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Abstract: Unmanned aerial vehicles are gaining importance with many civilian and military applications. Especially the
surveillance, search/rescue, and military operations may have to be carried out in extremely constrained environments.
In such scenarios, drone base stations (DBSs) have to provide communication services to the people at the ground. The
ground users may have no access to the global positioning system (GPS); therefore, their locations have to be estimated
using alternative techniques. Besides there may be threats in the environment, such as shooters. In this work, we address
the problem of optimal DBS deployment under the aforementioned constraints. We propose a novel DBS deployment
algorithm that uses estimated positions of ground users and threats. The proposed algorithm is based on receiver signal
strength-based maximum likelihood estimate of user locations and K-means clustering supported heuristic that takes
into account the positions of threats. Numerical results show that proposed algorithm performs close to the computation
intensive near-optimal algorithm and strikes a good trade-off between the number of unserved users and the probability
of DBSs not being hit.
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1. Introduction
The world’s population is becoming more and more urbanized each year. As stated in the United Nation’s
report, 30% of the world’s population was urban in 1930 and it is projected that 66% of world’s population will
be urbanized by 2050 [1]. The urbanization process brings some potential threats to the peace of the society.
The demand for limited resources such as water, energy, and food creates pressure to the system. This may
result in the increase of unrest and violence in the society and require military interventions in order to provide
stability in densely populated regions. However, current military doctrines do not sufficiently recognize the
challenges of conducting operations in urban environments [2]. Considering the necessity of urban warfare in
future conflicts, NATO examines the impact of urban operations on the military and seeks to identify possible
gaps in training, requirements, and capabilities.

There are key factors, which make the operation in urban battlefield challenging. Intelligence collection
is difficult and most of the time human intelligence [3] is needed regarding the activities of adversaries. The
presence of civilians in the operation area necessitates precision fire to prevent loss of civilian life. As the urban
operations are ground-intensive, maneuver warfare tactics are very difficult to apply. The last but not least
challenge is the provisioning of a reliable communication network for allied forces [3, 4].
∗Correspondence: aakarsu@etu.edu.tr
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Establishing and maintaining a wireless battlefield communication network is a challenging task. Ter-
restrial communication suffers from non-line-of-sight (NLoS) and deployment of relays or base stations poses
difficulties, along with the security risks. In addition to this, mobility of friendly forces on the battlefield contin-
uously affects the network coverage performance; hence, repositioning of communication equipments is required.
However, as the ground intensive urban combat restricts the area for deployment, the equipments may not be
placed at the appropriate locations [3]. Furthermore, the selection of the suitable position requires the location
information of the soldiers. However, the presence of widely available and inexpensive global positioning sys-
tem (GPS) jammers may prevent the sharing of position information. In order to mitigate the effects of GPS
jamming, researchers focus on the development of an antijamming GPS system equipped with antenna arrays
and advanced signal processing algorithms such as beamforming and spatial filtering [5]. However, designing an
antijamming GPS device that meets strict size, weight, power, and cost (SWaP-C) requirements and equipping
all soldiers deployed in the field with these devices are challenging tasks to accomplish.

Drone base station (DBS)-based communication and soldier position estimation offers inherent solutions
to the aforementioned problems. First, high-altitude DBS deployment reduces the probability of NLoS trans-
mission and line-of-sight (LoS) condition dominates the channel between the DBS and the user [6]. Second,
GPS of a drone is more robust to GPS jamming applied from the ground as the antenna has an unobstructed
view of the sky, which ensures good signal reception and provides, to some extent, spatial filtering of jamming
signals [5]. Hence, with the help of localization techniques and usage of drones as reference points estimating
the locations of soldiers becomes possible [7]. In particular, received signal strength (RSS)-based localization,
which does not require hardware modification of drone is an attractive method for this application. The final
advantage of the DBS use is related to the handling of soldiers’ mobility. DBS is able to fly to the new position
in order to maximize coverage when the soldiers move from one location to another.

