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Abstract: Understanding human activities is a newly emerging paradigm that is greatly involved in developing
ubiquitous health care (u-Health) systems. The aim of these systems is to seamlessly gather knowledge about the
patient’s health and, after collecting knowledge, make suggestions to the patient according to his/her health profile.
For this purpose, one of the most important ubiquitous communication trends is the smartphone, which has drawn the
attention of both professionals and caregivers for monitoring the aging population, childcare, fall detection, and cognitive
impairment. Recognizing human actions in a ubiquitous environment is very challenging and researchers have extensively
investigated different methods to recognize human activities in the past decade. However, this field of research still needs
further exploration in order to improve the accuracy and reduce the computational cost of these health care systems.
Therefore, for expediting the existing system, this research work investigated a novel approach based on feature selection
and classification. In the proposed work, sparse Bayesian multinomial logistic regression (SBMLR) is used for feature
subset selection and a multiclass support vector machine (SVM) is adapted for the classification of six human daily
activities (laying down, walking up stairs, walking down stairs, sitting, standing, and walking). For identifying the best
features among the features returned by the SBMLR, a tuned threshold value is used for the selection of the features.
Further, other classification algorithms including K-nearest neighbor, decision tree, and naive Bayes and different feature
selection methods such as principal component analysis and random subset feature selection are also used for evaluation
and comparison. The dataset used for testing is obtained from the UCI Machine Learning Repository. It is collected
by using a smartphone embedded with an accelerometer and gyroscope. The experimental results show that the highest
accuracy of 99.40% can be achieved by using the proposed method. Moreover, the paired sample two-tailed t-test over
the significance level of 0.05 reveals that the performance difference between the proposed technique and a competing
technique is statistically significant.

Key words: Health care, activity recognition, feature selection, multiclass support vector machine, radial basis function,
loose grid search, linear kernel

1. Introduction
Monitoring physical activities plays a significant role in healthy living. It is a key research area and one whose
importance has notably increased in various related fields such as robotics, ubiquitous computing, artificial
intelligence, ambient assisted living, human–computer interaction, and health care. Recognizing human physical
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activities can be classified into vision-based and sensor-based recognition[1]. Vision-based systems aim to allow
machines to be able to achieve a human-like capability of seeing through acquiring, processing, analyzing, and
understanding digital images. The images can be acquired from a 3-D scanner, video sequences, or multiple
cameras. Various novel approaches[2–4] have been proposed to perform analysis on video sequences to identify
the pattern of ongoing patient activities. However, the adoption of these systems is raising privacy issues due
to the installation of unwelcoming devices, particularly the use of cameras.

In sensor-based recognition different ubiquitous sensing technologies such as eWatch [5], radio-frequency
identification (RFID) [6], microphones [7], pyroelectric infrared sensors (PIRs) [8], and smartphones equipped
with an accelerometer and gyroscope [9] are used for continuously monitoring patients without affecting his/her
normal activity patterns. Among the mentioned technologies, the use of accelerometers is the most preferred
option for tracking various activities due to their low cost, ease of installment, and small size. These accelerom-
eters can be placed on different locations of human body such as the waist [10, 11], the wrist [12–14], the chest
[15] the lower back [16], the thigh [14, 17], near the pelvic region [18], the hip [12, 14] and the foot [15] to iden-
tify different human activities like sitting, climbing, walking, sleeping, driving, and running. The recognition
of these activities helps to enable the development of different humancentric applications. These applications
include but are not limited to smart hospitals [19], childcare [10], smart homes [20], surveillance [21], mobile
health [22], fall detection [11, 23], assembly tasks [7], pulse rate [24], unobtrusive sleep [25], and elderly care [6].

The raw data acquired from the above-mentioned technologies are firstly preprocessed [26], in which
filtering is performed, missing values are replaced, outliers are identified, and different features are extracted.
There are different types of windowing techniques for extracting features that include activity-defined [22],
sliding[10], and event-defined windows[7]. In these techniques, features are computed from each window and
then these features are used for training and testing purposes. The preprocessing step is followed by the
feature selection and classification steps. In the feature selection step, a features subset is selected from the
candidate’s feature set. There are a large number of studies [27–30] in which different feature selection techniques
have been adapted for supporting the health care, early stroke diagnosis, elderly care, and other medical
monitoring applications. In these studies, different techniques such as genetic algorithm [31], sequential forward
floating search (SFFS) [32], iterative search margin based algorithm (Simba) [33], minimal redundancy maximal
relevance criterion (mRMR) [34], and Relief [35] were used for feature selection. Although all available features
can be used for classification, the problem with this approach is that utilizing all features does not improve
the classification accuracy of diagnosing the patients due to the inclusion of irrelevant features. Therefore, for
reducing the dimensionality in the feature selection step, irrelevant features are detected and discarded. As a
result, this increases robustness and reduces computation time.

