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Abstract: The extreme learning machine (ELM) is one of the machine learning applications used for regression and
classification systems. In this paper, an extended comparison between an ELM and the backpropagation neural network
(BPNN)-based i-vector is given in terms of a closed-set speaker identification task using 120 speakers from the TIMIT
database. The system is composed of the mel frequency cepstal coefficient (MFCC) and power normalized cepstal
coefficient (PNCC) approaches to form the feature extraction stage, while the cepstral mean variance normalization
(CMVN) and feature warping are applied in order to mitigate the linear channel effect. The system is utilized with
equal numbers of speakers of both genders with 120 speakers with eight dialects from the TIMIT database. The results
demonstrate that the combination of the i-vector with the ELM for different features has the highest speaker identification
accuracy (SIA) compared with the combination of the BPNN with the i-vector. The results also show that the i-vector
with ELM approach is faster than the BPNN-based i-vector and it has the highest SIA.
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1. Introduction
There are several open issues in machine learning techniques, such as intensive human interference, slow learning
speed, and poor learning [1]. The extreme learning machine (ELM) appears to solve these problems [1].
The researchers in [2–5] presented a review in terms of ELM and dealt with theory, algorithms, trends, and
applications. In the aforementioned papers, the mathematical model of the ELM was explained. In addition,
the previous works reported that the ELM is efficient, simple, and widely used in various domains such as
system identification, computer vision, biomedical engineering, robotics, and control. The ELM algorithm is
utilized to attain more accurate results and to save time during regression and classification.

On the other hand, the backpropagation neural network (BPNN) is widely used as a supervised learning
technique in machine learning to extract information. However, in [6] the BPNN showed poor time and space
complexity. In [7], a description of the algorithm as well as an example of a nonlinear model-based BPNN
classifier including the MATLAB code were given. In [8] the authors employed three methods to overcome
the detection of nontechnical losses (NTLs) using an online sequential EML (OS-ELM), BPNN, and support
vector machine. A comparative study was conducted for two supervised machines learning the BPNN and the
∗Correspondence: musab.tahseen@gmail.com
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OS-ELM. The results showed that the OS-ELM outperformed the BPNN with hit rates of 51.38% and 36.07%,
respectively.

An overview in terms of the state of the art using the i-vector was presented in [9]. In addition, a survey
of different applications of the i-vector approach in the speech processing domain was also given. Although
the ELM was successfully employed for speaker identification in our previous studies in [10–12], the depicted
models are time-consuming and comparisons with other neural networks methods were not considered.

This paper provides a combination of the i-vector approach with the ELM for speaker identification and
the main motivations for this combination are as follows: This combination gives higher speaker identification
accuracy (SIA) than each technique alone. In addition, the ELM has a faster training performance compared
with other neural network techniques such as BPNN and deep learning, and the ELM has the ability to randomly
generate the weight and the bias. Moreover, the performance with the ELM does not suffer from local error
problems such as with the BPNN. Furthermore, the ELM has faster learning speed compared with the BPNN
or deep learning, where it is straightforward, so no feedback is required and it thereby reduces the training
and testing time required. On top of that, combining the ELM with the i-vector gives better accuracy for
speaker identification. We compare two classifiers based on ELM and BPNN in terms of their speed and SIA
for evaluating closed-set speaker identification performance. In summary, our contributions are as follows:

• The MFCC and PNCC are exploited to form a robust feature extractor model while the CMVN and
feature warping are used for normalization.

• The ELM and BPNN-based i-vector approaches are employed for classification.

• A fair comparison is given between the BPNN and ELM-based i-vector approaches under the same
conditions.

This paper is organized as follows: Section 2 discusses the acoustic features. Section 3 introduces the
concept of the BPNN. Section 4 presents the concept of the ELM. Section 5 presents the main concept of the
i-vector. Experiments and results with discussion are given in Section 6. Finally, Section 7 concludes this paper.

2. The main block diagram
Figure 1 shows the main block diagram using MFCC and PNCC for feature extraction, CMVN and feature
warping for feature normalization, the i-vector as an acoustic model, and the BPNN and ELM as the classifiers.

In the proposed system, a preemphasis filter with 0.96 emphasis coefficients was applied for both features
to compensate the high frequency that was suppressed while producing the speech signal. A Hamming window-
ing with 16 ms frame duration is used with 8 ms overlap between the frames. Then MFCC and PNCC features
with 16 feature dimensions were used in the feature extraction stage.

