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Abstract: Metaheuristic algorithms are used to find sufficiently good solutions for the optimization problems that
are not solvable in a polynomial time. Although metaheuristics offer a general problem-solving framework and can
be applied to various types of optimization problems, their performances depend heavily on the problem to be solved.
Thus, hybrid metaheuristics are used to combine strong parts of different algorithms. In this study, a novel adaptive
metaheuristic selection algorithm is proposed for solving bound-constrained continuous optimization problems. The
developed method hybridizes artificial bee colony, differential evolution, and particle swarm optimization at a high level
where each algorithm works independently from each other. As a main contribution to the literature, adaptive selection
at metaheuristic level among these three algorithms is achieved by using a rank-based credit assignment and UCB1
multiarmed bandit selection. The effectiveness of the developed algorithm has been evaluated on CEC’17 standard
benchmark functions. The obtained numerical results indicate that the proposed algorithm outperforms the individual
metaheuristics on which it is built and is more effective especially in high dimensional problems. It is also shown that
the proposed algorithm is highly comparable with the related algorithms in the literature. Lastly, a case study that
achieves adaptive selection of two good-performing algorithms (namely, covariance matrix adaptation evolution strategy
and JADE) for the benchmark used in this study supports the effectiveness of the proposed method.

Key words: Metaheuristics, hybridization, adaptive selection, credit assignment, continuous optimization, multiarmed
bandit

1. Introduction
Optimization can simply be defined as choosing the best option from a wide range of alternatives. Most of
the optimization problems in daily life are about minimizing the cost or maximizing the profit of a given task.
Finding the shortest route in which every city is visited at once [1], optimal placement of wireless sensors for area
coverage maximization [2], calculating the optimum structure of pressure vessels or welded beams as engineering
design problems [3] are just a few examples of important optimization problems that may be encountered in
daily life.

When an optimization problem cannot be solved efficiently by classical algorithms that provide exact
solutions, metaheuristic approaches that produce acceptable solutions in a reasonable time are preferred. The
main feature of a metaheuristic algorithm is that it provides a general solution framework and can be adapted
for different optimization problems. Some of the common metaheuristics that have been successfully applied
to solve hard optimization problems are listed as follows: evolutionary strategies [4], genetic algorithms [5],
∗Correspondence: osman.gokalp@ege.edu.tr
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simulated annealing [6], tabu search [7], genetic programming [8], particle swarm optimization [9], and ant
colony optimization [10].

The ”no free lunch theorem” of Wolpert and Macready [11] states that no general-purpose optimization
algorithm (e.g, metaheuristic) is better than any other, and its performance is equal when all possible problems
are taken into account. This means that different optimization algorithms are needed to solve different problems
efficiently. Thus, hybrid metaheuristic that combines multiple algorithms can offer a more robust way of dealing
with this problem. According to a taxonomy proposed by Talbi [12], hybrid metaheuristics can be divided into
two general classes, namely high-level and low-level. In the former, each metaheuristic works itself and is
unaware of inner workings of the others. On the other hand, in the latter, a metaheuristic can take part in one
of the subfunctions of the others; hence, there is a more interleaved structure.

The main advantage of the high-level hybridization is that member algorithms can be treated as black box,
so the hybrid design can easily be extended by including new ones. Moreover, the hybrid design process can be
automated by using adaptive selection mechanisms. In this work, we propose a high-level hybrid algorithm which
uses adaptive selection of metaheuristics for the purpose of solving bound-constrained continuous optimization
problems especially in high dimensions. Specifically, particle swarm optimization (PSO) [9], differential evolution
(DE) [13], and artificial bee colony (ABC) [14] metaheuristics are put together and selected adaptively by UCB1
[15] multiarmed bandit algorithm using rank-based credit scores of the algorithms. The reasons we chose these
three algorithms are as follows: (i) They are among the most widely used and successful metaheuristics for
continuous optimization domain; (ii) they show distinctive search characteristics such as usage of velocity
vectors by PSO, two-stage solution update by ABC, and adjustable crossover by DE.