The main contribution of the present paper is the adaption of an efficient wrapper-based feature selection
method and classification technique for improving the accuracy of a health care system. First, sparse Bayesian
multinomial logistic regression (SBMLR) is used to reduce the feature dimension; then the tuned threshold
value is used for selection of the best features. Next, a multiclass support vector machine (SVM) is employed
for the classification of six different physical activities, which include sitting, standing, laying down, walking,
walking up stairs, and walking down stairs. During the model selection procedure, a loose grid search was
applied in the parameter space to identify the region containing the optimal parameter value. After that, a
fine grid search was performed in the identified region in order to determine the optimal parameters. The
best-suited parameters found by this search were γ : −4.5 and C: 4, which were then used as input to the radial
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basis function (RBF) kernel. Different classification algorithms and feature selection methods are also used for
evaluation and comparison.

The rest of the paper is organized into the following sections. In the next section, a review of related
research is presented. Section 3 explains the methodology adapted for improving the HAR process and details
of the dataset used. Section 4 presents the experimental results and discussions. The conclusion and future
directions are given in Section 5.

2. Related Work
There are different machine and nonmachine learning techniques available for identifying the physical activities
of the user. In machine learning techniques, features are extracted from the raw signals, models are defined
for each activity, and classification is performed on the basis of these models. These physical activities can be
static such as standing, sitting, and lying and dynamic like walking, walking up stairs, and walking down stairs
[36]. Our literature survey showed that researchers have done a lot of work in this field using different feature
selection techniques and classification methods. Maurer et al. [5] designed the eWatch to monitor the same
activities that have been used in the present study (walking up stairs, walking down stairs, walking, running,
sitting, and standing). Experiments were performed by wearing the designed eWatch in different locations
such as the neck and trouser and shirt pockets. They used a filter-based approach (correlation-based feature
selection) [37] to find feature sets containing features that were highly correlated within the particular class and
uncorrelated with each other. There were different classifiers evaluated, namely DT, NB, KNN, and DT, with
a five-fold cross validation method. Overall they reported 16% to 92% classification accuracy in their work [5]
by wearing the eWatch in different locations on the body.

Atallah et al. [30] also indicated the importance of activity recognition for health monitoring by grouping
activities into low, medium, high, and transitional categories. Feature selection was performed by using different
filter methods such as Relief-F [35], Simba [33], and mRMR [34]. The authors used these methods to rank
features from most relevant to least relevant and assigned weights according to this ranking. They performed
experiments with the help of 11 subjects who performed 15 different activities such as lying down, reading,
preparing food, and getting dressed. These activities were performed by wearing the sensors at 7 different
positions: knee, ear, chest, wrist, waist, ankle, and arm. During classification, the one-versus-all approach was
used in which each subject was used for testing and the other subjects for training. The classifiers used were
KNN with k=5 and 7 and the Bayesian classifier with Gaussian priors. They divided the activities into different
groups and the precision rate was more than 85% in the case of very low level activities [30].

Mannini and Sabatini [36] used a wrapper-based approach SFFS [32] for feature subset selection. Ex-
periments were conducted with the help of 13 users wearing five triaxial accelerometers on the thigh, arms,
ankle, wrist, and hip. There were various learning methods used, namely SVM, NB, and cHMM, to identify
bicycling, running, standing, walking, stair climbing etc. The highest accuracy among the mentioned classifiers
was obtained by cHMM. During the literature survey, it was also found that instead of wearing the sensors
the researchers used environment sensors for ambient-assisted living. There are a good number of research
projects in which environment sensors have been placed. These include CASAS [38], MavHome [39], ARAS
[40], and CARE [41]. In these projects the data collected from the environment sensors were used to recognize
the different complex activities of the residents, such as bathing, cooking, and eating.

Although these mentioned approaches performed well, some of them were dependent on installing more
than one sensor in a home. Furthermore, some of the approaches required wearing multiple sensors in a particular
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orientation, and when the number of sensors was reduced the accuracy of the system decreased as well [15].
Currently, many applications related to fall detection [42], diagnosing Parkinson disease [43], and Alzheimer
disease rehabilitation [44] have been designed using smartphones to improve patients’ quality of life. These
smartphones can also be used for identifying simple as well as complex activities [45].