The MFCC extraction operator can be divided into five stages: preemphasis, frame blocking and window-
ing, fast Fourier transform, mel-scaled filter bank, and cepstrum evaluation. Likewise, the PNCC implementa-
tion starts by preemphasizing the speech signal, and then a short-time Fourier transform (STFT) is performed
using a Hamming window of 16 ms duration with 8 ms frame period. The squared magnitude of the STFT
outputs is passed to a 40-channel Gammatone filter bank. The center frequencies of the Gammatone filter are
linearly spaced in the equivalent rectangular bandwidth (ERB) auditory frequency scale. The output is then
temporally masked and spectrally smoothed. Finally, the mean power is estimated for each frame and the
running average for time-frequency normalization is used.
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Figure 1. The main block diagram.

Feature normalization is also adopted by using FW and CMVN for both MFCC and PNCC features.
FW and CMVN approaches are used to improve the SIA for the system and reduce the sensitivity between the
types of telephone handsets and could also help to reduce the linear channel effects. The concepts of the BPNN,
ELM, and i-vector are presented in the next sections, respectively.

3. The concept of BPNN

In machine learning, the BPNN is used to construct a classifier in which the set of decision rules is formulated
to model the nonlinear functions [7]. The BPNN model involves three sections: the input layer, hidden layers
(one or more layer), and the output layer. In the input layer, the number of neurons is equal to the number
of attributes (i-vector dimension), while in the output layer, the number of neurons is equal to the number of
nonlinear functions in order to construct the classifier from the decision rules. On the other hand, in the hidden
layers, the number of neurons is randomly selected [7]. Figure 2 shows the structure of the BPNN.
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Figure 2. The general structure of backpropagation neural network (BPNN).
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4. The concept of ELM

The ELM was originally proposed for a single hidden layer based on a feedforward network with randomly
generated hidden neurons. In the ELM, no iterations or tuning are needed in the hidden layer [13]. In addition,
all hidden nodes are independent with training data and target functions and have universal approximation
capability. The output weights of the ELM may be determined with and without iterations. The ELM can
be applied for multiclass classification and regression and it is efficient in sequential, batch, and incremental
learning. The ELM has been widely used in different applications such as in signal processing, biometrics, image
processing, bioinformatics, and brain/computer interface [13]. Figure 3 shows the structure of the ELM.

1

p

L

Output nodes

1

p

d

Input nodes Hidden nodes

Σ

Σ

Σ+ b1

+ bi 

a1

β1

aL

+ bL

g (.)

g (.)

g (.)

βL

Figure 3. Structure of a single-layer feedforward extreme learning machine with d input dimension, L hidden nodes,
and L outputs.

According to Figure 3, the implementation for the ELM network scheme is illustrated as shown in
[1, 14, 15]. The number of input nodes is equal to the i-vector dimension. In addition, different neuron numbers
are also selected when it is necessary to achieve higher performance accuracy. However, the number of output
neurons is equal to the number of classes, and in this work we employ 120 classes to represent 120 speakers.
The sigmoid function is used as the activation function in this paper. To calculate the output weights of the
ELM, the following equations are used to find regularized values [1, 14, 15]:

Hβ = Ť , (1)

β = H†Ť , (2)

β =

(
I

r
+HTH

)−1

HT Ť , (3)

where β is the output weight matrix β = [β1, ...,βL]
T , H =

[
hT (x1) , ..., h

T (xN )
]T , h (x) = [ g

(
aT1 x + b1

)
, ..., g

(
aTLx + bL

)
] is the hidden node outputs, x is the input vector, and g

(
aTj x + bj

)
is the output of the j th

hidden node. N is the number of training samples, Ť is the target label matrix, Ť =
[
ť1, ..., ťN

]T , H† is the
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Moore–Penrose generalized inverse of matrix H , and r is the regularization factor. The target label matrix Ť

is represented by (no. of speakers× no. of training samples (L×N)). Each i-vector with 100 dimensions is
entered into the ELM classifier. The outputs represent the speaker classes in this work with 120 speakers. In
addition, the actual outputs are real numbers, while the maximum is selected for the output vector and this
maximum refers to the identified speaker position. Ultimately, the SIA is determined.

The main steps of the ELM classifier and SIA calculation can be summarized as follow:

Step 1: Compute the i-vectors from training and testing data.
Step 2: Assume the number of output neurons is equal to the number of speakers.
Step 3: Form the target matrix for training.
Step 4: Randomly generate the input weights and biases for the hidden neurons.
Step 5: Suppose the number of hidden neurons is equal to the i-vector dimension.
Step 6: Calculate the hidden neurons output, matrix H.
Step 7: Calculate the output weights.
Step 8: Apply the testing data to the trained ELM.
Step 9: Calculate the genuine speaker identified for each training example by the position of the maximum

in the output of the ELM.
Step 10: Calculate the SIA.

Table 1 shows the main differences between the BPNN and ELM.

Table 1. Comparisons of BPNN and ELM.