The adaptive algorithm selection for the continuous optimization is not a new concept and has generally
been used for solution update strategy decision for a single metaheuristic. For example, SaDE algorithm [16]
selects among four mutation formulas of DE, whereas MEABC algorithm [17] selects three mutation formulas
of ABC. To the best of our knowledge, there is only one study [18] that selects among different metaheuristics,
namely genetic algorithm and DE; however, this selection is made for each solution in the population that
metaheuristics operates in a more interleaved way. In this regard, this paper proposes the first high-level
hybrid algorithm that makes adaptive selection among standalone metaheuristics for the continuous optimization
problems.

In order to test the proposed algorithm, we conducted an experiment on CEC’17 [19] benchmark that
includes 30 different numerical optimization functions. The computational results show that high-level adaptive
selection-based hybrid algorithm is more successful than individual metaheuristics that make it up and is more
effective especially in high dimensional problems. The results also show that the proposed algorithm is highly
comparable with the related algorithms in the literature.

The remaining part of the paper is organized as follows. Section 2 gives the mathematical formulation
of the bound-constrained continuous optimization algorithms and outlines the three metaheuristics used in
this study, namely PSO, DE, and ABC. In Section 3, high-level hybridization is described and the details of
adaptive metaheuristic selection mechanism are given. Then, the algorithm of the proposed method is described
and detailed in Section 4. After that, the comprehensive computational results of the proposed algorithm is
presented and discussed in Section 5. Finally, Section 6 concludes the paper.
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2. Metaheuristic algorithms for continuous optimization problems

Let f : RD → R , where f is the objective function and D is the dimension. The goal of continuous optimization
problems is to find x = (x1, x2, · · · , xD) real number vector that minimizes the value of f(x) . If the upper (U)
and lower (L) limits for each number in x is given, i.e. Li ≤ xi ≤ Ui, i = 1, 2, · · · , D , the problem is said to be
bound-constrained.

2.1. Particle swarm optimization

Particle swarm optimization (PSO) is a swarm intelligence metaheuristic and inspires from the social behavior
of bird flocks. A population of PSO consist of particles, which correspond to candidate solutions, and defined by
two real number vectors, namely position and velocity. The position vector of a particle, X⃗ = (x1, x2, · · · , xD ),
is the actual solution, whereas the velocity vector, or V⃗ = (v1, v2, · · · , vD ), gives the direction that the position
is moved, where D is the problem dimension.

At each iteration of PSO, the following updates are made for each particle in the population P =

{(X⃗i, V⃗i) : 1 ≤ i ≤ NP} , where NP is the population size. Firstly, the velocity of a particle is adjusted using
both its personal best position, or P⃗ and the global best position of the entire population, or G⃗ , as in (1). The
parameters w ,c1 , and c2 are used for controlling the behavior of the optimization process, whereas r1 and r2

are the random numbers between (0,1). Then, the calculated velocity is added to the previous position of the
particle and particle is moved to new position as in (2). After that, both the particle’s personal best and the
global best positions are updated if there is an improvement in the objective value (see (3) and (4)). Finally,
when the maximum number of iterations is reached, the best solution found is returned by the algorithm.

V⃗i = wV⃗i + c1r1(P⃗i − X⃗i) + c2r2(G⃗− X⃗i), (1)

X⃗i = X⃗i + V⃗i, (2)

P⃗i =

{
X⃗i, if f(X⃗i) ≤ f(P⃗i)

P⃗i, otherwise
, (3)

G⃗ =

{
P⃗i, if f(P⃗i) ≤ f(G⃗)

G⃗, otherwise
. (4)

2.2. Differential evolution
Differential evolution (DE) is a population-based evolutionary metaheuristic algorithm. Each candidate solution
in DE is represented by a real number vector X⃗ = (x1, x2, · · · , xD ), where D is the problem dimension. A
population of candidate solutions P = {Xi : 1 ≤ i ≤ NP} , where NP is the population size, is updated
through iterations to find the global optimum solution.

At each iteration of DE, the following updates are made for each individual in the population. Firstly,
the target vector V⃗ is generated using (5), where r1 , r2 , and r3 are randomly picked indices in [1, NP ] and
satisfies the condition r1 ̸= r2 ̸= r3 ̸= i . Then, the trial vector U⃗ is generated using (6), where CR is the
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crossover rate and I is the random dimension index which is used to ensure that at least one dimension update
is made. Lastly, the trial vector replaces the current individual using (7). When the maximum number of
iterations is reached, the best solution found is returned by the algorithm.