Anguita et al. [46] introduced a HAR dataset using a smartphone, which was also used for the evaluation
of the present work. There were 561 features extracted with frequency and time domain variables. They used a
multiclass SVM (MC-SVM), which achieved an accuracy of 96%. They compared their approach with existing
wearable sensor-based approaches. The authors argued that their work had the same accuracy as in the case of
chest- [47] and waist- [48] mounted approaches. Therefore, it is recommended to use a smartphone instead of
wearing sensors.

Rasekh et al. [49] also used a smartphone accelerometer for recognizing five basic human activities, i.e.
limping, jogging, walking, walking down stairs, and walking up stairs. The feature dimensionality reduction was
performed using a wrapper-based sequential forward selection (SFS). There were four different learning methods
used, namely ANN, quadratic classifier, SVM, and KNN. The method with the highest accuracy, with 84.4%,
was SVM [49]. During these studies, it was observed that there is no fixed classification model and feature set
for these systems. In every approach, there are different feature selection techniques and classification models.

3. Methodology

This section presents the details of the proposed methodology based on well-known steps, which include feature
selection and classification. The basic techniques for the feature selection process are filter [30], wrapper [50],
and hybrid methods [51]. Filter methods do not use any classifier during the feature selection process as they
apply statistical measures for assigning a score to each feature. Removal and selection of features from the
dataset are performed by ranking of the features using these scores. Filter methods are mostly suitable for
real-time applications as they do not invoke a learning algorithm repeatedly. In contrast, wrapper methods
use a classifier. Features are evaluated and scored based on model accuracy. Wrapper methods are sometimes
more efficient compared to filter methods, because they use a classifier hypothesis [52]. Finally, the hybrid
methods combine the features of both filter and wrapper methods[51]. After feature selection, the last step is
the adaption of machine learning algorithms such as NB, DT, and SVM for classifying human activities.

In the present study, first feature selection (using SBMLR) was applied to a well-known UCI HAR dataset
[46] in order to reduce feature dimensionality. After identifying and removing the unneeded features, a multiclass
SVM was employed for dealing with the best-selected features as shown in Figure 1.

The preprocessing and feature extraction part of Figure 1 was available in a dataset [46]. During model
selection, the optimal region was identified by a loose search algorithm, and then the optimal parameter was
identified using a fine grid search. The evaluation was performed using a 10-fold cross-validation method. The
features returned by SBMLR were further processed for identifying the best features based on their weight
values. For this purpose, a tuned threshold value was used on the weights for selecting only the best features
as returned by SBMLR.

During experiments for a fold, the 9 folds of the data are further split into 70% (called the training set)
and 30% (called the validation set). SBMLR along with LIBSVM is applied to 70% of the data for training and
selection of features (F), respectively. Tuning of the threshold value on the weights of features is accomplished
over the 30% of the data (validation set) for identifying only the best features. A loose grid search is applied
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Figure 1. Structure diagram.

between the region of minimal and maximal values of the weights of features returned by SBMLR. Later, the
region identified by the loose grid search is further explored using a fine grid search to find near optimum
threshold value of the feature weights. Finally, the tuned threshold value is used for selection of only the best
features of the tested fold and results are generated with the SVM model having the same tuned parameter
values of the kernel as found during the training phase. The entire process of thresholding is illustrated in
Figure 2.
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Figure 2. Thresholding for feature selection.

3.1. Dataset

In the present study, the HAR Dataset [46] was used, available at the UCI Machine Learning Repository. The
dataset was obtained from 30 volunteers between the ages of 19 and 48 years. The dataset consisted of 10,299
labeled instances, which were recorded through the use of an accelerometer- and gyroscope-enabled smartphone
(Samsung Galaxy S II) attached to the waist of each volunteer. A video was made of each volunteer performing
each of the six activities, which included sitting, standing, lying down, walking, climbing up stairs, and climbing
down stairs. The videos were reviewed and the data were manually labeled for each of the activities.
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3.2. Data preprocessing

Anguita et al. [46] recorded the data using a smartphone equipped with an accelerometer and gyroscope
sensors. The sensors recorded triaxial angular velocity and linear acceleration at a constant rate of 50 Hz. For
preprocessing, a noise filter was applied to the recorded signals. The sampling of the signals was performed
by using a sliding window of 2.56 s and overlap of 50%. There were 128 readings per window. Furthermore,
a Butterworth low-pass filter was used to separate the body and gravitational motion from the sensor signals.
Only low frequency of the gravitational force was considered and cutoff frequency for the filter was 0.3 Hz.