As there are threats to soldiers in the ground, there are threats to DBSs in the air as well. The authors
in [3, 8] reported that the urban warfare is primarily conducted with small arms such as sniper rifles or machine
guns. In this respect, we identify that small-arm-equipped enemy who is trained to shoot down DBS, which
we call drone shooter thereafter, pose a significant risk in maintaining DBS-based communication service in the
urban warfare. Therefore, DBS placement decision should be made considering the coverage and drone safety
requirements with respect to an operation undertaken. This phenomenon complicates the already difficult
problem of DBSs deployment [9].

In this work, we examine the scenario of urban warfare and its challenges from the perspective of wireless
communication networks. We propose a novel DBS deployment algorithm, which employs both low-cost RSS-
based technique to estimate soldier positions in the urban environment and utilize k-means clustering supported
heuristic algorithm which takes into account the presence of drone shooters. We consider air-to-ground Gaussian
mixture path loss model [6] and derive the maximum likelihood (ML) estimation of the angles between DBSs and
soldiers, that enables position estimates of soldiers. For the same scenario, we investigate a near-optimal upper
bound for coverage using a computationally intensive particle swarm optimization (PSO) method. Finally, the
discussion is provided regarding the deployment decision under two conflicting objectives, namely, minimum
number of soldiers unserved and maximum probability of DBSs not being hit. To the best of our knowledge,
this is the first article which investigates the DBSs placement problem considering the requirements of urban
warfare.

Recently, DBS deployment has attracted many researchers. There are diverse use cases for the utilization
of DBSs and it is considered as an important component in beyond-5G networks [10]. In our previous work, we
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studied fairness-aware multiple DBSs deployment and analyzed the use of the efficient clustering algorithms for
determining the positions of a number of DBSs in a 3-dimensional (3D) space in order to achieve maximum log-
sum data rate. The work in [11] derives the optimal deployment altitude of a single DBS to maximize coverage
with minimum transmit power. In [12], the backhaul capacity-aware 3D placement of a DBS is considered. The
authors propose two placement approaches, one maximizes user coverage and the other maximizes the total
user data rate. [13] studies the placement of a single DBS to maximize network revenue that is defined as the
number of users covered. The authors in [14] employ the PSO technique to find the number of DBSs required
and their positions to minimize the number of uncovered users. In [15], a polynomial time algorithm aiming
to minimize the number of DBSs needed to cover users is proposed. Here, the problem formulation does not
consider interference amongst DBSs. The DBSs deployment based on circle packing theory is studied in [16]
and [17]. In the former work, the positions of DBSs are determined to maximize total coverage with minimum
transmission power and in the latter, DBSs are placed to maximize the number of covered users with different
quality of service requirements. In [18], clustering algorithms are used to position the unmanned aerial vehicle
(UAV) mounted picocells in a two-tier network. There is also some discussion regarding the effect of user
positioning error on the received signal strength for users serviced by the UAV picocells. However, the presence
of NLoS link and interference amongst base stations are ignored. In addition, the assumed user positioning
errors are not sufficient to investigate network performance in the GPS-denied urban environments.

The RSS-based positioning technique is very attractive for DBS-based soldier positioning application
because it provides a low-cost and easy-to-implement solution. RSS-based positioning does not require antenna
arrays employed in the angle-based localization technique [19]. Furthermore, it does not require precise time
synchronization that is needed in time-based localization approaches [20]. The use of drones for positioning
is studied in [21] and [22]. The author in [21] considers a single flying drone equipped with GPS and particle
filtering algorithm to design RSS-based positioning. In [7], drone based positioning using RSS samples is studied
for urban environment. The authors derive Cramer-Rao lower bound for the estimated distance as a function
of the elevation angle and the drone-to-node distance. However, more realistic Gaussian mixture channel model
is not considered and formulation of ML estimator is not provided.

The rest of the paper is organized as follows. In Section 2, we present the system model. In Section 3, the
DBSs deployment algorithm which considers the requirements of urban warfare is presented. In Section 4, we
present numerical simulations and discuss the trade-offs and performance. Finally, in Section 5 we summarize
our work and discuss the future work.

