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Abstract: Floorplanning is a fundamental design step in the physical design of printed circuit boards (PCBs) and
integrated circuits (ICs), as it handles the complexity of layout design. From a computational point of view, the
floorplanning problem is an NP hard problem, and the size of the search space grows exponentially with increasing
numbers of modules. Thus, the algorithm used is an essential factor for speed and quality of the floorplanning
process. Although polynomial-time floorplanning algorithms can be implemented when solution space is limited to
slicing floorplans, optimal solutions often exist only in the nonslicing floorplan search space. Various stochastic algorithms
such as simulated annealing (SA), the genetic algorithm (GA), and the relay race algorithm (RRA) can be used with
nonslicing floorplans. In this paper, a modified relay race algorithm (MRRA) is proposed. Based on the experimental
results utilizing MCNC benchmarks, MRRA improved both solution quality and run time for area optimization when
compared with SA, GA, and RRA.
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1. Introduction
The number of components in a circuit and the interconnections between these components increase rapidly
as technology improves over time [1]. Floorplanning optimizes the relative locations of the components in the
layout to reduce the layout area and wire length of the interconnections, which affect the subsequent routing
quality and overall physical design process significantly [2]. The representation method affects the floorplanning
process, because it determines the scope of the search space and the complexity of transformation between the
floorplanning representation and its corresponding floorplan. Researchers have proposed many representation
methods such as Polish notation, bounded sliced grid (BSG), transitive closure graph (TSG), B*Tree, and
sequence pairs [3].

The most important factor that determines the time cost and solution quality of the floorplanning process
is the algorithm used. Various floorplanning algorithms have been proposed by researchers, including simulated
annealing (SA), genetic algorithms (GAs), and the relay race algorithm (RRA). SA was originally proposed as
an optimization approach for placement and routing [4], but was later utilized by Wong and Liu to optimize
the area of a floorplan [5]. Rebandengo and Reorda used the GA as an evolutionary algorithm [6]. Sheng et
al. designed the RRA to overcome the shortcomings of SA and GAs [7]. In this paper, a modified relay-race
algorithm (MRRA) has been proposed in order to improve the solution quality and time cost of RRA. Section
2 formulates the problem. Section 3 briefly summarizes the existing approaches for floorplanning. Section 4
proposes the MRRA approach and Section 5 presents experimental results. Section 6 concludes the paper.
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2. Problem formulation
Floorplanning is the determination of relative module positions while considering objectives such as area and
wire length minimization. The main inputs for floorplanning are a module set M = {m1,m2,m3, . . . ,mn}
where mi are rectangular blocks with height hi and width wi , and a net set N = {n1, n2, n3, . . . , nk} where
nj are the interconnects between modules. Each net ni , 1 ≤ i ≤ k , has a length li , which can be computed
between the centers of modules that are being connected, unless the pin locations of modules are provided as
an additional input to the floorplanning.

There are two types of floorplans, which are called slicing and nonslicing floorplans [8]. Slicing floorplans
can be represented by a binary tree, which is called the slicing tree, where the entire layout area is bisected
repetitively in horizontal and vertical directions until each part includes only one module. In the slicing tree,
the leaves represent the modules, vertices marked as H represent the horizontal bisections, and vertices marked
as V represent the vertical bisections. On the other hand, nonslicing floorplans cannot be obtained by bisecting
the layout area repetitively; therefore, slicing trees cannot be used to represent them. The constraint graph pair
(CGP) method, which consists of a horizontal constraint graph (HCG) and vertical constraint graph (VCG),
can be used to model these floorplans. HCG and VCG define the horizontal and vertical relations among the
modules, respectively. Figures 1a and 1b depict instances of slicing and nonslicing floorplans, respectively.
Slicing floorplans are easier to manipulate, and polynomial time algorithms are available for finding optimum
floorplan solutions when restricted to slicing structures only. On the other hand, only nonslicing floorplans
have a solution space that is P-admissible, which is guaranteed to contain an optimal solution [9]; therefore, an
optimum floorplan solution for all problem instances is only possible with this floorplan type.
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Figure 1. Types of floorplans.

