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Abstract: The Vehicle Routing Problem (VRP) is one of the most discussed and researched topics nowadays. The VRP
is briefly defined as the problem of identifying the best route to reduce distribution costs and improve the quality of
service provided to customers. The Capacitated VRP (CVRP) is one of the most commonly researched among the VRP
types. Therefore, the CVRP was studied in this paper and a new population based simulated annealing algorithm was
proposed. In the algorithm, three different route development operators were used, which are exchange, insertion and
reversion operators. It was tested on 63 well-known benchmark instances in the literature. The results showed that the
optimum routes could be determined for the 23 instances.
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1. Introduction
The Vehicle Routing Problem (VRP) was first described by Dantzig and Ramser [1]. According to their
definition, a vehicle fleet with the same or different capacities in a central depot is requested to serve a set
of customers, each with a different location and different demands. In this process, it is aimed to determine the
most suitable route in terms of total travel distance, duration and cost. From the date of its first definition, the
new constraints have been added to the VRP and the different types have been introduced. The Capacitated
VRP (CVRP) is one of them and the numerous researches have been carried out on it up to now [2].

Exact methods were used by some researchers to solve CVRP [3]. These methods include algorithms such
as branch and bound [4], branch and cut [5], branch and price [6]. They use a divide and conquer strategy to
separate the solution space into subproblems and then optimize each subproblem individually. The CVRP is an
NP-hard problem. It has high computational complexity. The time consumption of exact methods is very high.
Therefore, they cannot be applied to large-scale CVRP problems [3]. Also, they cannot consistently solve the
CVRP problems with more than 50 demands [7]. When the scale of the CVRP problem is too large, heuristic
and in particular metaheuristic methods are used more often than exact methods. Metaheuristic methods have
two categories as single solution algorithms and population based algorithms [3]. The first includes algorithms
such as greedy heuristic [8], simulated annealing [9], tabu search [10]. The second contains algorithms such as
genetic algorithms, ant colony optimization, artificial bee colony, artificial immune systems, differential evolution
algorithms. More and more studies are currently conducted on population based metaheuristic algorithms [3].
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In particular, those using new local search strategies and operators produce very good results in a reasonable
time [11].

Many studies were conducted using metaheuristic algorithms to solve the CVRP [12–19]. In the first
study, an improved ant colony optimization method with a new strategy and mutation process was proposed to
update the increased pheromone [12]. The method used the ant-weighted strategy. It was tested on 14 different
benchmark instances. The results were compared with those of other methods. In the second study, a new
method based on simulated annealing algorithm was developed [13]. The method included the combination of
random and deterministic operators based on problem knowledge. 24 different benchmark instances were used
to test the method. In another study, a novel algorithm named the Optimized Crossover Genetic Algorithm
(OCGA) was proposed using genetic algorithm with the optimized crossover operator [14]. In the algorithm,
first, two parents were selected. Then, two children were produced by a mechanism designed by a non-directional
binary graph. The OCGA was tested using common benchmark instances. A different study was conducted
by Zhang et al. [15] using the artificial bee colony algorithm which is one of common heuristic methods. The
method was named the Routing Directed Artificial Bee Colony (RABC). Many improvements were made on
diversified and concentrated search capability of the traditional artificial bee colony algorithm. Teoh et al.
[16] proposed a new method called the Improved Differential Evolution Algorithm with Local Search (DELS).
The differential evolution algorithm was used in the method. A new local search procedure was developed to
discover the new search regions and to improve the solutions found. The test of both RABC [15] and DELS [16]
was performed using benchmark instances. Ewbank et al. [17] used an unsupervised fuzzy clustering method
to solve the CVRP. Their method was tested on 85 benchmark instances. The different fuzziness parameter
(m) values were used for each instance. Thus, the relationship between customers’ demands and distances to
the depot was shown with this parameter. It was shown that the optimum values could be reached with an
average error of 5% in terms of total travel distance. Mohammed et al. [18] proposed a new method using the
K-Nearest Neighbor Algorithm (KNNA). The method was designed not to require a large database to record
the population. Thus, the running time of the algorithm was shortened. 20 benchmark instances were used to
test the algorithm. The running times ranging from 0.85 seconds to 8.27 seconds were obtained. Faiz et al. [19]
developed a new method called the Perturbation Based Variable Neighborhood Search with Adaptive Selection
Mechanism (PVNS-ASM). In the method, the Perturbation Based Variable Neighborhood Search approach was
combined with Adaptive Selection Mechanism. The perturbation scheme selection method was preferred instead
of stochastic selection method. The PVNS-ASM [19] was tested on 21 benchmark instances and achieved more
successful results in comparison with other methods.