3.3. Feature extraction
There were a total of 561 features with frequency-domain and time-domain variables [46]. The frequency-domain
variables included skewness, the largest magnitude of frequency components, the weighted average of frequency
components, kurtosis, etc. The time-domain variables included interquartile range, magnitude, median, absolute
deviation, mean, maximum, minimum, autoregression coefficients, standard deviation, energy, entropy, etc. The
mentioned features were used for both accelerometer and gyroscope signals.

3.4. Feature selection by SBMLR
The presence of redundant or irrelevant features in the feature space causes an unnecessary increase in the
computation time and affects the accuracy. Machine learning techniques used for modeling data can be affected
by the noise in data [53]. Therefore, an SBMLR algorithm [54] was used in the present research in order to
make the generalization process simpler. SBMLR uses a simple but efficient training algorithm to determine
the model parameters [55]. It returns selected features, along with their corresponding weight, according to the
information obtained in the original feature space. The features obtained after applying the SBMLR algorithm
did not require any further processing [56]. Suppose that the training sample D = {(xn, tn)}ℓn=1 , where xn is
the input feature vector having i number of features and tn is the class vector. The probability of the training
instance xn belonging to the class vector instance tn can be defined as follows:

p (tni |xn) = yni =
exp {ani }∑c

j=1 exp
{
anj

} where ani =

d∑
j=1

wijx
n
j , (1)

where xn
j is the jth value of the xn and tni is the ith class label belonging to this instance. The parameter

wij of the multinomial logistic regression model is for the jth feature and ith class label, and it can be calculated
by minimizing the value of negative log-likelihood for the training samples. Assuming that D represents the
identically distributed and independent sample from a conditional multinomial distribution, then the negative
likelihood will be as follows:

ED =

ℓ∑
n=1

En
D = −

ℓ∑
n=1

c∑
i=1

tni log {yni } (2)

w of the multinomial logistic regression model can be computed by reducing the penalized maximum-likelihood
as follows:

Z = ED + αEW where EW =

c∑
i=1

d∑
j=1

|wij | (3)
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In the preceding Eq. (3), α is a regularization parameter for introducing sparseness and is used in the model
related to Laplace prior to the parameter. The partial derivatives of Z, according to the model parameters, will
be zero and are stated as follows:

∣∣∣∣∂ED

∂wij

∣∣∣∣ = α if |wij | > 0 and
∣∣∣∣∂ED

∂wij

∣∣∣∣ < α if |wij | = 0 (4)

The above Eq. (4) states that when model parameter wij falls below α , then zero will be assigned to that
parameter and the corresponding input feature against that value is also removed from the model.

3.5. Classification using SVM

In the present study, activity recognition is basically a classification problem. Therefore, the Library for Support
Vector Machines (LIBSVM) [57] was used for classification purposes. Using a SVM allowed for the separation
of classes by finding the hyperplane, which is the maximum distance to the closest point of every class. These
closest points are known as support vectors. Let N be the number of training examples in the set that has xi

data points and yi is the class label yi ∈ { -1 ,+1} . Finding an optimal hyperplane with the maximum margin
is basically solving the optimization problem by using quadratic programming and can defined by the following
equation:

f(x) =

N∑
i=1

αiyik(xi, x) + b, (5)

where the sign of f(x) denotes the membership class of x , αi is the Lagrange multiplier, and k(xi, x) is the
kernel, which is the dot product of these points for a linearly separable problem. In the case of nonlinearly
separable problems, a kernel trick can be used for mapping the original input space to a higher dimensional
space, which makes the data linearly separable. Different kernel tricks can be used such as polynomial, linear,
radial basis functions, and sigmoid. In this research, the RBF kernel was used as it gave the most promising
results. Both parameters of RBF, γ (width of kernel function) and C (soft slack variable), were tuned in
order to achieve a better hypothesis. During the model selection procedure, the region containing the optimal
parameter values was identified by applying the loose gird search in the parameter space and then a fine grid
search was performed in the region to find the optimal parameters. The values in the present study were found
to be γ = −4.5 and C=4, and they were subsequently inputted into the RBF kernel.