The objective of floorplanning is to optimize a layout according to a predefined cost function [8]. The
most common consideration in this function is the area covered by the rectangular bounding box enclosing
all modules. This requires minimization of the dead space, which is called white space. White space is the
empty space that is not covered by any module in the floorplan. Another important consideration in this
function is the total wire length, which has several types of evaluations such as minimum chain, Steiner tree,
and half perimeter wire length (HPWL) methods. Steiner tree estimation is the most accurate but also most
computationally expensive method, while HPWL is the most efficient and can still be used to compare the
relative wire lengths of different solutions with respect to each other in an optimization engine. HPWL is
obtained by dividing the perimeter of the rectangular bounding box that surrounds all the pins of a net by
two [10]. A commonly used cost function in floorplanning is the weighted sum of area and wire length as given
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by Equation 1, where Ca , Cw , and α represent the area cost, the wire length cost, and the weight factor,
respectively. The weight factor α is associated with each objective and is user-defined.

Cost = α.Ca + (1− α).Cw (1)

Floorplan representation must be chosen according to the floorplan type, and this choice determines the
complexity of the transformation and the scope of the search space [1]. Researchers have proposed several
representation schemes in the last couple decades. Polish notation, bounded slicing grid, transitive closure
graph, B*Tree, and sequence pairs are the most commonly used representation schemes [3]. In Table 1, the
comparison of different floorplan representation schemes is represented. This comparison contains information
about the flexibility and the computational complexity of these floorplan representation schemes.

Table 1. Comparison of different floorplan representations.

Representation Flexibility Complexity
Polish notation Slicing O(n)

Bounded slicing grid General O(n2)

Transitive closure graph General O(n2)

B*Tree Compacted O(n)

Sequence pair General O(n2)

As shown in Table 1, Polish notation and B*Tree have better computational complexity and bounded
slicing grid, transitive closure graph, and sequence pair approaches have better flexibility. Polish notation is an
efficient representation scheme for slicing floorplans, but it cannot handle other floorplan types. The expression
of Polish notation is the postfix ordering of a binary tree, which can be reached from the postorder traversal
on a binary tree. Bounded slicing grid is a flexible representation scheme, but it cannot handle nonslicing
floorplans, either. In a bounded slicing grid, n blocks are placed in a special n by n grid. The transitive
closure graph method runs faster using less memory, but it cannot deal with slicing floorplans [3]. B*Tree
representation is based on ordered binary trees and can model compacted floorplan structures. It is also an
efficient representation scheme with smaller encoding cost. However, it is less flexible than bounded slicing grid,
transitive closure graph, and sequence pair. Sequence pair is the most flexible representation scheme and it
can handle all types of floorplans, but it has high encoding cost. Sequence pair is utilized as the representation
method in this paper because of its flexibility advantage.

Sequence Pair representation is suitable for both slicing and nonslicing floorplans. A sequence pair
(Γ+,Γ−) is a pair of sequences of the n modules in a floorplan, where modules can be placed into different
orders in each pair [9]. Horizontal and vertical constraints between each pair of modules can be inferred
from the sequence pair to be used in generating the constraint graph pair (HCG and VCG). For instance,
(Γ+,Γ−) = (bacde, cabde) can be the sequence pair representation for one of the solutions of a floorplan
that includes the module set a,b,c,d,e. For this sequence pair, d is placed after a in both Γ+ and Γ− , i.e.
< . . . a . . . d · · · > ; thus, d has to be located to the right of a . Also in the same sequence pair, a is placed
after b in Γ+ , i.e., < . . . b . . . a · · · > , and a is placed before b in Γ− , i.e. < . . . a . . . b · · · > ; thus, a has to be
located below b . Replacing the orders of (a, b) or (a, d) in the sequences described above reverses the relative
positions of these module pairs with respect to each other.
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3. Existing floorplanning approaches
Developments in optimization field led numerous researchers to utilize modern optimization methods. Simulated
annealing is the first modern optimization algorithm that has been used to optimize the floorplanning area.
Population-based metaheuristic algorithms that imitate the social behavior of species and biological evolution
were then utilized. The GA, ant colony, particle swarm optimization, and differential evolution are in this
category, and they have been collectively named as evolutionary algorithms [3].