2. System model and assumptions
We focus on a downlink transmission system, where DBSs provide service to the soldiers in urban terrain as
shown in Figure 1. Using the definitions given in [23], we identify that there are two major zones in urban
battlefield, theater of operation (TOO) and theater of war (TOW). In our work, friendly force soldiers are
distributed in the TOO according to the structured group mobility model (SGMM) which is used for modelling
task oriented node positioning [24, 25]. Drone shooters are distributed uniformly in the TOW. However, to be
more realistic it is assumed that each soldier has a protected zone around himself, where drone shooters are not
positioned. The users and drone shooters are assumed to be stationary and the deployment problem is solved
for this fixed topology.

Due to GPS jamming, we consider that soldiers have no access to GPS service, whereas DBSs utilize
GPS service to locate themselves. We consider that both friendly forces and drone shooters are positioned on
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Figure 1. System model.

the ground, not on rooftops or in buildings. Deploying drone shooters on the rooftops is not feasible as they
can be easily detected by surveillance drones and become an open target. On the other hand, buildings may
limit the shooter’s mobility and field of view. DBSs are assumed to be located at a fixed altitude and have the
same transmission power. We also assume that a separate frequency band is allocated for the communication
among DBSs and enough capacity is provided.

DBS deployment consists of two phases. In the first phase, DBSs fly to the fixed points assigned to each
of them to form an equilateral triangle on the TOO. At the corners of the triangle, DBSs collect short pilot
signals emitted from the radios of soldiers. We assume that all pilot signals reach DBSs. In the second phase,
the RSS of pilot signals are used to estimate soldier positions and deployment algorithm determines the final
positions of DBSs. It is assumed that soldiers are stationary and each soldier is served by a single DBS. We
consider Time Division Multiple Access (TDMA) for multiple access. In this scheme, each DBS assigns equal
fraction of time slots to each soldier. We consider that each user is connected to DBS achieving largest Signal
to Noise Ratio (SNR).

The positions of drone shooters are assumed to be obtained via Human Intelligence (HUMINT) network
1 or by soldiers who are trained to visually estimate target locations [26] and report to DBSs. Because soldiers
report the positions relative to their locations, the same error margin is applied to real positions of drone
shooters. The probability of DBSs not being hit is calculated when they reach their final operational positions
for providing service to soldiers.

We denote soldiers, DBSs, and drone shooters by the sets U = {1, ..., U} , D = {1, ..., D} , and T =

{1, ..., T} , respectively. The position of the ith soldier (xu
i , y

u
i ) is estimated and denoted by (x̂u

i , ŷ
u
i ) . We

denote the 3D position of the DBS j by (xd
j , y

d
j , h

d
j ) where j ∈ D .

1Smallwarsjournal (2014). Intelligence challenges in urban operations [online]. Website
https://smallwarsjournal.com/jrnl/art/intelligence-challenges-in-urban-operations [accessed 09 May 2019]
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2.1. Path loss model
We adopt the Gaussian mixture path loss model proposed in [6], whose simplified version is widely used by
the researchers for the analysis of DBS placement problems [12–14]. It is important to note that we apply a
realistic excess path loss model, which is dependent on the operating frequency, environment, and elevation
angle between the DBS and the soldier. The path loss between the ith soldier and j th DBS in the LoS and
NLoS cases are formulated as,

PLij
LoS(θij) = 10γ log

(
4πdij(θij)fc

c

)
+ ηLoS(θij), (1)

PLij
NLoS(θij) = 10γ log

(
4πdij(θij)fc

c

)
+ ηNLoS(θij), (2)

where γ is the path loss exponent, fc is the operating frequency, c is the speed of light, dij(θij) = hj

sin(θij)

and θij = arctan
hj

rij
are the distance and elevation angle between the soldier i and DBS j , respectively where

hj is the altitude of the j th DBS and rij equal to
√
(xd

j − xu
i )

2 + (ydj − yui )
2 is the horizontal distance between

ith soldier and the j th DBS. ηLoS(θij) and ηNLoS(θij) are the excess path loss components (in dB) of the LoS
and NLoS links, respectively.

