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Abstract: In this study, we have proposed an alternative approach for sentence modeling problem. The difficulty of
the choice of answer, the semantically related questions and the lack of syntactic closeness of the answers give rise to the
difficulty of selecting the answer. The deep learning field has recently achieved a pivotal success in semantic analysis,
machine translation, and text summaries. The essence of this work, inspired by the human orthographic processing
mechanism and using multiple convolution filters with pre-rendered 2-Dimension (2D) representations of sentences,
input or output size is to learn the basic features of the language without concerns. For this reason, the semantic
relations in the sentence structure are learned by the convolutional variational auto-encoders first, and then the question
and answer spaces learned by the auto-encoders are linked with proposed intermediate models. We have benchmarked
five variations of our proposed model, which is based on Variational Auto-Encoder with multiple latent spaces and able
to achieve lower error rates than the baseline model, which is the base Convolutional LSTM.

Key words: Convolutional networks, bi-gram, n-gram, question answering problem, deep learning, variational auto-
encoder, sentence modeling

1. Introduction
Sentence modeling problem is involved in almost all natural language processing problems. Neural network
based models are shown to be quite advantageous compared to other models. They can be trained to predict
words or phrases in a context or generate sentences word by word [1]. The relevance of an answer (theoretically)
is determined by measuring the semantic similarity between question and answer. Prior work in the field of
statistical Natural Language Processing mainly focused on this approach with the syntactic matching of parse
trees. Also, there exist some studies that use WordNet to add semantic information to lexical representations
[2]. Sentence modeling is usually involved with the extraction of parts of a sentence and it is related to identity,
synonymy, antonymy, etc. However humans use the content of one sentence to provide the representation
of another [3]. The answer selection problem can be described as a classification problem where a question
corresponds to multiple ground-truth answers. Challenge of this problem comes with semantically related
questions and answers that may not be lexically close. Deep learning models have recently obtained salient
success on semantic analysis, machine translation, and text summarization [4]. With given word embedding’s,
vector representations of a sentence acquired by summing over the embedding’s of all words in the sentence
and then the vector is normalized by the length of the sentence which is known as the bag-of-words model.
However, it loses word ordering during the process, which is the disadvantage of this model. Instead, bi-gram
model does not loose word order. Furthermore, convolutional networks can learn deeper structural knowledge
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[2]. Even though bag-of-n-grams contains word order, it suffers from high dimensionality and sparsity [5]. Also,
as it is mentioned in by [1], convolutional filters can learn n-gram representations less than or equal to their
size, which is very important to determine irregular distributions of phrase-level structures in sentences. Some
of the convolutional models use vector embeddings of words; [2, 4] with various techniques; [6, 7]. Also [2]
reported that bi-gram model is observed to be achieving better performance with the help of Inverse Document
Frequency (IDF) weighted word count features.

1.1. Neurological basis

From the physiological aspect, reading printed material is defined as “Orthographic Processing”. This suggests
that individual letter in a string of letters is processed for their identity and position. It is first proposed
by Grainger and van Heuven by considering the independent processing of individual letters. They proposed
detectors which are location specific -relative to eye fixation position- and reactive to certain visual features at
a location, they named them as “alphabetic array”.

However, this alphabetic array does not give the relative position of a letter since each of them is processed
separately. On the other hand, letter identity is connected to its string position independently from its spatial
position. Also, it has been mentioned in [8] that main idea of Grainger and van Heuven’s study is sub-lexical
orthographic representations coded in the lower levels of processing as continuous and noncontinuous letter
sequences. Relative position coding of nonadjacent letters is also used in Whitney’s SERIOL model. For
example; CART coded as CA, CR, CT, AR, AT, RT [9]. In this example, nonadjacent letters also form a pair
as a design consideration of the model, however by preserving letter order at the same time. This is called
“Open bi-gram” coding by Grainger and van Heuven (2003), as mentioned in the [8].