V⃗i = X⃗r1 + F (X⃗r2 − X⃗r3) (5)

U⃗i,j =

{
V⃗i,j , if rand(0, 1) ≤ CR or j = I

X⃗i,j , otherwise
(6)

X⃗i =

{
U⃗i, if f(U⃗i) ≤ f(X⃗i)

X⃗i, otherwise
(7)

2.3. Artificial bee colony

Artificial bee colony (ABC) is a swarm intelligence metaheuristic and is inspired by the foraging behavior
of honey bees. The ABC algorithm consists of four main components, namely food sources, employed bees,
onlooker bees, and scout bees. Food sources correspond to candidate solutions of an optimization problem
that is to be solved. On the other hand, the three types of bees represent three different search strategies.
Specifically, each employed bee is associated with one food source and search its neighborhood to find a better
one. Onlooker bees work similar with the employed bees; however, they are not associated with the current food
sources directly. Rather, they probabilistically choose better food sources. In this way, some of the food sources
(probably the worse ones) may not be visited by onlooker bees. This behavior allows to exploit promising
solutions several times. Therefore, it strengthens the exploitation behavior of the search process. As a last
group of bees, the duty of the scout bees is to find completely new food sources when the current ones all
exhausted.

In ABC, each solution is represented by a real number vector X⃗ = (x1, x2, · · · , xD) , where D is the
dimension of the problem. At each iteration of ABC, three search phases are applied to the population of
solutions P = {X⃗i : 1 ≤ i ≤ NP} , where NP is the population size. In the first phase, which is called
employed bees, the new neighbor food source V⃗ is searched for each solution i using (8), k ̸= i is the random
picked solution index in P , j is the randomly picked dimension index, and ϕ is the random real number in
the range (−1, 1) . Then the greedy selection is applied to neighbor food source using (9), where f(.) is the
objective function. In the second phase, which is called onlooker bees, (8) and (9) are again used to find and
accept new food sources, respectively; however, this time only the promising food sources are considered. That
is, the probabilistic selection is made using (10) and (11), where function fit(.) calculates the fitness value of a
given solution. The last phase is called scout bees that replaces one of the food sources with a new random one
if it is exhausted, i.e. it does not give a lead to find better neighbor food source for a predefined limit value.
After reaching a maximum number of iterations, ABC algorithm terminates and returns the best solution found
so far.

V⃗i,j = X⃗i,j + ϕi(X⃗i,j − X⃗k,j), (8)
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X⃗i =

{
V⃗i, if f(V⃗i) ≤ f(X⃗i)

X⃗i, otherwise
, (9)

fit(X⃗i) =

{
1

1+f(X⃗i)
, if f(X⃗i) ≥ 0

1+ | f(X⃗i) |, otherwise
, (10)

pi =
fit(X⃗i)∑NP
j=1 fit(X⃗j)

. (11)

3. A high-level and adaptive metaheuristic selection

For high-level hybrid structures, it is necessary to decide which metaheuristic is to be operated within a certain
period of time. In case of sequential hybrids, i.e. concurrent running of the metaheuristics is not the case, two
approaches can be employed for the selection of metaheuristics: (i) the use of a predefined sequence and (ii) the
use of a real-time and adaptive mechanism. Figures 1a and 1b show flowchart diagrams showing the approaches
(i) and (ii), respectively, for 3 metaheuristics. The main drawback of the former approach is to determine which
sequence to use before the algorithm starts. Thus, this affects the usability of the algorithm negatively. Another
drawback of this method is that optimization itself is a dynamic process. That is, one metaheuristic which is
good at the beginning may not necessarily perform well at the later stages. Fortunately, the latter approach
can provide a solution to these problems by allowing adaptive selection of metaheuristics while the algorithm
is running. The adaptive selection method used in this study consists of two parts that are credit assignment
and selection rule and they are explained in the following subsections, respectively.