The SVM by nature is a binary classifier; however, in the present study, the dataset contained six classes,
and therefore its extension was used for solving the multiclass problem. The most commonly used methods for
solving this problem are one-against-all and one-against-one techniques. In one-against-all, the N-class problem
is considered two-class by training N binary classifiers, which can then distinguish one class from another. In
the case of one-against-one, there are pairwise combinations of the N classes. In the present study, the one-
against-all method was used due to its high accuracy and less memory usage as compared to the one-against-one
method. Further training and test sets were generated by using a 10-fold cross-validation method. The model
was trained by using the training set and during testing the classes estimated by the classifier were compared
with true classes.
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3.6. Performance evaluation
The evaluation of the proposed method was performed using different metrics. Predictions made by the trained
model were measured on the test data. The confusion matrix, also known as the error matrix, was used for
identifying different types of errors, such as false positives and false negatives, and correctly identifying true
positives and true negatives. Table 1 shows the various other metrics deduced from the confusion matrix such
as accuracy, recall, precision, and F-measure.

Table 1. Performance metrics.

Definition Formula
Accuracy: It is the proportion of the true results, i.e. true positive
and true negative to the total number of values in the dataset

Tp+Tn

Tp+Tn+Fp+Fn

Error: It reflects the overall performance of classifier, i.e. how
often it was wrong, and is also known as error rate 1− accuracy

Recall or sensitivity: It is the true positive rate, i.e. how many
times the classifier correctly predicted actual positives values

Tp

Tp+Fn

Precision: It is the true positive rate with respect to all the
predicted positives

Tp

Tp+Fp

F1 score: or F-measure: It is a measure of the classifier’s accu-
racy by the weighted average of true positive rate and precision 2 ∗ precision∗recall

precision+recall

4. Experimental results and discussion

The experiments were conducted using the MATLAB platform and a 2.40 GHz Intel Core i3-3110 M system.
During the experiments, the evaluation was performed using a 10-fold cross-validation method. The entire
dataset (10,299 instances = training + testing instance) was randomly partitioned into ten equal sample sets.
Next, each sample set was considered for testing while the remaining nine were used for training. The entire
process was repeated ten times. Finally, the performance of the algorithms was measured using the evaluation
metrics explained in Table 1. In the present study, the following experimental cases were considered for the
results.

4.1. Case 1: Raw data
In the first case, only classification techniques were applied to the raw data in order to make a comparison of
the raw data results with applied feature selection technique results. Tables 2, 3, 4, and 5 show the average of
the confusion matrix for SVM, NB, DT, and KNN, respectively. The summary of overall results in the case of
raw data is presented in Table 6. Each confusion matrix is the average of the ten-fold cross-validation. The
rows of each confusion matrix represent the actual class and the columns represent the predicted class. For
detailed analysis, the performance of each class is also given in the form of precision and recall. The percentage
at the end of each row shows the recall rate, whereas the percentage at the bottom of each column represents
the precision.

Table 6 shows that KNN achieved the highest classification rate of 89.77%, followed by SVM (87.73%),
DT (79.99%), and NB (75.82%). The confusion matrix for SVM in Table 2 shows that it has a lower performance
due to the walking and walking up stairs activities frequently being incorrectly classified. Furthermore, SVM
also did not perform well on the large dataset. However, the error difference between SVM and KNN is
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Table 2. Confusion matrix for SVM using raw data.

Activity Walking Walking
up stairs

Walking
down stairs

Sitting Standing Lying Recall%

Walking 1304 15 403 0 0 0 75.73%
Walking up stairs 3 1155 386 0 0 0 74.81%
Walking down stairs 28 9 1369 0 0 0 97.37%
Sitting 3 0 4 1605 165 0 90.32%
Standing 6 6 0 222 1672 0 87.72%
Lying 0 0 14 0 0 1930 99.28%
Precision% 97.02% 97.47% 62.91% 87.85% 91.02% 100.00% 87.73%

Table 3. Confusion matrix for NB using raw data.

Activity Walking Walking
up stairs

Walking
down stairs

Sitting Standing Lying Recall%

Walking 1230 311 181 0 0 0 71.43%
Walking up stairs 505 848 191 0 0 0 54.92%
Walking down stairs 213 199 994 0 0 0 70.70%
Sitting 81 5 1 1057 589 44 59.48%
Standing 77 5 0 66 1758 0 92.24%
Lying 0 0 22 0 0 1922 98.87%
Precision% 58.40% 61.99% 71.56% 94.12% 74.90% 97.76% 75.82%

Table 4. Confusion matrix for DT using raw data.