This framework consists of several processing layers, which provide visual translation of visual input to
the semantic bindings. The model has five layers: edge, feature, letter, bi-gram, and word. We will not cover
the first three layers since the visual recognition of letters are not included within the scope of this study. In
this model, bi-gram layer nodes are connected to the word layer with weighted connections. Thus, words are
built upon the order of letters and sequences, but not exactly on string position. However, sequentiality comes
from the nature of the reading behavior of humans. Therefore, in order to read a text, focusing on the letters
sequentially triggers related bi-gram neurons consecutively.

Lower level feature extractors can only detect letters with a specific shape and they look for details such
as lines at different angles, where the receptors have a small tolerance to the displacement of features. Abstract
letter identities are detected at higher layers.

Even though smaller receptive fields limit the ability to detect changes in size and location, multiple
smaller receptive fields placed in different locations create position-invariant local letter detectors. This described
functionality is shown to be similar to what convolutional networks are used for.

For upper layers of visual hierarchy, visual receptors become progressively larger. Based on this assump-
tion, a neurobiological scheme is designed where hierarchy becomes wider and more abstract neurons represent
combinations of features that each being sensitive to local combinations of them. Increase in the size of receptive
fields progressively triggers the neurons to code sequences of letters up to three letters. This trade-off between
location invariance and selectivity neuron coding of a triplet is expected to occur less and more specific posi-
tions, where a neuron coding for a letter in three different positions has no meaningful information. Although
such units may be contributing to feature extraction, bi-grams seem to be the best approach between location
invariance and letter position coding.
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Location invariance is not limited to a receptor field size of progressing layers but it can also be provided
by pooling over partially crossing letter detectors. Thus, the broader receptive field will be used for processing
information. Grainger and colleagues defined this type of coding as “open bi-grams” [8]. In this model, words
are coded by a collection of pairs occurred in the text consecutively. The existence of such an architecture is
not confirmed. However, the model helps to explain why neurons behave like bi-gram detectors.

Word layer also uses bi-gram layer features. Since bi-grams are ordered pairs of letters, it is natural to
expect ordered pairs of bi-grams formatted words. As it is mentioned by the authors, words are never coded by
a single neuron, instead by multiple lower level receptors.

It has been argued that this combinatorial scheme would cause an explosion of required detectors
conversely increasing progressive layers receptive field and decreasing the number of receptors. However, tuning
of lower level detectors is highly correlated with reading patterns and eye movements.

2. Design and implementation

Until now, several related topics are covered in their relevant sections. It can be noticed that neurological
models have clean structure and component based similarities with the computational models proposed. As it
was discussed before, Open bi-gram and SERIOL models depend on bi-grams to develop translation invariance
while keeping word/letter order. Most of the neural models approach this issue as word bi-grams rather than
letter bi-grams in the neurobiological model. It was considered as letter based because both models handle
orthographic processing mechanism from recognition of letters to order of letter pairs, pairs of words, and lastly
semantic relations they correspond to. Interestingly, computational models depend on translation invariance
of convolution operation, and as it has been mentioned in the literature review, multiple stacked convolutional
layers learn a hypothetical parse tree where activations of translation invariant features are pooled together to
be processed by further convolutional layers, such as inter-word relations to phrase-word relations. Since we
begin processing from the existing sentences, visual recognition part is not covered, but instead bi-grams are
used as the base of our data representation. We have used Google’s n-gram corpus from [10] for the bi-gram
counts.

2.1. Data representation

In this study, we decided to use bi-gram frequencies of the words and letters based on the reasons stated in
the previous chapter. Therefore, every sentence could be considered as a sequence of letters. Since bi-gram
models can be considered as first-order Hidden Markov Models (HMMs), the underlying problem space could be
considered as first-order arc-emission HMM. Hence, we based our data representations on top of the emission
probabilities of consecutive letters. Each cell of the representation is calculated according to Algorithm 1.