3.1. Simulated annealing

Simulated annealing (SA) has been proposed based on statistical mechanics theory and the analogy between
solid annealing and optimization problems [4]. The utilization of the SA algorithm to solve the floorplanning
problem was first introduced by Otten in 1983 [11]. SA resembles the cooling procedure of molten metal through
annealing. In the cooling process of molten metal, the atoms have the highest mobility at high temperatures.
As the temperature drops, the movement ability of the atoms is also reduced. Then the atoms are gradually
organized to form crystals with the minimum energy state possible.

In SA, each state of the solid structure corresponds to an applicable solution of the problem. The energy
of the state is the value of the cost function to assess the solution. The state of the minimum energy represents
the optimal solution with the best value of the cost function. SA is a stochastic algorithm with iterative
improvements. Each repetitive step includes an alteration of the current solution to a new solution. This
action is called movement to a neighborhood. The current temperature of the state determines the acceptance
probability of new solutions. Temperature updates are scheduled from the highest temperature to the lowest
temperature, where the acceptance probability at higher temperatures is higher than the acceptance probability
at lower temperatures. If the temperature is decreased rapidly, it is known as simulated quenching instead of
simulated annealing. The main difference between SA and simulated quenching is the parameter used for
temperature scheduling. In SA, the temperature needs to be decreased at a slower rate in order to reach the
absolute minimum energy state.

3.2. Genetic algorithm
The GA has been utilized as a floorplanning algorithm after SA by researchers. Rebandego and Reorda were the
first researchers to use the GA to solve the floorplanning problem [6]. They used the GA with Polish notation in
1996. Afterwards, Nakaya et al. and Lin et al. also presented GAs using Polish notation for the floorplanning
problem [12, 13]. Gwee and Lim proposed a GA with heuristic-based decoder for IC floorplaning in 1999 [14].
This approach was able to achieve an efficient solution to the multiobjective area and wire length optimization
problem of floorplanning. In 2006 Drakidis et al. and in 2007 Chatterjee and Manikas presented GA-based
floorplanning approaches using sequence pair representation [15].

The utilization of the GA for floorplanning optimization starts with the randomly generated population
of solutions. These solutions have random placement of modules along a defined rectangle of the circuit. Then
the solutions are evaluated for their fitness values based on the predefined fitness function. The objective of
this fitness function can be area or wire length optimization or optimization for both criteria. The modules
correspond to genes in chromosomes. After the creation of the initial population, the algorithm follows the
mentioned mechanisms repetitively until the specified number of generations is reached. In the crossover
operation, two floorplan solutions are taken and they are used to generate a new floorplan arrangement as a
new solution. These new solutions are called the offspring of the selected solutions that the crossover operation
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is performed on. Afterwards, a mutation operation with a small probability is applied by flipping any module
of the solution. Finally, the new population is evaluated and the solutions with the lowest fitness values are
eliminated.

3.3. Relay race algorithm
Sheng et al. proposed the RRA for floorplanning problems to approach a global optimal solution by exploring
similar local optimal solutions more efficiently within shorter computation times [7]. Sheng et al. stated that
the RRA was designed to overcome the shortcomings of SA, which does not use the experience of past moves,
and the GA, which selects the next generation according to a ranking function that has a high time cost despite
it not being always necessary.

The RRA contains the three basic parts shown in Figure 2: focusing search, rough search, and relay. An
algorithmic flowchart of the RRA and the details of searches are depicted in Figures 3a and 3b, respectively.
The aim of the rough search is to pass over little hills in the search space and approach a local optimum as
quickly as possible. The focusing search tries to reach as close to the local optimum as possible. The relay works
for both running away from the local optimum with a single operation and maintaining the search continuity.

Figure 2. Basic steps of relay race algorithm.

Rough search begins with method selection. Three types of move methods are utilized in rough searches:
group insertion, group exchange, and group rotation. In group insertion, the order of randomly selected modules
in one sequence is changed. Group exchange is the exchange of randomly selected modules. Group rotation
rotates randomly selected modules. The number of modules in the group is set to 10 to ensure that the rough
moves affect more modules than the focusing moves.