In this study, a population based metaheuristic algorithm was proposed to solve the CVRP, inspired
from the studies mentioned above. The simulated annealing algorithm was used as the metaheuristic algorithm
because of its greater ability to prevent trapping to the local minimum in comparison with other methods.
Three different local search operators were used to develop routes. The operators are exchange, insertion, and
reversion operators. It was decided randomly which of them would be used in any iteration. Thus, a three-
probability stochastic approach was adopted during the creation of a new solution about the current solution.
A stochastic approach was also used to determine the number of points in route development operators. The
proposed algorithm was tested on 63 benchmark instances with different numbers of demand points and vehicles,
which are the well-known instances in the literature. The results were recorded together with the running times
for each instance.
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2. Capacitated Vehicle Routing Problem

In the Travelling Salesman Problem (TSP), a salesman or vehicle is requested to start from a certain location,
to visit only once to all other locations in the system and to return to the starting location again [20]. Also, the
total tour distance is aimed to be minimum. In fact, the VRP is a complex variant of the Multiple Travelling
Salesman Problem (m-TSP), which includes multiple salesmen. In the m-TSP, each salesman needs to create a
different route. In addition, the VRP was obtained by adding the constraints that the salesmen could carry a
certain amount of load and the demand on each point could be different [21]. The VRP is divided into different
subgroups depending on whether it includes one or more of the constraints such as environment and route
status, time, cost, capacity of vehicles [22, 23]. One of the subgroups is the CVRP. Its mathematical model is
given below [24].

The decision variable:

xijk =

{
1 if vehicle k travels from customer i to j
0 otherwise (1)

The objective function:

Minimize
∑
k∈V

∑
i∈N

∑
j∈N

dijxijk (2)

Subject to: ∑
k∈V

∑
i∈N

xijk = 1, ∀j∈N (3)

∑
k∈V

∑
j∈N

xijk = 1, ∀i∈N (4)

∑
i∈N

mi

∑
j∈N

xijk ≤ q, ∀k∈V (5)

∑
j∈N

x0jk = 1, ∀k∈V (6)

∑
i∈N

xi0k = 1, ∀k∈V (7)

∑
i∈N

xihk −
∑
j∈N

xhjk = 0, ∀h∈N,∀k∈V (8)

xijk∈{0, 1}, i ̸=j, ∀i, j∈N,∀k∈V (9)

The equations were obtained for a system with V vehicles with equal capacity and N demand points.
mi refers to the demand of point i . xijk is the binary decision variable and given in (1). It equals to 1 if
vehicle k travels from customer i to j and 0 otherwise. The objective function of the model is given in (2).
It is tried to be minimized of the dij (distance from point i to j ) costs of the connections between vehicles k
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and (i, j) . The provision of service by exactly one vehicle to each point is provided by (3) and (4). The routes
should not exceed the vehicle capacity value q . This situation is included in the model with (5). Establishing of
both incoming and outgoing connection to the depot for each vehicle is provided by (6) and (7). The constraint
regulating the flow is expressed with (8). The vehicle coming to any point of demand should leave to another
point of demand. A variable only takes the integer 0 or 1. This constraint is provided by (9).

In the mathematical model of the CVRP given in [24], there is a constraint given by the equation∑
i∈N

∑
j∈N dijxijk ≤ Dk , where ∀k ∈ V and Dk is the maximum allowed travel distance by vehicle k . The

constraint shows the limit of the total length of each route. It was not used in the methods KNNA [18] and
PVNS-ASM [19]. It was not also considered in Ewbank et al.’s method [17]. Since the results of the proposed
method were compared with the results of these methods, the constraint showing the limit of the total length of
a route was also not taken into consideration in this study. Therefore, it was not included in the mathematical
model given above.