BPNN ELM
Takes a long time for training Faster learning speed
May suffer from local minimum (the point that has the
lowest mean square error (MSE), where the network starts
to train the neurons and the rate of MSE decreases)

Does not suffer from local minimum

Iterations required during training No need to iterate or tune
Cannot easily add or remove trained subjects Can easily add or remove trained subjects

5. The concept of i-vector

The main stages of constructing the i-vector are as follows [16]: first, forming the UBM from training data using
the expectation maximization (EM) algorithm and Gaussian mixture components for the speakers; second,
extracting the sufficient statistics for the training features using the Baum–Welch (BW) algorithm; and third,
learning the total variability subspace. Finally, we extract the i-vector. The i-vector (identity vector) has a fixed
length with a low dimension, which is used for modeling speakers for both MFCC and PNCC features. The
coupling between the i-vector and ELM and BPNN is utilized in this paper in order to improve the identification
rate. The mathematical model to establish the i-vector is proposed in [17] and is explained in equations (4),
(5), and (6), where equation (4) is the model of joint factor analysis and equation (5) illustrates the relation
between the total factor and total variability matrix. In addition, equation (6) is used to calculate the i-vector.
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S = µ+Ux + V y +D z, (4)

S = µ+ TV i, (5)

where S is a dependent supervector for both speaker and channel; V , U , and D are the speaker,
channel, and diagonal residual matrices, respectively; and µ is the independent supervector for the speaker
and channel. In addition, factors y , x , and z represent the speaker, channel, and residual factor, respectively.
Furthermore, the total factor identity vector is i and TV is the total variability low rank matrix. Finally,
i-vectors can be determined as in [17] and are described in ((6):

i = (I + (TV )T Σ−1 N̂(u) TV )−1 (TV )T Σ−1F̌ (u), (6)

where i is the identity vector (i-vector); I is the identity matrix; Σ is the (CF×CF ) diagonal covariance
matrix, where C is the number of mixture components; N̂(u) is a diagonal matrix of dimension (CF ×CF );
and the dimension of the feature vectors is F . Moreover, F̌ is the (CF × 1) dimension supervector, which is
acquired by concatenating all first-order Baum–-Welch statistics, and u is the given speech utterance and (.)T

denotes transpose.

6. Experimental results and discussion

In this paper, 120 speakers with equal numbers from both genders are selected randomly from eight dialects of
American English for the TIMIT database. The data source was microphone speech with sampling frequency
equal to 16 kHz. The dialect regions (DR) include New England, Northern, North Midland, Southern, New
York City, Western, and Army Brat, corresponding to: DR1, DR2,..., DR8, respectively. Each speaker has ten
speech utterances, five of them for training and the remaining used for testing.

For the 120 speakers, 720 utterances are used for training while 480 utterances are used for testing.
Hence, the i-vector is constructed and classified using the ELM to identify speakers by employing 120 classes
to represent 120 speakers.

In addition, instead of the ELM, BPNN is used for comparison purposes. Furthermore, the best hidden
layer is selected to achieve higher SIA, which is proved experimentally to be 100. In addition, the best SIA is
obtained with UBM mixture size of 256. Table 2 shows the SIA for the i-vector ELM approach where the best
results are empirically attained under 100 hidden neurons with 100 i-vector dimensions where the sizes of the
UBM are 128, 256, and 512. The highest SIA is reported to be 92.95% using the i-vector with CMVN-MFCC
features and mixture size of UBM equal to 256. In addition, Table 2 illustrates the processing time of the current
method, which is 40-47 s. Furthermore, the results with MFCC are better than the corresponding results with
MFCC. On the other hand, Table 3 shows the results for the i-vector using the BPNN approach with UBM
mixture sizes of 128, 256, and 512. The results show that the highest SIA obtained is equal to 86.235% with
CMVN MFCC features. It has been noticed that the result with MFCC also outperformed the results of PNCC
features. Moreover, the comparisons between the ELM and BPNN and the i-vector are explained through
comparisons between Table 2 and Table 3. The results obtained by employing the ELM are better than those
obtained with the BPNN. In addition, the timing requirements of the BPNN are about 10 times larger than the
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Table 2. The SIA for the i-vector based on ELM Approach at UBM Mixture Sizes 128, 256, 512 with 100 hidden
neurons and 100 i-vector dimension.

Method Features UBM Mixture size SIA Consuming Time
i-vector-ELM MFCC+Feature Warping 128 91.13% 42.168 Sec
i-vector-ELM PNCC+Feature Warping 128 85.41% 40.346 Sec
i-vector-ELM MFCC+CMVN 128 92.77% 40.233 Sec
i-vector-ELM PNCC+CMVN 128 87.95% 46.94Sec
i-vector-ELM MFCC+CMVN 256 92.95% 41.091 Sec
i-vector-ELM PNCC+CMVN 256 87.81% 47.156 Sec
i-vector-ELM MFCC+Feature Warping 256 92.29% 41.4 Sec
i-vector-ELM PNCC+Feature Warping 256 87.16% 49.468 Sec
i-vector-ELM MFCC+Feature Warping 512 89.42% 42.625 Sec
i-vector-ELM PNCC+Feature Warping 512 84.72% 46.103 Sec
i-vector-ELM MFCC+CMVN 512 91.75% 42.599 Sec
i-vector-ELM PNCC+CMVN 512 84.71% 46.841 Sec

Table 3. The SIA for the i-vector based on BPNN Approach at UBM Mixture Sizes 128, 256, 512 with 100 hidden
neurons and 100 i-vector dimension.