The idea behind the transformation of a natural-language-processing problem to a visually interpreted
problem is to make it possible to learn underlying features without explicitly pointing to them in the samples.
In other words, we may consider it as the object recognition problem of computer vision, where the object
is fully or partially exists in the image and our feature extractor somewhat detects certain properties of the
partially visible object. Imagine that object is not even partially visible in the picture, but there exists certain
background, environmental properties exist and indicate that such a tool must be the one related to this
environment. For example, a saw handle can be barely visible in a toolbox and cannot be distinguished under
isolation from the entire image it belongs. For this problem, the model aims to estimate the possible number of
tools for specific environments by only seeing peripheral objects provided inside the images and has to make an
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Algorithm 1: Bi-gram Transmission Frequency Matrix Creation Algorithm
1 Tokenized, cleaned list of words W

2 Processed bi-gram frequency count matrix S

3 ps← 0 start index of previous word
4 lenW ← length of W

5 S ← regular grid with size lenWxlenW

6 for t = 0 to lenW do
7 LW ←Wt,t+2

8 lenLW
← length of Wt,t+2

9 for i = 0 to lenLW
do

10 for j = 0 to lenLW
do

11 Lfreqi,j ← frequency count of log10
(
LWi&LWj

)
12 if Si+ps,j+ps = 0 then
13 Si+ps,j+ps ← Lfreqi,j

14 else
15 Si+ps,j+ps ←

log10 (Si+ps,j+ps)+Lfreqi,j

2

16 ps← LW0

17 {S is resulting matrix of overlapped frequency counts of letters and words}

estimate for this number by learning possible relations of objects that are indirectly related. That environment,
background, related objects, and type of toolbox are now important properties to make an assumption on what
that undistinguishable object might be. For our case, sentences are represented as a collection of vectors/word
embeddings consecutively. The model learns from the order of the vectors/word embeddings, and probably
internal properties of the embeddings. That case works because a speaking language is a human-made thing
and its all aspects are well-defined, if it is wanted to be modeled or some heuristics wanted to be involved
in any recognition model. However, in this study, we assumed that the language was unknown and only the
frequency counts of symbols that were observed are observable by model. Thus, we used bi-gram frequencies of
consecutive letters and words, and then used both of them in a 2D plane. The problem can also be treated with
computer vision techniques, more importantly, models used can be learning relations between letters, words
without explicitly seeing them or obtaining their feature representations. A model should learn to distinguish
different letters by inter-letter properties so that it can have an internal representation for words, and then it
can use it to learn inter-word relations, and so on.

2.2. Model

For the architecture proposed in this study, it is aimed to reduce number of parameters but to force the model
to learn distinct features at the same time. We based our model over the Variational Auto-Encoder (VAE).
Auto-Encoder (AE) is a model with a specially placed bottleneck in order to compress information in to a
vector with pre-specified size. In order to achieve that network learns to encode input to a fixed size vector, and
then reconstruct input from encoded vector. In this study, we have based our architecture over Convolutional
Variational Auto-Encoder. In contrast to AE, VAE learns to encode in to two separate fixed size vectors, namely
mean, µ and variance, log10

(
σ2

)
. To produce vector/embedding, µ and log10

(
σ2

)
used to shift sample taken
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from standard normal distribution N (0, 1) (see Eq. 1).

z = µi + elog10(σ2
i )N(0,1). (1)

Equation 1, actually called as reparameterization trick where zzz is a continuous random variable, and we
use it for generating samples from conditional distribution zzz ∼ qϕ (zzz|x) . qϕ (zzz|x) is the probabilistic encoder
which will be an approximation of true posterior pθ (zzz|x) , and we will call pθ (x|zzz) as probabilistic decoder [11].
Recognition model parameters referred as ϕ and generative model parameters as θ . Marginal likelihood is the
probability of an event occurring and which is the sum over the marginal likelihoods of individual data points.

pθ (x) =

N∑
i=1

log10
(
pθ

(
xi
))

, (2)

and log10
(
pθ

(
xi
))

can be written as

log10

(
pθ

(
xi
))