3. Method
3.1. The population based simulated annealing algorithm

The simulated annealing algorithm is a random search algorithm proposed by Kirkpatrick et al. [9]. It was
developed based on the similarity between the metallurgical annealing process and the research of the minimum
value in a more general system. The simulated annealing algorithm starts the research with a single randomly
generated solution. Therefore, its performance largely depends on the starting point. If the quality of the
starting point is poor, the result is unsatisfactory. On the other hand, it is not appropriate to use a single
solution to explore the entire research space [25]. It also requires a long calculation time to find a reasonable
solution. These drawbacks are revealed when the problem dimension is high and there are many local minima
[25]. In order to overcome them, a population based simulated annealing algorithm was proposed and used
to solve the CVRP. The proposed algorithm does not contain memory, unlike the population based simulated
annealing (PSA) proposed in [25]. The PSA algorithm generates the new candidate solution using the current
solution and its two interesting elite experiences. In the algorithm proposed in this study, the new candidate
solutions (routes) are generated by using exchange, insertion, and reversion operators. It was decided randomly
which of them would be used in any iteration.

At the beginning of the proposed algorithm, a start temperature Tstart and an end temperature Tend are
determined and an initial population x containing random solutions is generated. The population size should
be given as input to the algorithm. The fitness values (f(x)) of the solutions constituting the population are
calculated by using the objective function. The objective function for the CVRP is given in (2). It represents
the sum of the distances covered. In Figure 1, the calculation of the distance covered (fitness value) is shown
on an instance in detail. Figure 1a gives information belonging to the instance consisting of twelve customers
and one depot. The distances between the customers and the depot are calculated as in Figure 1b. A randomly
generated sample solution is shown in Figure 1c. According to the solution, the route information of the vehicle
1 is {0, 12, 1, 7, 0}. For this route, the distance to be covered by the vehicle and the amount of load to be
carried is 101.7 and 46, respectively. The route information of other vehicles, the distances covered, and the
load amounts are also given under the sample solution. Considering that the capacity of the vehicles is 60,
the given sample solution is a valid solution. The graphical representation of this solution and total distance
(fitness value) are given in Figure 1d.

1220



İLHAN/Turk J Elec Eng & Comp Sci

Figure 1. a) The instance consisting of twelve customers and one depot b) The distances between customers and depot
c) The sample solution d) The graphical expression of sample solution and total distance.

If the amount of load to be carried by a vehicle exceeds the vehicle capacity, the constraint given by
(5) is violated. In this case, the new solution is invalid. The death penalty procedure used for constraint
processing rejects the solution. The relevant trial step is skipped and the next trial step starts. The death
penalty method used in the proposed algorithm is quite simple and effective. Unlike static, dynamic or adaptive
penalty methods, it does not require extra computation [26]. It accelerates the proposed algorithm. Thus, the
algorithm runs stably on different sized instances.

After the fitness values of the solutions constituting the population are calculated, the process of finding
new and better solutions about current solutions starts. In this process, any of exchange, insertion, and reversion
route development operators are used. If the generated new solution is better than the previous solution, it is
considered as the current solution. If it is not better than the previous solution, then a value w is calculated

using the equation w = e
−△f

T , where △f is the difference between the fitness values of the new solution and
the previous solution and T is the temperature. If this value is greater than the randomly generated value
r between 0 and 1, the generated new solution is considered as the current solution. Otherwise the route
development process is ignored. These processes are repeated for all solutions constituting the population up
to the number of trials given as input to the algorithm. The best fitness value and the route solution giving
this value are determined for each iteration and recorded. After each iteration, the temperature T should be
reduced depending on the rate calculated according to the start temperature Tstart and the end temperature
Tend . In the last iteration, the temperature T decreases to the end temperature Tend given as input to the

1221



İLHAN/Turk J Elec Eng & Comp Sci

algorithm. The result of the proposed population based simulated annealing algorithm is the best fitness value
obtained during the iterations and the route solution giving this value.

