in determining the ranking result. It
is inevitable that there may exist possible differences of opinions between experts, which may lead to minor
changes in weight vector. For instance, the experts diverged in determining the last three indices, and the
weight vector was modified to ω = [0.13, 0.2, 0.14, 0.15, 0.17, 0.21]T . The weighted correlation coefficients ρ1ω

and ρ2ω under the new weight vector can be obtained as follows:

ρ1ω
(
R1, R

+
)
= 0.5361, ρ1ω

(
R2, R

+
)
= 0.3819, ρ1ω

(
R3, R

+
)
= 0.1515, ρ1ω

(
R4, R

+
)
= 0.2513;

ρ2ω
(
R1, R

+
)
= 0.0750, ρ2ω

(
R2, R

+
)
= 0.0513, ρ2ω

(
R3, R

+
)
= 0.0202, ρ2ω

(
R4, R

+
)
= 0.0319.

The radar LPI performance ranking remains R1 ≻ R2 ≻ R4 ≻ R3 even if the weight vector has changed
slightly. Therefore, in this case, although there are possible differences in the opinions of experts, it will not
affect the final evaluation results.

8. Conclusion and future work
In this study, we present a novel method to evaluate radar LPI performance. By analyzing radar parameters
characteristics, a multidomain evaluation system is built. The system is in terms of characteristics of signal
in space, beam illumination form, and time-varying electric field equation. This article considers all possible
scenarios for radiators. It is apparent that there are no studies involving the use of PHFSs to estimate radar LPI
performance before. We develop the theory of correlation coefficients and combine it with PHFSs. Benefiting
from the work of previous scholars, we prove some properties of correlation coefficients and weighted correlation
coefficients for PHFSs. We apply our proposed methodology to evaluate fire control radars on different
aircrafts, and the ranking of selected radars’ LPI performance is given. Thus, estimating LPI performance
by correlation coefficients of PHFSs is feasible and effective. Future researchers may develop more PHFSs
correlation coefficients and propose a novel method based on incomplete weights information.
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