= DKL

(
qϕ

(
zzz|x(i)

)
∥pθ

(
zzz|x(i)

))
+ L

(
θ, ϕ;x(i)

)
. (3)

L (θ, ϕ;x) is the lower bound on the likelihood of datapoint i , and when L (θ, ϕ;x) = log10
(
pθ

(
xi
))

, KL
loss between two distribution, namely qϕ (zzz|x) and pθ (zzz|x) will be zero therefore, likelihood L (θ, ϕ;x) will be
maximized. For our purposes KL-divergence must be integrated in order to be implemented. A detailed proof
can be found at Appendix B of [11]. Thus, it can be written as

DKL

(
qϕ

(
zzz|x(i)

)
∥pθ

(
zzz|x(i)

))
= 0.5

N∑
j=1

(
1 + log10

(
σ
(i)
j

)2

−
(
µ
(i)
j

)2

−
(
σ
(i)
j

)2
)
. (4)

Therefore, KL-loss is the sum of KL-divergences. For our case, we switch indices for symbolic repre-
sentability and use j to refer a single VAE and i to an instance of the dataset

L (θ, ϕ;x) = 1

N

N∑
i=1

M∑
j=1

DKLj

(
qϕj

(
zzzj |x(i)

)
∥pθj

(
zzzj |x(i)

))
+ (x(i) − x̃(i))2. (5)

We have used standard VAE loss and considered Mean Squared Error (MSE) as reconstruction loss (see
Figure 1). N stands for the number of records in our dataset, and M stands for the number of VAE used in
the model. For the special case of VAE loss function includes a term to measure how much re-generated inputs
are diverging from the original inputs. The KL-divergence term can then be interpreted as regularizing encoder
parameters, encouraging the approximations to be close to the original data distribution [11]. We aimed to
reduce the number of the parameter but to force model to learn distinct features at the same time. To do that,
we dedicated separate smaller scale VAE for each channel of the output of prior convolutional layer. Feature
map of each channel is processed separately in the VAEs and reconstructions are concatenated and fed into
the transposed convolutional layer. This way we overcome parameter explosion in the previous architecture
described.
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Figure 1. CMCAVAE, convolutional architecture that consists of two consecutive convolutional layers accompanied by
transposed convolutions. TR refers to Transpose of convolution operation.

2.2.1. Design

We focused on to design a model that uses the least number of filters with larger size in order to learn general
scheme of syntactic representations buried inside transmission probabilities of letters and words. For this
reason, we have designed and used two convolutional layers for encoder and decoder. In order to provide
some translation invariance, second convolutional layers strides are set to two. Allowing the model to learn
inter-feature dependencies itself seems more reasonable rather than letting it figure out operation scheme of the
max-pooling operator, as mentioned in [12]. However, during internal comparisons, we concluded no difference
of convergence between both applications due to the architecture in this study. This may be caused by higher
equivariance by of using fewer convolutional layers compared to deeper convolutional networks. For the decoder
part same number of layers applied with the same stride settings at corresponding symmetrical opponents of
encoder layers. Even though [8] suggests, the increased size of receptor fields at deeper levels of detection, we
found no difference was observed between neither convergence nor lowest error point of two approaches in this
study (see Figure 2).
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Figure 2. Increasing and decreasing filter size validation losses.