Activity Walking Walking
up stairs

Walking
down stairs

Sitting Standing Lying Recall%

Walking 1158 275 232 31 26 0 67.25%
Walking up stairs 257 1108 146 8 22 3 71.76%
Walking down stairs 284 199 877 21 14 11 62.38%
Sitting 16 10 7 1522 222 0 85.65%
Standing 25 15 4 229 1633 0 85.68%
Lying 0 1 3 0 0 1940 99.79%
Precision% 66.55% 68.91% 69.11% 84.04% 85.19% 99.28% 79.99%

approximately 2%. The confusion matrix of NB in Table 3 also shows that it has the lowest accuracy due
to the maximum misclassification of walking up stairs and sitting activity having a recall rate of 54.92% and
59.48%, respectively. In the case of walking up stairs, the activity was frequently incorrectly classified as walking
and walking down stairs activity. Sitting was frequently incorrectly classified as standing activity. Properly
classifying these activities was very difficult due to the fact that they frequently generated the same signal. In
the case of DT, Table 4 also shows that the lowest recall rate recorded was also for walking down stairs, and
this activity was frequently misclassified as the walking and walking up stairs activities. Overall the highest
recall and precision were found to be for the lying down activity.
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Table 5. Confusion matrix for KNN without using raw data.

Activity Walking Walking
up stairs

Walking
down stairs

Sitting Standing Lying Recall%

Walking 1588 8 1 20 105 0 92.22%
Walking up stairs 10 1373 0 19 142 0 88.92%
Walking down stairs 31 15 870 76 414 0 61.88%
Sitting 0 0 0 1696 81 0 95.44%
Standing 0 0 0 132 1774 0 93.07%
Lying 0 0 0 0 0 1944 100.00%
Precision% 97.48% 98.35% 99.89% 87.29% 70.51% 100.00% 89.77%

Table 6. Detailed accuracy per classifier using raw data.

Precision ± std Recall ± std F-measure ± std Accuracy ± std
SVM 89.41% ± 0.66% 87.54% ± 0.95% 87.35% ± 0.96% 87.73% ± 0.93%
NB 76.51% ± 1.14% 74.61% ± 1.42% 74.56% ± 1.39% 75.82% ± 1.35%
DT 78.90% ± 1.57% 78.75% ± 1.56% 78.75% ± 1.55% 79.99% ± 1.44%
KNN 92.27% ± 0.47% 88.59% ± 0.89% 89.32% ± 0.89% 89.77% ± 0.77%

4.2. Case 2: Feature subset selected using SBMLR
In order to improve the accuracy of Case 1 and to reduce the computational costs, a feature subset selection
was performed using SBMLR. It returned a subset of selected features that were identified by the index of the
feature. There were a total of 561 features with frequency and time domain variables as explained in Section
3.3. Among these 561 features, SBMLR had the best accuracy with the top 179 selected features. Tables 7
through 10 show the averages of ten-fold cross-validation for each classifier, and Table 11 shows the overall
comparison of each classifier for the feature subset. In addition, the percentage and recall rate for each activity
are also given in each confusion matrix.

Table 7. Confusion matrix for SVM using selected features.

Activity Walking Walking
up stairs

Walking
down stairs

Sitting Standing Lying Recall%

Walking 1722 0 0 0 0 0 100.00%
Walking up stairs 0 1544 0 0 0 0 100.00%
Walking down stairs 0 0 1406 0 0 0 100.00%
Sitting 0 1 0 1754 21 1 98.71%
Standing 0 0 0 39 1867 0 97.95%
Lying 0 0 0 0 0 1944 100.00%
Precision% 100.00% 99.94% 100.00% 97.82% 98.89% 99.95% 99.40%

As discussed in the related work (Section 2), there are different relevant studies [5, 30, 36, 46–49] that
have used different experimental setup, feature selection, and classification methods. In addition, some of these
approaches used wearable sensors [5, 30, 36, 47, 48], while others used smartphones [46, 49]. Furthermore,
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Table 8. Confusion matrix for NB using selected features.

Activity Walking Walking
up stairs

Walking
down stairs

Sitting Standing Lying Recall%

Walking 1550 95 77 0 0 0 90.01%
Walking up stairs 22 1456 66 0 0 0 94.30%
Walking down stairs 28 135 1243 0 0 0 88.41%
Sitting 0 15 0 1383 376 3 77.83%
Standing 1 22 0 186 1697 0 89.03%
Lying 0 11 0 0 0 1933 99.43%
Precision% 96.81% 83.97% 89.68% 88.15% 81.86% 99.85% 89.93%

Table 9. Confusion matrix for DT using selected features.

Activity Walking Walking
up stairs

Walking
down stairs

Sitting Standing Lying Recall%

Walking 1631 55 36 0 0 0 94.72%
Walking up stairs 68 1404 72 0 0 0 90.93%
Walking down stairs 44 67 1295 0 0 0 92.11%
Sitting 1 1 0 1599 176 0 89.98%
Standing 0 0 0 187 1719 0 90.19%
Lying 0 0 0 0 0 1944 100.00%
Precision% 93.52% 91.94% 92.30% 89.53% 90.71% 100.00% 93.14%

Table 10. Confusion matrix for KNN using selected features.