3.2. The route development operators

Exchange, insertion and reversion operators were used by Yu and Lin [27] to solve the location-routing problem
with simultaneous pickup and delivery (LRPSPD). They conducted various experiments on four LRPSPD
instances to analyze the performance of these operators. They examined the convergence of any solution by
applying each operator alone and randomly applying all the operators. A faster convergence was achieved by
random application of exchange, insertion and reversion operators. At the same time, the better solutions were
obtained. For this reason, Yu and Lin [27] decided with 1/3 probability which of them will be used in any
iteration. In this study, one of exchange, insertion and reversion operators was used randomly to find a new
and better solution about the current solution. Similarly, it was decided with 1/3 probability which of these
operators will be used. However, exchange and insertion operators are slightly different from those proposed
by Yu and Lin [27]. The number of points to be added or replaced can be 1 or 2. Thus, the proposed method
gained the ability to obtain the faster convergence and the better solution.

3.2.1. The exchange operator

Figure 2a shows a sample solution, the route information of this solution and the amount of load to be carried
for each route. The implementation of the exchange operator is given in Figures 2b and 2c. As can be seen
from Figure 2b, the points 3 and 9 are randomly determined exchange points. The exchange numbers of the
points are 1 and 2, respectively. The exchange numbers (1 or 2) are also determined randomly in the algorithm.
Figure 2c shows the new solution obtained after the exchange operator was implemented. According to this
solution, the routes 1 and 3 have changed and the amount of load to be carried by the vehicles following these
routes is given below the routes. Since the new solution is a suitable solution, the amount of load to be carried
by the vehicles should be less than or equal to the capacity of the vehicles. In order that the new solution
becomes a better solution than the current solution, the distance to be covered should be shorter. Considering
that the vehicle capacities are 60, it is not a suitable solution because of the amount of load to be carried by
the vehicle following the route 1. Therefore, the exchange operator should be reapplied on the current solution
for randomly redetermined exchange points and numbers.

3.2.2. The insertion operator

The implementation of the insertion operator on the sample solution (Figure 2a) is shown in Figures 2d and
2e. As can be seen from Figure 2d, the points 5 and 14 are randomly determined insertion points. The number
of insertions (1 or 2) is also identified randomly in the algorithm. Figure 2d shows the new solution obtained
after the insertion operator was implemented. According to this solution, the routes 2 and 4 have changed and
the amount of load to be carried by the vehicles following these routes is given below the routes. Considering
the vehicle capacities, it is not a suitable solution because of the amount of load to be carried by the vehicle
following the route 2. Therefore, the insertion operator should be reapplied on the current solution for randomly
redetermined insertion points and numbers.

3.2.3. The reversion operator

The implementation of the reversion operator on the sample solution (Figure 2a) is shown in Figures 2f and
2g. As can be seen from Figure 2f, the points 6 and 14 are randomly determined reversion points. The new
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solution is obtained by reversing the section between these reversion points. Figure 2g shows the new solution
obtained after the reversion operator was implemented. According to this solution, the routes 2, 3 and 4 have
changed and the amount of load to be carried by the vehicles following these routes is given below the routes.
Considering vehicle capacities, the new solution is a suitable solution. It is also a better solution. Because
the total distance for the sample solution given in Figure 2a is 584.3. The total distance for the new solution
is 555.9. In this case, the new solution is considered as the current solution and the execution of the route
development procedure is continued until the number of trials is reached.

Figure 2. a) The sample solution b) Exchange points c) A new solution obtained for the exchange operator d) Insertion
points e) A new solution obtained for the insertion operator f) Reversion points g) A new solution obtained for the
reversion operator.

In the literature, a population based simulated annealing algorithm was proposed for the solution of the
traveling tournament problem (TTP) which is a combinatorial optimization problem such as the CVRP [28].

1223



İLHAN/Turk J Elec Eng & Comp Sci

This algorithm includes features such as both macro-intensification and macro-diversification. It is arranged
in the form of a series of waves consisting of many simulated annealing runs. Each wave is followed by a
macro-intensification and a macro-diversification. A macro-diversification is used to produce the best solution.
A macro-intensification is used to find better solutions than the best solution available. In [28], the local
search strategy is based on macro-intensification and macro-diversification operators. In this study, the local
search strategy is built on exchange, insertion and reversion operators. These operators are applied with 1/3
probability to each solution in the population in any iteration. Thus, a new and better solution is tried to be
found.