VAE learns to map the distribution of the data that is reconstructed to a n -dimensional random normal
distribution. Since stacking multiple layers causes a parameter explosion on the forthcoming layers, single
VAE is separated to multiple parallel ones that each aligned to a channel of the convolutional layer (see
Figure 1). Channel aligned part of the model begins with a convolutional layer, which has 16 filters and
each channel of convolution output is directed to a single VAE. Thus, we have M = 16 VAE where each
channel of the convolution layer output mapped to a VAE. We have called this specific type of architecture
as Convolutional Multiple Channel Aligned Variational Auto-Encoder (CMCAVAE). This scheme is expected
to increase discrimination of detected features among the filters. Since convolutional layers are expected to
replace parse trees, this type of alignment would cause higher distinction of features by enforcing separate
error back-propagation to their own specific kernel. This type of alignment of VAE is inspired from biological
equivalents where each neuron has multiple synapses to post-synaptic cells and activation potential depends on
“The amount of transmitter released is determined by the number and frequency of the action potentials that
reach the presynaptic terminals” [13, p. 35]. This type of activation involves at least two external parameters
received by the cell. If we consider synaptic spaces -where neurotransmitter matter travels to post-synaptic
cell-, there is also re-absorption of neurotransmitter released from pre-synaptic cell to be considered as an
environmental property that affects activation potential at a post-synaptic cell. In addition, one has to consider
that post-synaptic ion channels might be addressed to a certain type of neurotransmitter.

Inspiring from synaptic structures, we considered latent space of VAE as synaptic space hence we decided
to use multiple variational auto-encoders at a smaller scale, by this way, parameter explosion is prevented and
our multiple variational auto-encoder models outperform single VAE model which has parameters higher 16
times. Although that the model had more parameters, it was observed to report NaN loss. Even though some
regularization and gradient clipping were applied, it had only delayed the fall out of the convergence.

Using multiple variational auto-encoders and forcing each of them to learn from feature map of a single
convolution kernel might help them to map separate parts of distribution to different latent spaces.

We used a connection dropout rate with 0.5 probability as it is advised by [14] to prevent VAEs from
overfitting so that they can handle recognition task evenly. For our case, effect of dropout can be observed
very clearly in Figure 3. Dropout is a method of regularization where either specified percentage of randomly
selected neurons from a layer masked, so output connections will not be added to activations of next layer, or
specified percentage of randomly selected weights are masked. During back-propagation, these masked neurons
or connections are not updated according to back-propagation rules.
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Figure 3. Validation loss of model 5 with Adam/RMSProp and with/without dropout. It is very clear that the model
overfits without dropout.

Convolutional layer is used before VAEs aims to hold the position of a separation point where each filter
extracts feature for different latent space encoded.

2.2.2. General model for sentence representation generation
In this subsection, we propose several alternative models and their comparison with the baseline on learning to
generate sentence representations that match the ground truth answer. The objective of this test is to compare
convergence capabilities and performance of various architectures of various parameter numbers. Most of the
models shown in Figure 4 have an approximately same number of parameters and some of them have significantly
fewer parameters, but reach comparable learning performance on this specific measurement. Additionally, one
can check the visual representation of an answer from the dataset, as well as answers generated by one of our
proposed model and baseline model in Figure 1. Traning a full Question Answering (QA) model consists of
multiple stages as follows:

1. Training a multiple CMCAVAE for the question and answer dataset separately.

2. Using encoder of question CMCAVAE and decoder of answer CMCAVAE, training intermediary model
which is capable of re-creating language features, and an approximation of answers.

3. Model itself can be trained specifically for answer selection task.

All the intermediary models proposed are receiving mean and variance vectors produced by VAEs. Mean
and variance vectors which it has output are sampled by sampling layers of decoder VAEs.

3. Experiments
During the experiments with the various intermediate and latent dimension configurations, -among the models
we have proposed- we have observed that latent dimension is more important than a large number of convolu-
tional layers when it comes to the learning distribution. For this and computational reasons the number of VAE
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Figure 4. Convergence plot of multiple architectures under same conditions.

is limited to 16 and intermediate latent dimension sizes are increased. For the baseline, we considered Con-
volutional Long Short-Term Memory (LSTM) model that is proposed in [15]. Convolutional LSTM originates
from LSTM [16] is widely used for learning sequential data, and natural language processing. However, for
convolutional LSTM, kernels have their gating mechanism and this provides convolutional architecture to have
control over its own output. LSTM is a variation of Recurrent Neural Network (RNN). It has self-connected
units that allow information flow or prevent it. In contrast to RNN it has an input and output gate units
in order to protect the cell from irrelevant inputs or other cells from the irrelevant output of the cell. More
specifically it has a forget gate, state, external input gate and output gate units.