In [6], the excess path loss samples, which are obtained by a ray tracing simulation, are organized in
terms of the elevation angle. For simplicity, the authors propose to use Gaussian distribution for ηLoS(θij) and
ηLoS(θij) as follows,

ηLoS(θij) ∼ N (µLoS , σ
2
LoS(θij)), (3)

ηNLoS(θij) ∼ N (µNLoS , σ
2
NLoS(θij)), (4)

where µLoS and µNLoS are the mean excessive losses and σLoS and σNLoS are the standard deviations of the
LoS and NLoS links, respectively. The elevation angle dependent standard deviations of the LoS and NLoS
links are formulated as,

σLoS(θij) = α1 exp(−β1θij), (5)

σNLoS(θij) = α2 exp(−β2θij), (6)

where pairs (α1, β1) and (α2, β2) are frequency and environment-dependent parameters for the LoS and NLoS
links, respectively.

The authors in [27] derived a closed form expression for the probability of LoS,

pijLoS(θij) =
1

1 + a exp(−b(θij − a))
, (7)

where a and b are environment dependent constants, pijLoS is the probability of LoS between ith soldier and

j th DBS. The probability of NLoS for the same pair, pijNLoS , is calculated as 1− pijLoS(θij) .
Finally, the elevation angle-dependent mean path loss is formulated as:

PLij(θij) = PLij
LoS(θij)p

ij
LoS(θij) + PLij

NLoS(θij)(1− pijLoS(θij)). (8)
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2.2. Modeling soldier distribution

In the urban warfare, small teams are assigned to operations at the tactical level. They operate and move in
groups to accomplish a given task [28]. The SGMM is used to model node positioning which helps researchers
to analyze military networks in a more realistic way [24, 25]. In our work, we consider a snapshot of a network
where a number of soldier groups are distributed in the TOO, which is a cell with radius rTOO . In this model,
firstly, group leaders are distributed uniformly in the TOO. Then, soldiers are positioned in reference to their
group leaders. Figure 2 shows the placement of the ith soldier with respect to the group leader k . The
distance, dki , and angle, aki , between the soldier i and group leader k are selected from a Gaussian and uniform
distribution, respectively. In our previous work, we investigated the performance of networks where users are
uniformly and nonuniformly distributed [9]. In case of nonuniform user distribution, the interference becomes
more challenging to handle when user groups are in close proximity.

Figure 2. Placement of the ith soldier in reference to the k th group leader.

3. DBS deployment in urban warfare

The specific requirements of urban warfare significantly affect the DBSs deployment process. In this regard, we
first derive the problem of ML estimation of soldier locations based on the RSSs. In addition, we introduce the
small arm weapon model and derive the probability of DBSs not being hit anticipating the behavior of a drone
shooter. Then, we present our novel deployment algorithm specifically designed for the challenges of urban
warfare. In order to understand the coverage performance of our algorithm, we investigate the near-optimal
deployment of DBSs by proposing 4 different optimization objectives.

3.1. Estimation of soldier locations
Here, we assume that the path loss to each drone is independent. As the drones are significantly apart, this is a
reasonable assumption. The distribution of path loss is a mixture of two Gaussians (for LoS and NLoS) which is
presented in [6]. The probability density function of the ith soldier’s path loss vector, PLi = [PLi1, . . . , PLiD] ,
given the location of the soldier by the elevation angles, θi = [θi1, . . . , θiD] , are as follows:
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f(PLi; θi) =

D∏
j=1

(
pijLoS(θij)√
2πσ2

LoS(θij)
exp

(
−
(PLij − E[PLij

LoS ])
2

2σ2
LoS(θij)

)

+
pijNLoS(θij)√
2πσ2

NLoS(θij)
exp

(
−
(PLij − E[PLij

NLoS ])
2

2σ2
NLoS(θij)

))
(9)

where E[PLij
LoS ] and E[PLij

NLoS ] are mean LoS and NLoS path losses respectively.
The log-likelihood function is

L(θi) =

D∑
j=1

log

(
pijLoS(θij)√
2πσ2

LoS(θij)
exp

(
−
(PLij − E[PLij

LoS ])
2

2σ2
LoS(θij)

)

+
pijNLoS(θij)√
2πσ2

NLoS(θij)
exp

(
−
(PLij − E[PLij

NLoS ])
2

2σ2
NLoS(θij)

))
(10)

Upon maximizing the log-likelihood function, we find the elevation angles of soldier i .