Focusing search starts with the termination of the rough search. After the rough search is completed, the
local optimal solution is transferred to focusing search. For the focusing search, three focusing move methods
are utilized: insertion, exchange, and rotation. In an insertion move, the order of a single module is changed in
one sequence. Rotation moves alter the orientation of a single module. Exchange move is the exchange of the
order of two modules in both sequences Γ+ and Γ− .

Both rough search and focusing search follow similar procedures after the move method is selected. First,
the current solution is modified to generate the next solution by utilizing the selected move method. Then the
new solution is evaluated. If there is an improvement, the new solution becomes the current solution, followed
by the updates of the best record and the guide. Otherwise, the new solution is rejected and the old solution
is kept as the current solution. Rough search is terminated when the number of trials with no improvement
reaches the predetermined number Nr . Focusing search is terminated when the number of consecutive trials
with no improvement reaches the predetermined number Nf .

Relay is the last part of the outer loop. After completion of the rough search and focusing search, the
relay operator generates a new solution from the current solution. This new solution consists of two parts. The
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Figure 3. Flowchart of relay race algorithm (a) and rough/focus search routines (b).

first part of the new solution is inherited from the current solution. The second part of the new solution is
randomly generated. The ratio of the solution’s randomly generated part is defined as the parameter Re . To
find the number of modules that will be affected by the relay operation in a circuit with Nm modules, the
Re ·Nm product is rounded to the nearest integer. The modules that will be in the randomly generated part
are selected randomly.

Figure 4 illustrates the behavior of the RRA in the solution space. Only the solutions with improvement
are accepted in both rough and focusing runs. The differences between the rough run and focusing run are in
moving methods and in terminal condition. As Figure 4 indicates, the rough run gets over small hills and the
focusing search gets a local optimal solution. On the other hand, the relay escapes from the local optimum
solution and reaches near another local optimum solution. This process is repeated as many times as the number
of runners on the team, Nt , in order to find the global optimum solution.

4. Modified relay race algorithm

Although the RRA was proposed to overcome the shortcomings of the SA and GA algorithms, there are
shortcomings of the RRA, too. The MRRA is proposed here to improve the RRA by working on the following
algorithmic choices of the RRA:
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Figure 4. Behavior of relay race algorithm in the solution space.

. Searches of different solutions within the solution space are performed on a single path.

. The group size used in rough moves is a fixed number of 10, regardless of the size of the input circuit.

. Parameters Nr and Nf that determine the efficiencies of rough and focusing searches have been decided
after a set of trial experiments and their values are fixed at 100 and 1000, respectively.

In the MRRA, the search is performed on a dual path to increase the chance of discovering better local
optimum solutions. Moreover, the maximum number of iterations without improvement during rough search
Nr and maximum number of consecutive iterations without improvement during focusing search Nf are not
fixed for all problems; instead, their values are determined by multiplying the circuit size, Nm , by different
coefficients. After extensive trial experiments to determine the best values of Nr , Nf , and Nt , the best
empirical parameter set was determined as 3Nm , 3Nr , and 20, respectively.

The MRRA starts by getting an initial solution that can be either user-defined or randomly produced.
Then rough search and focusing search are applied to the initial solution. Afterwards, the current solution
enters the dual path search.

Figure 5a illustrates the flowchart of the MRRA, which includes two inner loops. While the first inner
loop corresponds to the dual path search of the MRRA, the second inner loop corresponds to the single path
search of the original RRA. The single path search phase continues until the total number of runners in the
team for the relay Nt is reached. In the single path search, the value of the parameter Re is chosen to be
0.1. As a result of the dual path search, the probability of exploring better local optimum solutions in distant
regions is increased. Figure 5b depicts a more detailed description of the “Search Path” step in Figure 5a.