Convolutional LSTM has both sparse interactions with the input and hidden states to temporal features.
However, it was unable to establish a stable convergence curve with its current configuration. We have preferred
a mini-batch size of 32 for all models compared in this study. We have experimented with several other mini-
batch sizes, and we have observed good results in validation with larger ones even though it is not advised to
use sizes larger than 32. Dataset consists of first 32000 dialog pairs that the sentence length is less than 50
characters of Cornell Movie Dialog Corpus [17], and it has been split by the ratio of 0.8 and 0.2 for train and
validation, respectively. All the plots shown in this study are the validation losses of models. The separate
test results are not included due to the fact that even the baseline model has failed to reach a reasonable
reconstruction loss. Since the purpose of these tests is the measuring capacity of generative models for this data
representation in English language, model states are reset at each instance for recurrent models, thus they will
not be able to learn the data distribution in the dataset. Glorot Uniform [18] left as default weight initializer
method for all convolutional, dense and LSTM layers where U [−a, a] denotes to uniform distribution and n is
the size of previous layer in the network.

Wi,j ∼ U

[
− 1√

n
,

1√
n

]
(6)

Activation functions used for LSTM layers are left as hyperbolic tangent. It covers larger output value
range than logistic sigmoid and this extended domain reduces saturation at the edges of the function. Logistic
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sigmoid function is producing saturating values close to the edges of its domain. [19] says, hyperbolic tangent
function typically performs better than logistic sigmoid and refers to tanh(0) = 0 , which tangent activation
function similar to identity function near range of 0 . This makes tangent function a better candidate for fitting
linear models.

As optimizer, we mainly stick to Adaptive Moment Estimation (Adam) [20], with default parameters.
Adam optimizer only uses directions of the first order gradients, not the values of the gradients. This way it can
control weight update with a moving average of previous k gradients at the direction of the gradient calculated
the error at time step t . Additionally Adam has self-regularization mechanism to prevent initial biased average
of gradients to effect direction of convergence. This additional process is called as bias-correction.

For Adam, m0, v0 are 1st and 2nd moment vectors of gradients, θt is parameter at time step t , α is the
learning rate and ϵ = 10e− 8

gt =
∂L (θ, ϕ;x)

∂θt−1
, (7)

First moment estimate
mt = β1mt−1 + (1− β1)gt, (8)

Second moment estimate
vt = β2vt−1 + (1− β2)g

2
t , (9)

So, parameter update is achieved according to

θt = θt−1 − α

mt

(1−βt
1)

(
√

vt
(1−βt

2)
+ ϵ)

. (10)

On the other side, “Root Mean Square prop (RMSprop) with momentum generates its parameter updates
using a momentum on the rescaled gradient, whereas Adam updates are directly estimated using a running
average of first and second moment of the gradient” [20].

3.1. Model 1
Model 1 consists of multiple fully connected layers (see Figure 1) where an information bottleneck is placed
on purpose, in order to force the model to make generalization. Before the second hidden layer, a connection
dropout layer with 0.5 probability is placed. The inspiration for this type of installment comes from denoising
auto-encoders where input data points are corrupted by Gaussian noise, and the model is expected to produce
output that is complete/recovered version of the input. This learning strategy is expected to capture real data
distribution rather than the distribution of input samples used in the training dataset. With these insights, the
model has achieved fairly well convergence with some unexpected improvements. The dramatic drop in the loss,
which is shown in Figure 4, and followed by plain, stable with minor variations up until another drop in the
next 200 iterations. However, it was not that much of decrease and it was not included in comparative analysis.