Activity Walking Walking
up stairs

Walking
down stairs

Sitting Standing Lying Recall%

Walking 1720 0 2 0 0 0 99.88%
Walking up stairs 4 1537 3 0 0 0 99.55%
Walking down stairs 5 6 1395 0 0 0 99.22%
Sitting 0 2 0 1643 130 2 92.46%
Standing 0 0 0 129 1777 0 93.23%
Lying 0 0 0 4 0 1940 99.79%
Precision% 99.48% 99.48% 99.64% 92.51% 93.18% 99.90% 97.21%

Table 11. Detailed accuracy per classifier using selected features.

Precision ± std Recall ± std F-measure ± std Accuracy ± std
SVM 99.44 ± 0.16% 99.44 ± 0.17% 99.44 ± 0.17% 99.40 ± 0.18%
NB 90.10 ± 0.62% 89.84 ± 0.68% 89.79 ± 0.68% 89.93 ± 0.65%
DT 93.03 ± 1.27% 92.99 ± 1.25% 92.99 ± 1.25% 93.14 ± 1.21%
KNN 97.38 ± 0.65% 97.36 ± 0.66% 97.36 ± 0.66% 97.21 ± 0.69%
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studies have shown that smartphones [46] can perform as well as wearing multiple sensors. Therefore, in Case
2, the proposed approach is applied to a publicly available dataset [46] collected using smartphones instead
of using a wearable sensor-based approach. Our proposed approach showed significant feature reduction and
improvement in the F-measure. The results of the experiments in Table 12 show that initially there was 76.42%
F-measure when only the SVM was used with default settings. After applying the SVM with parameter tuning,
the F-measure was increased to 87.35%. When SBMLR without any threshold value was applied, the F-measure
was 93.82%. Finally, when we applied thresholding with SBMLR and SVM with parameter tuning, the highest
F-measure of 99.44% was achieved. The results of the proposed approach are comparable with those of existing
approaches for the same UCI dataset [46]. Murad and Pyun [58] used deep recurrent neural networks(DRNNs)
and achieved accuracy of 96.7%. Ronao et al. [59] used a deep convolutional neural network and reported
accuracy of 94.79%. After adding the fast Fourier transform (FFT) of the dataset the accuracy was improved to
95.75%. In another study [60] the authors achieved accuracy of 91.76% using hidden Markov models. Hernandez
et al. [61] used bidirectional long short-term memory and reported overall accuracy of 92.67%. Yu et al. [62]
used the same technique of bidirectional LSTM and achieved accuracy of 93.79%. In order to compare with
other feature selection techniques we used principal component analysis (PCA) [63] and random subset feature
selection (RSFS) [64] and reported the results in Table 13.

Table 12. F-measure comparison using different test cases.

Number Classifier Feature selection F-measure
1 SVM with default settings None 76.42%
2 SVM with parameter tuning None 87.35%
3 SVM with parameter tuning SBMLR without thresholding 93.82%
4 SVM with parameter tuning SBMLR with thresholding 99.44%

Table 13. F-measure comparison using different feature subset selection methods.

Number Classifier Raw dataset PCA (105) SBMLR (179) RSFS (282)
1 SVM 87.35% 96.65% 99.44% 99.17%
2 NB 74.56% 81.80% 89.79% 75.77%
3 DT 78.75% 84.22% 92.99% 93.62%
4 KNN 89.32% 92.25% 97.36% 96.14%

The minimum number of features that were selected was by PCA (105) followed by SBMLR (179) and
RSFS (282). The difference between the PCA and SBMLR was only 74 features but the F-measure for all the
four classifiers in the case of SBMLR was better, which can be seen in Figure 3. On the other hand, RSFS
increased the feature size compared to both PCA and SBMLR, but the performance was similar to that of
SBMLR and was better than that of PCA. The maximum classification rate was 99.40% when multiclass SVM
was used with SBMLR with a reasonable number of features.