3.3. The pseudo-code and the interface
The pseudo-code of the proposed algorithm is given in Figure 3. As can be seen from the figure, the parameter
values are primarily given as input to the algorithm. The number, locations and demand values of the customers,
the number and capacities of the vehicles and the location of the depot are taken from the selected instance.
The distances between the customers and the depot are calculated according to the location information in the
instance. All this information is used by the proposed algorithm and the best route and the fitness value are
produced as output.

Figure 3. The pseudo-code of the proposed algorithm.
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The pseudo-code was coded in MATLAB and a new interface was developed. The interface is given in
Figure 4. The parameter values for the proposed algorithm are entered via this interface. In addition, the best
route obtained for each iteration can be followed via it and the fitness value of the route can be seen.

Figure 4. The interface of the proposed algorithm.

4. Experimental study
4.1. Test datasets
The proposed method was tested on well-known benchmark instances in the literature. A total of 63 instances
were used, 50 of the datasets A, B and P proposed by Augerat et al. [29], 10 of the dataset E proposed by
Christofides and Eilon [30] and 3 of the dataset F proposed by Fisher [31]. The instances have a depot, the
number of demand points between 15 and 134, and the number of vehicles between 2 and 15. The tightness ratio
of the instances is between 0.75 and 0.99. The tightness ratio is defined as the ratio of the sum of the demands
of the customers to the sum of the capacities of the vehicles [31]. The B-n45-k6 has the highest tightness ratio
while the E-n23-k3 has the lowest tightness ratio among the instances.

4.2. Parameter settings and sensitivity analysis

The proposed algorithm was run on a notebook with Windows 8.1 operating system. The notebook has an
Intel Core i7 processor and 8 GB RAM. Since the parameter values play an important role in the quality of the
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solutions, a few preliminary experiments were carried out with the different parameter settings given follow:
The number of iterations (In ) = {200, 300, 400, 500, 600};
The number of solutions in population (Pn ) = {20, 50, 100};
The number of trials (Tn ) = {30, 40, 50};
The start temperature (Tstart ) = {10, 100, 500};
The end temperature (Tend ) = {10−3 , 10−4 , 10−5 }.
Each parameter combination was tested three times. According to the test results, when In = 400, Pn

= 20, Tn = 40, Tstart = 100 and Tend = 10−5 , it was observed that the proposed algorithm obtained the best
results in terms of balance between the running time and the fitness value. Therefore, these parameter settings
were used in the final analysis.

In order to analyze the performance of the proposed algorithm and the route development operators,
a few experiments were performed on 8 instances with different number of demand points and vehicles. Four
different scenarios were used in the experiments. The scenarios were that exchange, insertion and reversion route
development operators were implemented alone and all of them were implemented randomly. The experiments
showed that the random use of three different route development operators produced better solutions and
provided faster convergence (Table 1).

4.3. Experimental results
The proposed algorithm was run five times on each instance using the parameter values and the route devel-
opment operators. The fitness values and the running times were averaged separately for each instance. The
averaged values were recorded as the results of the experiments. The results are given as detailed in Tables 2–4.
Table 2 shows the results of the proposed method on 14 instances of the dataset A. The table also contains
the results of the methods KNNA [18] and PVNS-ASM [19] together with those of Ewbank et al.’s method
[17]. As can be seen from the table, the best-known optimal value was obtained by the method KNNA [18]
and Ewbank et al.’s method [17] for no instance. The proposed method has almost the same result with the
method PVNS-ASM [19] in terms of the number of the best-known optimal values. On the other hand, the
proposed method run faster than the method PVNS-ASM [19]. The running time of the proposed method
increases slightly according to the size of the instance. However, the running time of the method PVNS-ASM
[19] increases in proportion to the size of the instance.

Table 3 shows the results of the proposed method on 16 instances of the dataset B. The table also contains
the results of the method PVNS-ASM [19] and Ewbank et al.’s method [17]. As can be seen from the table, the
number of the best-known optimal values obtained by Ewbank et al.’s method [17] is only 1. The best-known
optimal values were obtained for 9 instances by both the method PVNS-ASM [19] and the proposed method. As
on dataset A, the proposed method run faster than the method PVNS-ASM [19] on this dataset. The greater
the size of the instances, the greater the difference in the average running time.