3.1. Credit assignment

In order to decide which metaheuristic to be selected for a given time period, their performance should be
monitored continuously and a credit value that shows how much the algorithm is preferable should be assigned
to each one. In our case, the credit should depend on how much the objective function value of the continuous
optimization problem is improved. However, two problems may be encountered at this point. Firstly, the
performance of the algorithms used in solving optimization problems may vary in different times or stages of
the optimization process. Secondly, using the objective value improvement directly can raise the problem of
scaling because of the fact that the amount of change in the objective function tends to get smaller as the
algorithm converges.

In this study, we used the sum of ranks (SR) method [20] to calculate credits of metaheuristics because
it addresses both problems stated above. To be more specific, SR uses sliding window (SW) data structure
that stores only the recent data about algorithm performances. Thus, the credit values are kept up-to-date for
the current time interval. Moreover, SR uses ranked values instead of raw objective value improvements, so
the scaling problem is solved. Equation 12 formulates the calculation of SR-based credit for the algorithm i at
time t , where D ∈ [0, 1] is the decay factor and W is the sliding window size. As D gets close to 0, the effect
of the higher ranked algorithms increases. On the other hand, as D gets close to 1, the effect of the ranks is
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Figure 1. A flowchart diagram for running 3 metaheuristics (MH1, MH2, MH3) with high-level and sequential hybrid
architecture a) using predefined order b) using adaptive selection.

decreased.

SRi,t =

∑
algr=i D

r(W − r)∑W
r=1 D

r(W − r)
(12)

Figure 2 demonstrates a simple example of SW for 3 algorithms. The size of the SW is W=4, meaning
that only the last 4 results for the application of the algorithms are taken into account. Ranks (r ) are given
to each algorithm according to ∆ values that correspond to objective value improvements. Using Figure 2, an
example credit calculation for algorithm 0 at time 8 with D = 0.5 can be done by (12) as follows:

SR0,8 =
0.50(4− 0) + 0.52(4− 2)

0.50(4− 0) + 0.51(4− 1) + 0.52(4− 2) + 0.53(4− 3)
= 0.48

3.2. Selection rule
Selecting which algorithm to run from a set of alternatives is an example of exploration/exploitation dilemma. In
other words, choosing the best-performing algorithm so far (pure exploitation) may cause the selection process
to miss better possible options. On the other hand, only random selection of algorithms (pure exploration)
means that no previously available useful information is used. Because UCB1 [15], one of the multiarmed
bandit problem algorithms, provides a simple yet efficient solution to this dilemma, we used it as a selection
rule for the metaheuristics in this paper.
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Figure 2. An example of sliding window data structure for 3 algorithms for time t=5 to t=8.

The selection formula of UCB1 is given in (13), where x̂ is the average reward (current credit value) of
algorithm j , nj is the number of times j has been selected so far, and n is the total number of selections for
all the algorithms. Because the first term of the formula uses a credit value, it supports exploitation. On the
other hand, the second term punishes the frequently selected algorithms; therefore, it supports exploration. At
this point, parameter C is used for controlling the balance between these behaviors, i.e. the higher C is, the
more the exploration is, and vice versa.

argmax
j

(x̂j + C

√
2 log n

nj
) (13)

4. The proposed algorithm
The proposed algorithm is based on high-level hybridization of three main metaheuristics, namely PSO, DE, and
ABC, for solving the bound-constrained continuous optimization problems. Specifically, three metaheuristics are
adaptively selected and run in a sequential way. The selection process uses success rate-based credit assignment
and UCB1 selection methods, which were explained previously in Section 3.1 and Section 3.2, respectively.

For the implementations of PSO, DE, and ABC, we used the most standard versions in the literature as
listed below:

• PSO: SPSO-2011 algorithm of Zambrano-Bigiarini et al. [21].

• DE: DE algorithm with “DE/rand/1” selection strategy of Storn and Price [13].

• ABC: Standard ABC algorithm of Karaboga [22].

The flowchart of the algorithm of the proposed method is given in Figure 3. In the beginning, the PSO,
ABC, and DE metaheuristics are initialized with predefined parameter values. Then, the population, which
includes a pool of candidate solutions for a given optimization problem, is created randomly. After that, the
main loop of the algorithm starts and continues until the function evaluations (FEs) count reaches the budget
(MAX_FEs).