The amount of time required to train the SVM model for 561 features was 212.14 s. SBMLR required
166.84 s to select a feature subset, which reduced the time for training the SVM model to 50.18 s. In addition,
the RBF kernel was utilized and the time complexity was between O(n2) and O(n3) , where n is the number of
training data points. The confusion matrix of SVM, as indicated in Table 7, shows that there was a 100% recall
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Figure 3. F-measure comparison for SBMLR, PCA, RSFS, and raw data.

rate for walking, walking up stairs, walking down stairs, and lying down. There was a very negligible error
rate (0.60%), which was primarily due to a small number of sitting instances that were incorrectly classified as
standing and standing being misclassified as sitting. The number of times sitting was misclassified as standing
was only 21 times out of 1776 instances, and the number of times standing was misclassified as sitting was 39
times out of 1906 instances. These are the only errors that account for the decrease in accuracy.

In the case of NB, Table 8 shows that the accuracy was improved from 75.82 % to 89.93% as a result of
the improvement in the classification of walking, sitting, and standing instances. The recall rate of walking up
stairs instances was improved from 54.92% to 94.30%, whereas for sitting instances, the recall rate increased
from 59.48% to 77.83%. Furthermore, the precision for classifying walking instances improved from 58.40% to
96.81%. For DT, as indicated in Table 9, the recall rate for walking improved from 67.25% to 94.72%, and for
the walking down stairs activity the recall rate improved from 62.38% to 92.11%. The KNN confusion matrix
shown in Table 10 clearly indicates that there was a significant improvement from 61.88% to 99.22% in the case
of walking down stairs activity. Table 11 shows the summary of the classifiers after removing the misguided
features. Overall, all of the classifiers achieved a significant improvement in the classification rates for all the
activities. To further test the statistical significance in Case 2, a paired sample two-tailed t-test (also called
Student�s t-test [65]) was conducted and the results are reported in the following table.

Table 14. Statistical comparison based on 2-tailed t-test at 0.05 significance level (accuracy).

Method Accuracy ± std P-val If(P-val< 0.05) H0

SVM-SBMLR 99.40 ± 0.18%
3.75× 10−13 yes Reject ▲

SVM-NONSBMLR 87.73 ± 0.93%
NB-SBMLR 89.93 ± 0.65%

9.60× 10−10 yes Reject ▲
NB-NONSBMLR 75.82 ± 1.35%
DT-SBMLR 93.14 ± 1.21%

4.65× 10−11 yes Reject ▲
DT-NONSBMLR 79.99 ± 1.44%
KNN-SBMLR 97.21 ± 0.69%

7.31× 10−09 yes Reject ▲
KNN-NONSBMLR 89.77 ± 0.77%
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Table 14 presents the comparisons between four different classifiers based on feature selection (represented
as classifier name followed by SBMLR) and without feature selection (represented as classifier name followed
by NONSBMLR) at significance of 0.05. In each comparison, the average accuracy of 10-fold cross-validation
was used to determine the statistical significance. The null hypothesis for each case states that the difference
between the means of competing techniques is zero, i.e. (H0 = 1 − 2 = 0) . This null hypothesis is rejected if
the computed P-value ≤ significance level. The smaller the P-value the more the difference will be between
the means of the techniques. When the null hypothesis is rejected, a ▲ symbol is used for indicating that the
proposed technique has performed better than the competing technique. Alternatively a ▼ symbol is placed if
the competing technique performs better on the raw data. All P-values are less than 0.05, which indicates that
the differences are highly significant.

5. Conclusion and future work
The major contribution of this study is the adaption of SBMLR, which showed remarkable ability to reduce
the dimension of features. There were a total of 561 features in the dataset and SBMLR was able to select the
top 179 features, which played an important role in improving accuracy. For comparison, other feature subset
selection techniques such as PCA and RSFS were also used. Although PCA reduced the features up to 105, the
performance of classifiers was not satisfactory. RSFS performed similar to SBMLR, but the feature size was
282. Furthermore, in the case of NB the performance was also not good. In addition to the feature selection
technique, different well-known machine learning algorithms (NB, SVM, DT, and KNN) were applied to achieve
the best results. For SVM, its extension was used because by nature it is a binary classifier. Therefore, to
solve the multiclass problem, the one-against-all method was utilized as it allowed for higher accuracy and less
memory consumption. The results of the experiments show that the multiclass SVM together with SBMLR
achieved the highest accuracy with a rate of 99.40% as compared to the three other classifiers used. Although
the present study accurately identified both static and dynamic activities, future work should include a higher
number of activities. The dataset used in this work was collected by attaching the smartphone to the waist. It
will be interesting to explore the same activities by placing the smartphone in shirt or pants pockets. Wearing a
smartphone during cooking, eating, and bathing activities can be very difficult. Currently, we are also working
on identifying the human activities by using Meta Motion R (MMR), which is a 9-axis IMU for performing a
comparison with smartphone-based approaches.
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