During dual path search, both paths implement the same operations. The only difference between these
two paths is the Re value, which is the ratio of the randomly generated part of the solution in the relay
operation. The implementation of the searching process with two different paths increases the likelihood of
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Figure 5. Flowchart of modified relay race algorithm (a) and search path for given Re value (b).

achieving a better local optimal solution as the next solution. The value of the parameter Re used in the first
path process is chosen to be 0.1, as in the original algorithm. The value of the parameter Re used in the second
path process is chosen to be 0.2, which is larger than the Re value used in the first path; therefore, the second
path makes it possible to search in farther regions of the solution space. Since Re corresponds to the mutation
rate as mentioned in the previous section, the current solution is mutated at a rate of 0.1 and 0.2 in the first
and second paths, respectively. Thus, there is an increased chance for exploring better local optimum solutions.

After both first and second paths complete their search operations, the best solutions of these paths are
compared and only the better solution is kept as the next solution. However, if dual path search is applied
until the algorithm is terminated, the computation time will increase too much. For this reason, there is also
a termination condition for dual path search. When two consecutive solutions of the first path (Re = 0.1) are
better than the solutions of the second path (Re = 0.2), the dual path search is terminated and the algorithm
continues with the single path search afterwards.
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4.1. Move methods
The MRRA utilizes three rough and three focusing move methods. Rough move methods are group rotation,
group exchange, and group insertion. Focusing move methods are rotation, exchange, and insertion. These
move methods are exactly the same as the move methods used in the RRA. Methods were kept the same as in
the original algorithm in order to compare the differences in the results of the RRA and MRRA that are caused
by modifying the approach.

The corresponding placement of a sample initial SP (Γ+,Γ−) = (32415, 12534) is shown in Figure 6a.
The insertion move places a randomly selected module in one sequence into a random position. Figure 6b
shows the placement of modules after the insertion move is applied to the module m5 . The exchange method
changes the order of a randomly selected pair of modules in both the positive sequence Γ+ and the negative
sequence Γ− . The placement of modules after the exchange move is applied to the modules m3 and m5 is
displayed in Figure 6c. The rotation move changes the orientation of a randomly selected module. Figure 6d
illustrates the placement of modules after a rotation move is applied to module m4 . A group insertion move
inserts one randomly selected set of modules into a randomly selected set of positions in one sequence. A group
exchange move exchanges randomly selected pairs of modules in both sequences. A group rotation move rotates
a randomly selected set of modules. Unlike in the RRA, the number of modules in the group varies based on
the total number of modules in the circuit, Nm . After experimenting with 0.3Nm , 0.4Nm , and 0.5Nm , 0.4Nm

has been decided as the group size in the MRRA rough moves.
The move method is selected using the probability of move methods [7]. The probability of any method

pk+1(i) is evaluated according to the old probability of the method pk(i) and the short-term improvement
speed sk(i) = ak(i).fk(i)/

∑3
j=1 ak(j).fk(j) , where i represents different move methods, ak(i) is the relative

amplitude of improvement, and fk(i) is the frequency of the improvement. In detail, ak(i) is the relative −∆C

on average and fk(i) is the ratio of improved trials in the last t trials. For rough move methods and focusing
move methods, t is chosen as 30 and 100, respectively. If the evaluation of the solution satisfies the condition
−∆C > 0 , ak(i) is calculated and updated. Otherwise, the probability of methods is not updated. The new
probability pk+1(i) is given by p

′

k+1(i)/
∑3

j=1 p
′

k+1(j) for each move method to keep the total probability 100% ,

where p
′

k+1(i) equals (pk(i) + sk(i))/2 .

4.2. Cost function
The cost function of the MRRA has three components, which are area, wire length, and overlap costs. Area
cost is the size of the smallest rectangular bounding box that contains all modules. Wire length cost is an
approximation of the sum of length of all interconnects between the modules. Overlap is the amount of overlap
between the paths of same and different interconnects. The area and wire length are the most common costs for
the typical cost function in floorplanning. The overlap objective is inserted into the cost function to consider
the interference between different signals. The cost function of the MRRA is given by Equation 2.