θ̂i = argmaxL(θi). (11)

Then, the estimated location of soldier i is found by solving the multilateration problem:

(x̂u
i , ŷ

u
i ) = arg min

xu
i ,y

u
i

D∑
j=1

(√
(xd

j − xu
i )

2 + (ydj − yui )
2 − r̂ij

)2
,∀i ∈ U, (12)

where r̂ij is the estimated distance between the ith user and j th DBS and computed using the estimated
elevation angle obtained from Equation 11 as

r̂ij =
hj

tan θ̂ij
. (13)

3.2. Drone shooter model and probability of DBSs not being hit
The presence of drone shooters is one of the most challenging issues for sustaining communication service in
urban warfare. Furthermore, as DBSs are shot down, the OPEX (Operational Expenditure) increases and
logistic problems arise. From the communication perspective, shooting down of a single DBS significantly
changes the state of network and reconfiguration is needed to compensate for the service loss [29]. Therefore, it
is critical to consider the security of all DBSs while determining their positions. Our proposed algorithm that
we elaborate in the subsequent section takes into account the probability of DBSs not being hit as a security
metric to decide the positions.

While calculating the probability of DBSs not being hit, we consider that each drone shooter tries to hit
the nearest DBS. The probability of drone shooter seeing the nearest DBS unobstructed is calculated from (7).

The probability of DBSs not being hit is calculated as pnoHit =
∏D

j=1(1 − pjhit) , where pjhit is the probability

of j th DBS being hit that is expressed as pjhit = 1 −
∏

k∈Tj
(1 − phit(djk)p

jk
LoS) , where Tj is the set of drone
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shooters nearest to DBS j , phit(djk) is the probability of DBS j being hit by drone shooter k , (k ∈ T ) , djk is

the distance between the DBS j and drone shooter k , pjkLoS is the probability of LoS between the DBS j and
drone shooter k . We assume that drone shooters are equipped with sniper rifles. The work in [30] presents the
historical probability of hit values of this weapon at certain distances for stationary man-sized targets. We fit
the data to the explicit mathematical formula as follows:

phit(d) =

{
100−5 exp(0.0028×d)

100 , if d < 985m
210.58 exp(−0.0023×d)

100 , otherwise.
(14)

3.3. DBS deployment based on threat-aware user clustering
Here, we describe our proposed DBS deployment algorithm that sequentially executes ML estimator for soldiers’
locations, k-means clustering, and a heuristic which increases pnoHit and at the same time avoids a major
degradation in the ratio of unserved soldiers, Nu . Figure 3 shows the general architecture of the proposed
algorithm, which we call threat-aware clustering with estimated positions (TACEP) thereafter. The algorithm
consists of three phases. In the first phase, for each soldier, RSSs are collected and path losses between DBSs and
soldier are calculated. Then, ML estimation for finding elevation angles θ̂ij , ∀i ∈ U ,∀j ∈ D and multilateration

for estimating user positions ŵu
i = [x̂u

i , ŷ
u
i ] , ∀i ∈ U are applied respectively. Then the estimated soldier

positions are clustered to find the positions of DBSs wc
j = [xc

j , y
c
j ] , ∀j ∈ D . The minimum sum-of-squares

clustering problem is defined as follows:

Figure 3. Algorithm architecture of TACEP.