At each iteration of the main loop, firstly, up-to-date credits are calculated using sliding window (SW)
and assigned to each metaheuristic. Secondly, using the credit values, one of the metaheuristics is selected by
the UCB1 algorithm. Then, the selected metaheuristic is run for the L FEs and the improvement obtained on
the best solution of population is stored in SW. After the current FE count is updated, L is also updated by
multiplying with a small constant to run selected metaheuristic with larger FE budgets as selection algorithm
itself converges. After some preliminary testing, we set this small multiplier constant to 1.05. Finally, at the
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last step of the iteration, the current FEs is checked and the algorithm decides either to continue to the next
iteration or to terminate and return the best solution found.

It should be noted that the same population is optimized by each of selected metaheuristic. However,
contrary to other algorithms, PSO uses velocity vectors in addition to the position vectors, or solutions.
Therefore, when the selected metaheuristic is PSO, its velocity vectors are re-initialized while the position
vectors are taken directly from the population.

Figure 3. A flowchart diagram of the proposed algorithm.
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5. Experimental work
5.1. Benchmark functions
In this study, we used CEC’17 benchmark that includes 30 functions in 4 categories for single objective bound-
constrained continuous optimization problems. These functions are shifted and rotated to reduce the bias of the
developed optimization algorithms. In addition, functions are scalable to 4 different problem dimensions that are
10, 30, 50, and 100. The functions, their categories, and problem searches, and optimum objective (f∗) values
are listed in Table 1. Hybrid functions combine N basic functions as subcomponents, whereas composition
functions combine N basic functions with weight and bias. The further details about the benchmark and
definitions of basic functions can be found in [19].

5.2. Experimental setup
For the experimental setup of this study, we followed the rules below:

• Each algorithm is run 51 times with different random seeds. To make fair comparison between algorithms,
the starting populations are kept the same for each run number, i.e. 51 different initial populations are
generated and used by all the algorithms.

• Initial population generation is done randomly using uniform distribution in range [−100, 100D] , where
D is the problem dimension.

• The range for searching over the test functions are also determined as [−100, 100D] .

• The budget of optimization, or maximum number of function evaluations, is 10, 000×D for each algorithm.

• The quality of each solution is assessed by its error value that is calculated by f(X) − f∗ , where f∗ is
the best objective function value that can be obtained.

• If the error is equal or smaller than the threshold value of 10−8 , it is accepted as 0.

5.2.1. Parameter setting
In order the set of the 4 main parameters of the proposed algorithm that are L : FE count for each metaheuristic
run, W : the sliding window size, D : decay factor of the UCB1 selection, and C : balancing factor of the UCB1
selection, we used the irace package [23] which is an automatic algorithm configuration tool based on iterated
racing procedure.

In the configuration of irace, maximum budget was set to 5000. Taking dimensions of 10, 30, and 50,
odd-numbered functions were used as training set and even-numbered functions were used as test set. Other
configurations were kept as default and the tuned parameter values obtained are shown in Table 2.

Moreover, for the inner parameters of DE and ABC, we used the default values in [24] and for the PSO,
we used the default values in [21].

5.3. Computational results and comparisons
5.3.1. Comparison of the proposed algorithm with its constituent metaheuristics
To evaluate the performance of the proposed algorithm, we first make a comparison with its constituent
metaheuristics in Tables 3 and 4 for different problem dimensions. The first statistical assessment is performed at

1557



GÖKALP and UĞUR/Turk J Elec Eng & Comp Sci

Table 1. CEC’17 test functions and their properties.

Func. # Category Problem search f∗

1
Unimodal

Shifted and rotated bent cigar function 100
2 Shifted and rotated sum of different power function 200
3 Shifted and rotated zakharov function 300
4

Simple
multimodal

Shifted and rotated Rosenbrock’s function 400
5 Shifted and rotated Rastrigin’s function 500
6 Shifted and rotated expanded Scaffer’s F6 function 600
7 Shifted and rotated Lunacek Bi_Rastrigin function 700
8 Shifted and rotated noncontinuous Rastrigin’s function 800
9 Shifted and rotated Levy function 900
10 Shifted and rotated Schwefel’s function 1000
11