Ct = α.Ca + β.Cw + γ.Co (2)

In Equation 2, α, β, γ are the coefficients of their corresponding objectives that satisfy α+ β + γ = 1 .
Ct , Ca , Cw , and Co represent total cost function, cost function of area, cost function of wire length, and cost
function of overlap, respectively. The cost function of area Ca estimates the area of the bounding rectangular
shape, which is given by the minimum bounding rectangle, which includes all modules. The area is calculated
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Figure 6. Moving methods used in RRA and MRRA.

by multiplying the total width W and the total height H . The cost function of wire length Cw estimates the
total wire length that is used for the connection of all pins in the circuit. The half perimeter wire length method
is utilized to obtain an approximation of the wire length for each net. The cost function of the overlap function
Co estimates the total overlap cost between nets. The calculation of the overlap cost is made according to the
overlap coefficients.

5. Experiments and results

Parameter selection directly affects the performance and efficiency of the floorplanning algorithm. Therefore,
the best empirical values of parameters Nf , Nr , and Re were investigated by trial experiments of floorplanning
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using the ami33 circuit from the Microelectronics Center of North Carolina (MCNC) benchmark suite. The
MCNC benchmark is the most commonly used benchmark for comparing floorplanning algorithms; therefore,
it is also used in this paper for comparison with other approaches. The MCNC benchmark suite consists of five
circuits: apte, xerox, hp, ami33, and ami49. The details of the MCNC benchmark suite are shown in Table 2.

Table 2. MCNC benchmark circuit specifications.

Circuit Modules Nets Terminals
apte 9 97 73
xerox 10 203 2
hp 11 83 45
ami33 33 123 42
ami49 49 408 22

In the RRA, the best empirical values of parameters Nf , Nr , and Re were investigated with trial
experiments and found as the fixed values of 1000, 100, and 0.1, respectively. When finding the best parameter
values in the RRA, trial experiments were run for testing different values of Nf first. Next, different values
of Nr were tried while Nf was kept constant at its best value of 100. Finally, Re was also determined while
keeping Nf and Nr fixed at the values determined in previous trial experiments. In the MRRA, combinations
of different parameters were also used so that intermediate values of parameters were also implemented to obtain
better results. The investigation for better parameter values also aims at speeding up the algorithm by limiting
the time increase caused by the dual path search structure used in MRRA. The values of parameters Nf and
Nr were not kept constant as in RRA, but they were automatically scaled with Nm , which is the number of
modules in the circuit. The cost function coefficient α is set to 1 while β and γ are set to 0 so that the area
optimization results can be compared with previous works.

The parameter values were adjusted according to the results of trial experiments. In particular, the final
cost, run time, and product of these values that have been obtained as results of trial experiments were used
as the most important values in determining the parameters. For trial experiments, 100 initial solutions were
generated. Each trial experiment was conducted with this set of initial solutions for enforcing the same initial
conditions in all tests.

In the first stage of trial experiments, the best combination of parameters Nf and Nt was investigated.
For these experiments, the value of Nr has been set to three times the Nm value, which equals approximately
the same value used in the RRA for the ami33 circuit. In the second stage of trial experiments, the best
combination of Nr , Nf , and Nt was investigated. In these trial experiments, it was aimed to increase the
value of the Nt parameter while decreasing the value of the Nr parameter and the value of the Nf parameter
in order to allow more runners to try more solutions. In the third stage of trial experiments, Nr was chosen
to be Nm and the value of Nt was increased while the value of Nf was decreased. It is seen that there is a
trade-off between the final cost and the run time as a result of increasing Nt and decreasing Nf . After all trial
experiments conducted in order to determine the best values of Nr , Nf , and Nt , the best empirical parameter
set was determined as (Nr, Nf , Nt) = (3.Nm, 3.Nr, 20) . This parameter set was utilized for further experiments
with the other circuits in the MCNC benchmark suite.

After the best empirical parameter set were determined, area optimization results of SA, GA, RRA, and
MRRA were compared. For a fair comparison between the algorithms, all algorithms were implemented utilizing
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the SP representation scheme while following the published details that can be accessed as closely as possible.
These algorithms were applied to all circuits found in the MCNC benchmark suite in the Java environment on a
2.40 GHz PC with 8.00 GB memory. Since all these algorithms are stochastic, each algorithm was run 10 times
for each circuit and each algorithm was started using the same initial solutions that were generated randomly
at the beginning.