3.2. Model 2
Model 2 solely consists of 1D convolutional layers. The motivation behind it comes from the unprecedented
success of 2D convolution operation on visual processes. Vectors derived from each variational auto-encoder does
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Layer Configurations
Model 1 32-7x7-16-5x5-16-3x3-z-16-3x3-16-5x5-32-7x7
Model 2 32-5x5-16-7x7-16-3x3-z-16-3x3-16-7x7-32-5x5

Table 1. Model 1 with decreasing filter sizes (DFS), and Model 2 with increasing filter sizes (IFS).

not depend on each other. However, they may unconditionally be inclined to detect similar varying features.
Information encoded in the vectors -which are concatenated mean and log − variance of each variational
auto-encoder- encodes to a specific point in the normal random distribution, and it is more important to learn
which variational auto-encoder produced it rather than where a specific feature repeated. For this reason, 1D
convolution has to be equipped with some form of spatial reduction technique. We considered max-pooling
operation between the stack of 1D convolutional layers. Towards to end of the model, two upsampling layers
used to enlarge, compressed input.

At the end of the intermediary model, single fully-connected layer applied to each vector, this procedure
is called Time Distributed (TD) where each 32 vector produced considered if they were some sequentially
dependent vectors -they are not- and single fully-connected layer applied to each vector independently. Even
though our early experiments show that increasing/decreasing filter sizes do not affect convergence directly (see
Table 1), filter sizes are set in decreasing order to force model to capture neighbor embedding patterns as it
passes through subsequent layers (see Figure 2). Since those layers have smaller receptive fields they are forced
to learn closer features occur between vectors. However, 1D convolution is observed to work best with LSTMs,
which will be discussed later.

3.3. Model 3
Model 3 is designed to be the successor of model 2, the number of filters at convolutional layers are increased
to 64. However, the increase in the number of parameters without regularization caused overfitting in first 200
iterations. However, when compared to many stacked fully connected layers and LSTMs, models 2 and 3 have
significantly fewer parameters, and having observed overfitting raises questions about architectural issues in
these models. The reason behind this conclusion is that the sparse interaction of 1D convolution is only limited
to patterns occur between consecutive vectors, not the ones occur among the vector on itself, so translation
invariance provided by this architecture is limited by itself. We have also observed that models 1, 4, and 5 have
stacked fully connected layers and LSTMs and they follow a more stable convergence in time.

3.4. Model 4
In model 4, it is aimed to cover weak points and merge fully connected layers with the LSTM. The first layer
of it is a fully connected layer where the number of parameters is 16x128 , as a reduction of the number of
parameters by half (see Figure 3). It is expected to learn relations between mean and variance vectors of each
VAE, so that LSTM can be fed with data that are more pre-processed. However, such a pre-processing step
limits LSTMs ability by its own ability to discriminate important features between mean and variance vectors
and vectors of other VAEs. LSTM is fed with a vector shape of (16, 128) and has 32 units so that it has the
higher capacity - the number of parameters- and might memorize directly. However, memorization of input
distribution is not directly possible due to the pre-processing layer before LSTM. After LSTM, we use a fully
connected layer with (32x128) units before feeding it into the answer decoder.
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In model 5, it was decided to replace first fully connected layer with a pooling layer because of the
limitations we described previously. For this replacement, we decided to transpose 32x128 feature map and
used max-pooling afterwards. This type of transformation acts as a filter for activations on each individual
vector rather than pooling between vectors. The remaining part of the architecture is denoted in same as the
Figure 4.

4. Conclusion and future work
Considering our data representation, Convolutional LSTM is expected to perform better against the models we
have proposed. However, it is reasonable to think that visualized features are not the ones we want the model
to learn, since that Convolutional LSTM is unable to generalize that information and instead starts memorizing
the train data. In other words, this data representation does not directly represent data points (letters and
words for this case) but instead, it shows relative probabilities of passing one state to another, one letter to
another and one word to another. This makes it a more difficult problem since the features to be learned are
impossible to be observed and must be internalized by the model. This could be the reason why our models has
followed a lower error rates with more stable convergence compared to the direct approach with Convolutional
LSTM.