Hybrid

Hybrid function 1 (N=3) 1100
12 Hybrid function 2 (N=3) 1200
13 Hybrid function 3 (N=3) 1300
14 Hybrid function 4 (N=4) 1400
15 Hybrid function 5 (N=4) 1500
16 Hybrid function 6 (N=4) 1600
17 Hybrid function 6 (N=5) 1700
18 Hybrid function 6 (N=5) 1800
19 Hybrid function 6 (N=5) 1900
20 Hybrid function 6 (N=6) 2000
21

Composition

Composition function 1 (N=3) 2100
22 Composition function 2 (N=3) 2200
23 Composition function 3 (N=4) 2300
24 Composition function 4 (N=4) 2400
25 Composition function 5 (N=5) 2500
26 Composition function 6 (N=5) 2600
27 Composition function 7 (N=6) 2700
28 Composition function 8 (N=6) 2800
29 Composition function 9 (N=3) 2900
30 Composition function 10 (N=3) 3000

Bound constraint: [-100, 100]D

Table 2. The parameters of the proposed algorithm and the tuned values by irace.

Param. name Param. type Param. range irace value
L integer [250,1500] 608
W integer [5,40] 31
D real [0.1,1.0] 0.32
C real [0.01,5.0] 2.87
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function level using the Mann–Whitney U-test (also known as the Wilcoxon rank-sum), which is a nonparametric
method to check whether two independent samples are significantly different from each other. The results for
this test are presented in column ”T”. According to this, ”+”, ”-”, and ”=” values indicate that the proposed
algorithm is better than, worse than, and equal to the compared algorithm for a given function with respect to
P= 0.05 significance level. The overall results presented in row ”+/=/-” indicate that the proposed algorithm
outperforms all its subalgorithms except DE in 10 dimensional problems.

In addition, another evaluation between the algorithms is performed by calculating the Friedman ranking
scores. The results show that the proposed algorithm reaches the better ranking for all dimensions. Moreover,
the statistical assessment is performed at benchmark level using the Wilcoxon signed-rank (W.S.R.) test, which
is a nonparametric method to check whether two related or paired samples are significantly different from each
other. The P-values below 0.05 for W.S.R. prove that the difference between the proposed algorithm and the
compared algorithms is significant when the whole benchmark is considered. The results show that the proposed
algorithm outperforms all of its constituent metaheuristics in higher problem dimensions such as 50 and 100.

Finally, Figure 4 shows the convergence behaviors of the algorithms with problem dimension of 50 for
4 selected functions from each category. These functions are listed as: F3 from unimodal functions, F10 from
simple multimodal functions, F17 from hybrid functions, and F24 from composition functions. It is seen that
the convergence behaviors of the algorithms can vary according to the function to be solved. For instance, ABC
shows premature convergence and differs from the others for F3, whereas DE shows relatively slow convergence
in comparison with other 3 algorithms for F10. It can also be seen that all the algorithms show similar behavior
for F17. Lastly, for F24, the proposed algorithm converges faster than the others.

5.3.2. Comparison of the proposed algorithm with other algorithms in the literature
This section compares the performance of the proposed algorithm with some of the related adaptive algorithms
in the literature. For this purpose we selected the following algorithms: (i) MEABC [17] that adaptively selects
among three ABC solution update strategies, (ii) SaDE [16] that adaptively selects among four DE solution
update strategies, (iii) PPSO [25] that adapts parameters at particle level, and (iv) CMA-ES [26], which is
based on covariance matrix adaptation for evolution strategies and one of the most successful algorithms in
continuous optimization field.

For all the compared algorithms the same population size (50) with the proposed algorithm were used.
The computational results for the problem dimension of 50 are reported in Table 5. According to Friedman
scores our algorithm takes the second place after the CMA-ES. Similarly, when function based-comparisons
(+/=/-) are evaluated, overall results suggest that the proposed algorithm outperforms others except CMA-ES.
Finally, the algorithm level evaluations using W.S.R. test indicates that the difference between our algorithm
and MEABC, SaDE, and PPSO algorithms is significant when the whole benchmark is considered with respect
to P values smaller than 0.05. Therefore, we can conclude that the proposed algorithm is comparable with the
other algorithms in the literature.
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Figure 4. Convergence graphs for the proposed algorithm and its constituent algorithms for functions 3, 10, 17, 24 with
D=50.