The values of the parameters used in the algorithms were chosen taking into account the values of the
algorithms for which the run times were close. For the implementation of the RRA, Nr and Nf were selected as
100 and 1000, respectively, while Nr = 3.Nm and Nf = 3.Nr were chosen for the implementation of the MRRA.
On the other hand, different values were used for Nt to provide close run times. The parameters of SA were set
as follows: the initial temperature was determined by considering average difference cost of moving methods.
The number of trials per each temperature and cooling rate were selected as 500 and 0.99, respectively. For
the implementation of the GA, the population size and the number of generations were set to 100 and 1000,
respectively. In addition, crossover rate and mutation rate were chosen as 0.8 and 0.3, respectively.

The average area cost and average run time comparisons are based on 10 trials for each algorithm, and
they are shown in Tables 3 and 4, respectively. The RRA and MRRA have better results than SA and GA
for all circuits in both categories.The MRRA also has the best results for all benchmarks among these four
algorithms. The improvement of MRRA compared to RRA is between 0.03% and 1.75% for the average area
costs. The MRRA also has considerable improvement between 9.4% and 24.9% for average run times.

Table 3. Comparison of the final area costs of each algorithm.

MCNC Average (mm2) Standard Deviation (mm2)
SA GA RRA MRRA SA GA RRA MRRA

apte 47.687 48.579 47.570 47.481 0.375 0.523 0.271 0.410
xerox 20.930 21.120 20.607 20.307 0.552 0.397 0.288 0.062
hp 9.971 9.822 9.528 9.361 0.256 0.164 0.192 0.135
ami33 1.438 1.327 1.275 1.259 0.055 0.018 0.019 0.019
ami49 46.256 41.907 39.714 39.702 1.885 0.823 0.447 0.541

Table 4. Comparison of the run times of each algorithm.

MCNC Average (s) Standard deviation (s)
SA GA RRA MRRA SA GA RRA MRRA

apte 1.871 1.936 1.460 1.322 0.168 0.220 0.189 0.481
xerox 1.853 1.695 0.841 0.631 0.214 0.215 0.317 0.150
hp 2.779 1.662 1.102 0.928 0.210 0.160 0.311 0.376
ami33 43.036 19.854 13.103 10.294 0.369 0.547 0.817 0.642
ami49 85.255 36.799 27.404 22.587 0.209 0.603 2.003 1.384

6. Conclusion
In this paper, a heuristic approach named MRRA is proposed to solve the floorplanning problem. The MRRA
was designed to improve the speed and quality of the RRA by overcoming the shortcomings of the RRA. In the
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MRRA, a dual path search is designed to increase the probability of exploring a better local optimal solution
as the next solution. In both search paths, rough and focusing runs are implemented and the only difference
between these two paths is the ratio of the randomly generated part of the solution Re in the relay operation.
The dual path search has its own termination condition in order not to increase the run time. Moreover,
parameters Nr and Nf are determined according to the detailed analysis, which also considers the number
of modules in the circuit to improve the efficiency of the algorithm. The efficiency of the MRRA is proven
by applying it to the floorplanning problem in physical design optimization. Based on the comparisons of the
experimental results utilizing the MCNC benchmark suite, the MRRA is better than SA, GA, and RRA in
terms of average cost and average run time of area optimization. The MRRA reduced the average run time by
an average of 17.5% according to the RRA. With regard to comparison results, the proposed MRRA has the
potential to improve more NP-hard problems.

As shown in the comparisons in Section 5, the improvement of the MRRA varies according to the MCNC
benchmark. The difference in the number of modules of the circuits may be the cause of this situation. Although
the parameter values used in the MRRA were determined as a result of a detailed analysis, they may need to be
changed according to the region where they are located in search space. Searching by more than one path, as
evidenced by the MRRA, increases the efficiency. However, the most suitable number of initial paths and their
termination conditions can be determined to increase the improvement of efficiency. In addition, these multiple
paths can be operated on different cores to further decrease the computation time.
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