min
wc,A

∑
i∈U

∑
j∈D

Aij∥ŵu
i −wc

j ∥2

subject to∑
j∈D

Aij = 1, ∀i ∈ U

Aij ∈ {0, 1}, ∀i ∈ U,∀j ∈ D

(15)
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where wc is the positions of DBSs, Aij is a binary variable and is equal to 1 if ith user is associated with
j th DBS. We adopt Lloyd’s algorithm to solve this clustering problem. The algorithm first randomly assigns
positions to the DBSs. Then, each soldier connects to the nearest DBS and the soldier groups S1, ..,SD are
formed. The position of each DBS is found by calculating the mean of soldiers’ positions connected to the
DBS. The position update continues until there is no major change in the positions of DBSs. In the final step,
our proposed iterative threat-aware heuristic approach is applied to find final positions of DBSs wd

j = [xd
j , y

d
j ] ,

∀j ∈ D . In this approach, first the most vulnerable DBS (the one with the highest hit probability) is found
and then its new location is calculated by moving DBS by a fixed distance, d∆h , away from the closest shooter.
Next, if new pnoHit is larger than the previous one, the position of DBS is updated. This process continues until
new pnoHit is not larger than the previous one. The maximum distance between the original (before applying
heuristic) and new DBS position, dmax

h , is predetermined. If dmax
h is reached for a DBS and it is still the most

vulnerable one, algorithm considers the second most vulnerable DBS to move.

3.4. Minimum number of unserved soldiers
The challenging nature of urban channel makes the problem of DBS deployment very hard. Randomly changing
angle-dependent excess losses prevent convergence to an optimal solution for minimizing the number of soldiers
unserved. However, there are methods which statistically provide better solutions than the others. In our
investigation, we define 4 different objective functions to achieve a near-optimal solution for minimizing the
number of unserved soldiers in the GPS-enabled environment. For each case, the positions of DBSs are obtained
by maximizing the objective function and then the number of unserved soldiers, denoted by Nu , is determined.
We adopt the PSO algorithm for solving the problems and limit the number of iterations. Our motivation to
limit the number of iterations is to consider a practical case where the computing resources are restricted as it
is in the battlefield.

We assume that soldier–DBS association is performed on the basis of received signal power. Let αi be
the DBS selected by the ith soldier.

αi = argmax
j

Rij(x
d
j , y

d
j , h

d
j ), (16)

where Rij(x
d
j , y

d
j , h

d
j ) is the received signal power from the j th DBS at the ith soldier terminal and is calculated

as:

Rij(x
d
j , y

d
j , h

d
j ) = 10

PT +Gij−PLij
10 , (17)

where PT is the transmission power (in dBm) of a DBS, Gij is the gain of the DBS antenna and is approximated
by [31].

As we indicate in Section 2, the capacity of a DBS is equally shared amongst the soldiers in the time
domain. Let N j

s , be the total number of served soldiers by the j th DBS.

N j
s =

∑
i∈U

Iji , ∀j ∈ D, (18)

where binary variable Iji is defined as:

Iji =

{
1, if αi = j and DRi(x,y,h) > RTH

0, otherwise.
(19)
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where RTH is the data rate threshold, DRi(x,y,h) is the data rate of the soldier i , (x,y,h) denotes the
positions of all DBSs where x = [xd

1, .., x
d
D] , y = [yd1 , .., y

d
D] , h = [hd

1, .., h
d
D] . DRi(x,y,h) equals:

W

Nαi
s

log2

1 +
Riαi(x

d
αi
, ydαi

, hd
αi
)

NoW +
∑

j ̸=αi

Rij(xj , yj , hj)

 . (20)

Hence, the number of served soldiers can be found by Ns =
∑

j∈D N j
s and the number of unserved soldiers can

be found by Nu = N − Ns . Given the same altitude for DBSs, the following approaches are used to find the
horizontal positions of DBSs with the help of the PSO algorithm. We call the algorithms given below as LinKP,
LogKP, CovKP, and ClogKP, respectively.