5.4. A case study: adaptive metaheuristic selection with two good-performing algorithms

After validating the performance of the proposed algorithm with classical numerical optimization algorithms
such as ABC, DE, and PSO, in this section we also test the adaptive selection algorithm using two new
metaheuristics: JADE [27] and covariance matrix adaptation evolution strategy (CMA-ES), the variants of
which have shown high performance to solve the CEC benchmark functions before in [28] and [29]. Note that,
because CMA-ES uses a single initial solution to start the search, we used the population’s best solution when
this algorithm is selected and will be executed.

For the experimental design, we used the same setting that is defined in Section 5.2. After tuning the
parameters with irace as it is explained in Section 5.2.1, we obtained the following values to be used in the
computational experiment: L=1124, W=17, D=0.39, and C=4.90.

The computational results for adaptive metaheuristic selection of JADE and CMA-ES algorithms with
the proposed method in this study are presented in Table 6. The comparison between the adaptive selection and
the constituent algorithms are made at function level using the Mann–Whitney U-test based on mean errors,
which are presented in column ”T.”. That is, ”+”, ”-”, and ”=” values indicate that the adaptive metaheuristic
selection is better than, worse than, and equal to the compared algorithm for a given function with respect to
P= 0.05 significance level.

The overall results suggest that the adaptive selection could improve results of 22 functions for JADE and
19 functions for CMAES. It can also be seen that the improvements are mainly obtained for simple multimodal
(F4-F10) and composition function (F21-F30) groups.
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Table 5. Comparison of the proposed algorithm with other algorithms in the literature for D=50 based on mean errors.

Func. MEABC SaDE PPSO CMA-ES Proposed
1 6.60E+03 4.91E+02 3.89E+02 0.00E+00 4.18E+03
2 8.29E+23 8.19E+18 1.25E+12 0.00E+00 1.81E+08
3 2.55E+05 6.43E+04 8.65E+02 0.00E+00 9.44E+03
4 5.60E+01 4.55E+01 9.13E+01 4.34E+01 6.22E+01
5 1.25E+02 6.89E+01 2.01E+02 3.48E+01 3.34E+01
6 0.00E+00 0.00E+00 3.18E+01 4.00E-03 4.26E-03
7 1.63E+02 1.16E+02 2.78E+02 8.32E+01 8.48E+01
8 1.25E+02 6.89E+01 1.99E+02 3.83E+01 3.15E+01
9 1.18E+03 8.72E-01 6.06E+03 1.03E-01 2.39E+01
10 3.91E+03 3.57E+03 5.20E+03 2.62E+03 2.61E+03
11 2.00E+03 6.72E+01 1.27E+02 1.25E+02 6.08E+01
12 3.82E+06 1.13E+05 5.52E+05 1.29E+03 1.38E+05
13 7.04E+03 1.17E+03 8.47E+02 8.26E+01 3.92E+03
14 9.17E+05 2.47E+04 1.95E+04 5.42E+01 5.96E+02
15 8.56E+03 9.12E+02 1.19E+03 8.27E+01 4.06E+03
16 1.13E+03 9.25E+02 1.24E+03 5.97E+02 3.91E+02
17 7.95E+02 6.62E+02 1.03E+03 5.18E+02 3.34E+02
18 1.46E+06 2.32E+05 2.09E+05 3.01E+01 1.06E+04
19 1.32E+04 3.31E+03 8.67E+03 6.14E+01 6.63E+03
20 6.22E+02 5.40E+02 7.70E+02 2.16E+02 1.67E+02
21 3.39E+02 2.66E+02 4.33E+02 2.40E+02 2.34E+02
22 4.35E+03 3.55E+03 5.97E+03 9.40E+02 4.49E+02
23 5.85E+02 4.91E+02 1.06E+03 4.68E+02 4.50E+02
24 8.49E+02 5.65E+02 1.08E+03 5.27E+02 5.32E+02
25 5.14E+02 5.50E+02 5.41E+02 5.23E+02 5.15E+02
26 1.63E+03 1.83E+03 5.45E+03 1.38E+03 1.49E+03
27 6.61E+02 5.55E+02 1.46E+03 5.98E+02 5.42E+02
28 4.83E+02 4.96E+02 4.89E+02 4.91E+02 4.80E+02
29 9.27E+02 4.96E+02 1.52E+03 6.75E+02 4.77E+02
30 9.04E+05 6.90E+05 7.81E+05 6.14E+05 6.38E+05
Fried. 4.05 2.98 4.20 1.73 2.03
+/=/- 25/4/1 22/0/8 26/0/4 10/5/15 -
W.S.R. P=0.000 P=0.032 P=0.002 P=0.153 -