Dimensionality reduction applied in the architectures of model 4 and 5 are considered necessary in the
future models. Other than mean and variance of the encoded distribution, it might require some additional
specific evaluation in order to create more meaningful activation. Thus, we added dimensionality reduction to
16x128 as a baseline to follow.

In model 4, a fully connected layer is used to reduce the shape of feature map, and therefore it prevents
LSTM from memorizing and directly learning from the real distribution. However, it also distorts real data
distribution and may be accompanied by a batch normalization layer afterwards.

In model 5, Tanh in LSTM may be replaced with another non-linear activation function because neither
encoder nor decoder is trained to handle activations below 0. Fully connected layer with a Rectified Linear Unit
(ReLU) activation is used to clear up them however, this squeezes the model in to an activation range where
activation function itself not designed to be, for this reason, it can be replaced in the future. An alternative for
decoder activation function can be considered as LeakyReLU , which is used in Generative Adversarial Networks
to keep gradients from getting sparse by allowing small negative values to pass [21]. 1D-pooling after transpose
layer seems to be working better than the fully connected layer in Model 4. Also, the latest results show that,
-see Figure 4- this method can be developed in order to improve performance.

MSE was used to measure reconstruction loss in the all models. However, it is not a convenient measure
for such a deep task buried inside a simple data representation and it does not seem to discriminate between
reconstructed parts and cannot relate to the length of output.

This type of data representation and learning may enable possibilities to learn unknown languages or
sequential patterns, such as Deoxyribo Nucleic Acid (DNA). HMMs are mostly used in the area field of
Bioinformatics for sequence comparison -aligning a sequence against a profile-, locating and defining suppressed
parts of a gene (which is called as CG islands) [22]. These problems are important because aligning multiple
DNA sequences raises computationally exhaustive challenges. CG islands, on the other hand, has importance
since they define transcription start sites. HMMs are also used for unknown parameter estimation, however
for our case, when we consider nucleotides as states which emitted with emission probability of 1.0, we have
to have transmission probabilities between nucleotides in order to convert the string into the representation of
transmission probabilities.
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For this reason, DNA and Ribo Nucleic Acid (RNA) chains can directly be represented as it has
been described in this study. This could allow us to extract meaningful features or subroutines by combin-
ing/customizing proposed models to have unsupervised feature extraction. With existing neural models, it
might even be possible to create structural hierarchy encoded in a DNA. Besides the best assumption, even for
the worst case, size-invariant running capabilities of convolutional networks could allow us to process very long
DNA sequences all together at once. When multiple DNA sequences need to be aligned, they can be processed
faster with a multi-channel convolutional network. However, as volumetric convolution mostly used in the field
of medical imaging and since [23] proposed that 3D convolution produces larger feature-maps, it might require
more training data in order to generalize matching parts of representation and extract more robust features to
be used for profile alignment. For such a task, candidate model must be trained on varying length and number
of DNA representations in order to generalize such a capability successfully. Even though overfitting problem
can be solved by some structural and computational constraints of regularization, it might not promise a success
unless sufficient amount of training data is available.

However, as a downside of neural language models, [24] suggests that performance of a basic encoder-
decoder deteriorates rapidly as the length of an input sentence increases. This actually can be considered
as fundamental design mistake which cannot be easily replaced. Neural network models, including some
convolutional ones, are based on encoder-decoder architectures and they are trained end-to-end fashion. This
forces the model to encode everything, however, natural languages have a sequential and progressive structure.
The alignment and translation mechanisms proposed in the [24] could allow usage of architectures, (developed
in this study) for profile alignment task more intuitively by allowing the model to correct itself while aligning
multiple sequences.
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A. Data representation

a) Original b) Convolutional LSTM c) Model 5

Figure A 1. Original representation of the answer, the one created by the baseline and the one created by model 5.
Re-creations are generated according to the same specific question in the dataset after 200 epoch.
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B. Models

Figure B 1. Model 1 Figure B 2. Model 2, TD
refers to Time Distributed,
where same layer applied to a
time series.

Figure B 3. Model 4 Figure B 4. Model 5
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