3.4.1. Maximizing sum of data rates approach (LinKP)

argmax
x,y

∑
i∈U

DRi(x,y,h)

subject to√
x2
j + y2j ≤ rTOO ∀j ∈ D

(21)

3.4.2. Maximizing sum of log data rates approach (LogKP)

argmax
x,y

∑
i∈U

log(DRi(x,y,h))

subject to the same constraint given in Eq. (21)
(22)

3.4.3. Maximizing number of served soldiers approach (CovKP)

argmax
x,y

∑
i∈U

∑
j∈D

Iji

subject to the same constraint given in Eq. (21)
(23)

3.4.4. Maximizing joint coverage and sum log rate approach (CLogKP)

In each iteration of CLogKP algorithm, the particles with the largest Ns is found and then the one with the
largest sum log data rate capacity is selected as the global best solution. The constraint given in Eq. (21) is
applied for the positions of DBSs.

4. Simulation results
In this section, we present the performance of our proposed algorithm, named TACEP, and compare its
performance with three different benchmark algorithms. These benchmark algorithms are all threat-unaware.

• The first benchmark algorithm is soldier location-unaware EQT which simply places the DBSs at the
corners of an equilateral triangle over TOO.

1158



AKARSU and GİRİCİ/Turk J Elec Eng & Comp Sci

• Second benchmark is a K-means clustering-based algorithm named KCEP. It clusters soldiers based on
the estimated positions and places DBSs at the centers of clusters.

• The third benchmark algorithm is a version of CLogKP named CLogEP which we explain in this section.
This serves as a lower bound on the Nu performance.

We use MATLAB as a simulation platform. The simulations are run for 100 different network topologies
where the soldiers and drone shooters are distributed according to the models given in Section 2. Then, the
average of Nu and pnoHit results, which are denoted by Nu and pnoHit respectively, are presented. Unless
stated otherwise, the parameters used in the simulations are from Table 1.

Table 1. Simulation parameters.

Parameter Definition Value
U Number of soldiers 80

D Number of DBSs 3

T Number of drone shooters 3

fc Carrier frequency 2GHz

rTOW Radius of TOW 1500m

rTOO Radius of TOO 1000m

rPZ Radius of PZ 50m

dmax Max. dist. 100m

W Bandwidth 20MHz

N0 Noise power spectral density −170dBm/Hz

a, b Environmental parameters 9.61, 0.16

ηLoS , ηNLoS Mean path loss 1dB, 20dB

θB DBS antenna beamwidth 140◦

PT DBS Transmission power 30dBm

RTH Data rate threshold 500Kbps

d∆h , dmax
h Parameters for heuristic 20m, 100m

NMC Monte carlo simulations 100

We will first determine a threat-unaware lower bound for the number of unserved users (Nu ) performance.
For this purpose, we will compare the 4 different objective functions for the PSO-based optimization. In Figure
4, Nu performance of 4 different optimization objectives are shown. Here the results of the first approach,
named LinKP, show that placing DBSs to maximize the sum of data rates is inadequate for achieving the
minimum Nu . The second approach, LogKP, maximizes the sum of log data rates and provides significantly
better performance than that of LinKP. As the soldier coverage is the main problem, CovKP is one of the most
promising methods to find near-optimal results. However, we find that there is a better approach than CovKP.
As the combination of CovKP and LogKP, CLogKP achieves the best performance among all approaches. In
this respect, we identify CLogKP and its version named as CLogEP, which uses estimated positions of soldiers
instead of real positions, as a near-optimal lower bound for the minimum Nu . We provide the results of both
CLogKP and CLogEP in Table 2, which shows that our proposed RSS-based ML estimator provides a good
performance for estimating the soldier’s positions.
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Figure 4. Number of unserved soldiers performance for different DBS altitudes. CLogKP achieves the best performance;
hence, it will be regarded as a lower bound on the Nu performance.

Nu and pnoHit performance of TACEP and comparison algorithms are presented in Figures 5 and 6,
respectively. With respect to Nu performance of the algorithms, the worst results are obtained from EQT
as expected since it does not consider the locations of soldiers. TACEP and KCEP perform very closely to
each other. The performance gap between TACEP and CLogEP increases as the DBSs are placed at higher
altitudes. The reason is that as the DBSs are deployed at higher altitudes, the interference becomes more
difficult to manage and requires more consideration. As presented in Figure 6, TACEP achieves the best pnoHit

performance which is the primary objective of this algorithm. On the other hand, KCEP performs moderately
well because the centers of soldier clusters are located in the relatively safe regions where shooters are present
with low probability.