6. Conclusion

This study proposes a high-level and adaptive metaheuristic selection-based hybrid algorithm to solve bound-
constrained continuous optimization problems. The proposed method contains three important metaheuristics
in this subject, namely ABC, DE, and PSO. Adaptive selection process consists of two main stages that are
credit assignment and algorithm selection. For the credit assignment, we used the sum of ranks method which
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Table 6. The performance of the proposed adaptive metaheuristic selection using two good-performing algorithms for
D=50.

Func. JADE CMA-ES Adaptive M.S.
Mean Err. T. Mean Err. T. Mean Err.

1 0.00E+00 = 0.00E+00 = 0.00E+00
2 1.56E+13 + 0.00E+00 - 4.52E-02
3 2.41E+06 = 0.00E+00 - 4.45E+05
4 3.55E+03 - 4.34E+03 = 3.91E+03
5 6.75E+03 + 3.48E+03 + 2.71E+03
6 0.00E+00 - 4.00E-01 + 1.02E-03
7 1.20E+04 + 8.32E+03 + 7.61E+03
8 6.67E+03 + 3.83E+03 + 2.92E+03
9 2.03E+03 + 1.03E+01 + 2.48E+00
10 3.64E+05 + 2.62E+05 + 2.29E+05
11 1.77E+04 + 1.25E+04 = 1.09E+04
12 9.74E+05 - 1.29E+05 - 1.81E+06
13 1.88E+05 + 8.26E+03 - 2.93E+04
14 4.14E+06 + 5.42E+03 - 3.11E+04
15 4.72E+04 + 8.27E+03 - 3.14E+04
16 9.70E+04 + 5.97E+04 + 3.05E+04
17 5.99E+04 + 5.18E+04 + 2.05E+04
18 2.87E+06 - 3.01E+03 - 2.45E+05
19 4.31E+04 = 6.14E+03 - 1.66E+04
20 4.45E+04 + 2.16E+04 + 1.05E+04
21 2.63E+04 + 2.40E+04 + 2.31E+04
22 4.09E+05 + 9.40E+04 + 1.00E+04
23 4.89E+04 + 4.68E+04 + 4.41E+04
24 5.57E+04 + 5.27E+04 + 5.18E+04
25 5.31E+04 + 5.23E+04 + 4.77E+04
26 1.90E+05 + 1.38E+05 + 8.71E+04
27 5.11E+04 - 5.98E+04 + 5.05E+04
28 4.98E+04 + 4.91E+04 + 4.66E+04
29 5.07E+04 + 6.75E+04 + 4.68E+04
30 4.21E+07 + 6.14E+07 + 1.52E+07
+/=/- 22/3/5 19/3/8 -

is based on recent performance of the metaheuristics. As for the algorithm selection we used UCB1, which is
one of the multiarmed bandit selection algorithms.

The performance of the proposed algorithm was evaluated on CEC’17 benchmark, which includes 30
different test functions. The results obtained suggest that the proposed algorithm outperforms its constituent
metaheuristics especially at higher dimensional functions such as 50 and 100. In addition, another comparison
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was made with some of the important related algorithms in the literature and it is shown that the proposed
algorithm is highly comparable with them. Moreover, the case study that includes two good-performing
algorithms (namely, CMA-ES and JADE) for the benchmark used in this study, supports the effectiveness
of the proposed adaptive selection method.

The main advantage of the proposed algorithm is that it can bring together metaheuristics with different
characteristics using an automatic selection of algorithms. Another important advantage is that the proposed
method offers a highly generic way to solve problems as including new metaheuristics or excluding existing ones
requires less effort than other hybrid algorithms since each metaheuristic works independently from others.

In further research, the effect of other credit assignment and selection methods on the performance of the
proposed method can be investigated. Moreover, the proposed method can be tested for different optimization
problems with different combinations of metaheuristic algorithms.
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