Table 4 shows the results of the proposed method on 33 instances of the datasets E, F and P. The table
also contains the results of Ewbank et al.’s method [17]. As can be seen from the table, the best-known optimal
value was obtained by Ewbank et al.’s method [17] for no instance. The number of best-known optimal values
obtained by the proposed method is 6. The average percent error value of Ewbank et al.’s method [17] is 4.1%
for 33 instances of these datasets. The average percent error value of the proposed method is 2.1%.
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As can be seen from Tables 2–4, the running time of the proposed metaheuristic method increases slightly
according to the size of the instance. This case can be explained by three different approaches used in the method.
These approaches:

1. The constraint processing approach: The death penalty method is a popular constraint processing method
used in optimization algorithms [26]. In this method, a solution is rejected when it violates a constraint.
No extra calculations are needed to estimate its degree of invalidity. This reduces the computational
complexity of the algorithm and gives it speed [26]. At the same time, it allows the algorithm to be
affected as little as possible by the instances properties (the number of demand points and the vehicles,
the tightness ratio).

2. The creation of the initial population: The solutions in the initial population were randomly generated
based on the number of demand points and vehicles. However, it was checked in the same procedure
whether a solution produced was a valid solution. If the solution was an invalid solution, a new solution
was randomly generated instead. This generation process continued until the number of solutions equaled
the population size. The procedure used to create the initial population is given in Figure 5. This
procedure ensured the first iteration of the algorithm starts with valid solutions. Thus, it was provided
that the change in the running time of the algorithm is less according to the size of the instances.

Figure 5. The procedure for creating the initial population.

3. The route development operators: Exchange, insertion and reversion operators are used to produce a new
solution about the current solution. It was decided with 1/3 probability which of these operators will be
applied on the current solution. Figure 2 illustrates how these operators are applied to a solution. As
can be seen from the figure, the time consumption of the exchange and insertion operators is independent
of the length of the solution (the number of demand points and vehicles). The time consumption of
the reversion operator depends on the randomly determined reversion points. Both the selection of the
reversion operator and the determination of the reversion points are performed with a certain probability.
Therefore, the effect of this operator on the time consumption of the proposed algorithm remains limited.

The fitness value of a new solution generated in the proposed algorithm is calculated as shown in Figures 1c
and 1d. The length of the generated solution string is directly dependent on the size of the instance (Figures 1a
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and 1b). As the size of the instance (the number of demand points and vehicles) increases, the length of the
solution string increases. The longer the solution string, the longer it takes to calculate its fitness value. This
time directly affects the running time of the algorithm. However, this effect is the same as the values given in
detail in Tables 2–4.

Figure 6a shows as a boxplot the percent error values for the datasets A, B, E, F and P. Figure 6b gives
as a boxplot the running times. The running times were not processed by Ewbank et al.’s method [17] for these
datasets. Therefore, Ewbank et al.’s method [17] is not included in Figure 6b. In terms of the percent error
value, the method PVNS-ASM [19] has a more stable feature. However, the same method has a very unstable
feature in terms of running time. The opposite is the case for the method KNNA [18]. The method KNNA [18]
has a more stable feature in terms of running time. However, the same method has a very unstable feature in
terms of the percent error value. Considering the percent error value and running time together, the proposed
method in this study is a more stable than the other methods compared.

Figure 6. a) The boxplot of the percent errors b) The boxplot of the running times.
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5. Conclusion and future research
The CVRP, one of the most discussed and researched topics nowadays, was studied in this paper. A novel
population based simulated annealing algorithm is proposed to solve the CVRP. In this algorithm, three different
route development operators, which are exchange, insertion and reversion operators, were used. It was decided
randomly which of these operators to use in any iteration. The proposed algorithm was tested on 63 well-known
benchmark instances in the literature. The results were recorded together with the running times for each
instance. They showed that the proposed algorithm could determine optimum routes for the 23 instances. In
addition, considering the percent error value and running time together, it was determined that the proposed
method was a more stable than the other methods compared.

Future research may focus on the use of different metaheuristic algorithms, such as gray wolf, harmony
search, firefly optimization algorithm to solve the CVRP. Even, a new route development operator can be
researched. A new hybrid method that combines two metaheuristics can be developed.
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