For the altitudes of 600 m and 800 m, Table 2 shows the performance of the algorithms in terms of
Nu , pnoHit and the average ratio of the number of unserved soldiers, which is denoted by ρu and is equal to
Nu/N . Considering ρu performance at the altitude of 600 m, TACEP provides more than three times better
performance than that of EQT and the performances of KCEP and TACEP are very close to each other. The
best performance is provided by CLogEP as expected. On the other hand, pnoHit performance of TACEP
considerably exceeds the performance of other algorithms. TACEP outperforms (Nu near-optimal) CLogEP
by 31.7% in terms of pnoHit . This increase has a significant effect on the mission’s outcome considering that a
DBS serves many soldiers who need to receive critical ISR information and the available number of DBSs are
limited.

At the altitude of 800 m, KCEP and TACEP again perform very close to each other in terms of ρu . It is
observed that CLogEP handles the network better as the altitude increases. This gain is obtained via CLogEP’s
interference management capability which comes with increased computational complexity. In regard to Nu

performance, TACEP provides nearly 15% better performance than those of CLogEP and EQT. This result
shows that the efficiency of TACEP is higher at lower altitudes.
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Figure 5. The number of unserved soldiers performance
versus DBS altitudes. Proposed TACEP has a perfor-
mance almost equal to KCEP and very close to ClogEP.
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Figure 6. Probability of DBSs not being hit performance
versus DBS altitudes. Proposed TACEP has a significantly
better performance.

Table 2. Performance results for DBS altitudes of 600 m and 800 m. The close results of CLogEP and CLogKP suggest
that our proposed position estimator works efficiently.

Algorithm Nu (600m) ρu pnoHit Nu (800m) ρu pnoHit

TACEP 1.032 0.013 0.34 3.669 0.045 0.532
KCEP 0.872 0.010 0.279 3.204 0.040 0.485
EQT 3.784 0.047 0.29 8.811 0.110 0.465
CLogEP 0.580 0.007 0.258 1.241 0.015 0.462
CLogKP 0.418 0.005 0.244 1.094 0.013 0.459

Trade-off curve of Nu with respect to pnoHit performance of the algorithms are shown in Figure 7. It
shows that the best performance is provided by CLogEP, as expected. According to these results, TACEP’s
improved pnoHit performance does not compromise the near-optimal Nu performance of CLogEP but strikes
a good trade-off between Nu and pnoHit . In addition to that, TACEP may be chosen to meet mission specific
requirements such as the DBSs’ deployment altitude and security.

In the final analysis, we investigate the effect of the number of drone shooters on the probability of DBSs
not being hit. Figure 8 shows that TACEP provides the best performance and outperforms other algorithms
by at least 30% at all altitudes. This shows the efficiency of the TACEP on handling the increasing number of
drone shooters present in the theater of war.

5. Conclusion
In this work, we have provided a comprehensive examination of the deployment of DBSs in an urban warfare
scenario. In this respect, we have introduced specific challenges, namely, a GPS-denied environment for the
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Figure 7. The number of unserved soldiers with respect to
probability of DBSs not being hit. The results are obtained
for the altitude range [500m-900m]. The results show that
our proposed fast algorithm strikes a good trade-off.
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Figure 8. Probability of DBSs not being hit performance
versus number of drone shooters. DBS altitude is 700m.

soldiers on the ground and presence of drone shooters aiming to destroy DBSs. Considering these challenges,
we have proposed a fast algorithm, referred to as TACEP, to determine the positions of DBSs. Furthermore, we
have proposed a PSO-based algorithm in order to achieve near-optimal soldier coverage. Simulation results have
shown that TACEP outperforms all other algorithms in terms of probability of DBSs not being hit. TACEP
also provides a near-optimal coverage performance, when compared with a computation intensive PSO-based
algorithm. Future work will consider the case of mobile soldiers and online, adaptive DBS deployment schemes.
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