Method Features UBM Mixture size SIA Consuming Time
i-vector-BPNN MFCC+ Feature Warping 128 64.69% 179.849 Sec
i-vector-BPNN PNCC+Feature Warping 128 59.375% 256.029 Sec
i-vector-BPNN MFCC+CMVN 128 69.375% 286.954 Sec
i-vector-BPNN PNCC+CMVN 128 58.75% 371.909 Sec
i-vector-BPNN MFCC+Feature Warping 256 74.437% 311.694 Sec
i-vector-BPNN PNCC+Feature Warping 256 71.375% 524.828 Sec
i-vector-BPNN MFCC+CMVN 256 86.235% 414.908 Sec
i-vector-BPNN PNCC+CMVN 256 73.75% 491.187 Sec
i-vector-BPNN MFCC+Feature Warping 512 82.23% 914.975 Sec
i-vector-BPNN PNCC+Feature Warping 512 80.312% 985.730 Sec
i-vector-BPNN MFCC+CMVN 512 84.27% 776.145 Sec
i-vector-BPNN PNCC+CMVN 512 81% 813.46 Sec

timing corresponding to the ELM. Hence, using the ELM gives faster learning performance while maintaining
classification accuracy.

Table 4 shows the SIA for clear speech of 120 speakers from the TIMIT database with a wide range of
Gaussian mixture components. In addition, Table 5 depicts the SIA for noisy speech of 120 speakers from the
TIMT database using the i-vector-ELM approach. Figure 4 shows the SIA versus Gaussian mixture components
for both the i-vector-ELM approach and i-vector-BPNN approach. It can be seen from Figure 4 that the i-vector
ELM approach outperforms the I-vector BPNN approach. In summary, all the parameters of the setups are
illustrated in Table 6.
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Table 4. The SIA for Clean Speech of 120 Speakers from TIMIT Database with 100 Dimension of I-vector-ELM
Approach.

The SIA for Clean Speech to 120 Speakers of TIMIT Database for
I-vector – ELM Approach (I-vector Dimension is 100)
Mix 8 Mix 16 Mix 32 Mix 64 Mix 128 Mix 256 Mix 512
35% 61.67% 87.5% 90% 93.33% 95.83% 95.83%

Table 5. The SIA for Noisy Speech of 120 Speakers from TIMIT Database with 100 Dimension of I-vector-ELM
Approach.

The SIA for 120 Speakers with 100 Dimensions of I-vector ELM Approach Under AWGN
0dB 5dB 10dB 15dB 20dB 25dB 30dB
5% 7.5% 19.17% 33.33% 47.5% 59.17% 76.67%
The SIA for 120 Speakers with 100 Dimensions of I-vector ELM Approach Under Street Traffic NSN
13.33 23.33% 41.67% 61.67% 77.5% 81.67% 87.5%
he SIA for 120 Speakers with 100 Dimensions of I-vector ELM Approach Under Bus Interior NSN
53.33% 63.33% 78.33% 85.83% 86.67% 90.83% 92.5%
The SIA for 120 Speakers with 100 Dimensions of I-vector ELM Approach Under Crowd Talking NSN
11.67% 23.33% 47.5% 64.17% 74.17% 84.17% 85.83%
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Figure 4. Comparisons between the i-vector ELM and BPNN approaches in terms of the Gaussian mixture components.

7. Conclusions
In this paper, a fair comparison between the ELM and BPNN based the i-vector was given in terms of a closed-
set speaker identification task using the TIMIT database. The results showed that the ELM approach achieved
better timing performance with higher SIA compared to the BPNN. In addition, the results obtained using the
MFCC features gave better identification rates compared with the PNCC features. Moreover, various mixture
sizes of UBM are considered and the highest accuracy is achieved using the UBM mixture of size equal to 256.
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Table 6. Parameters and setup used for 120 speakers selected from TIMIT database.

Aspects Parameters and experimental setup
Sampling frequency 16000
Window type Hamming
Frame length 16 ms
Frame shift 8 ms
Preemphasis factor 0.96
Databases TIMIT
Number of speakers 120 speakers for each database, total 480 speakers for all databases
Total speech utterances used 1200 for each database
Language English
Data source(s) Microphone speech for TIMIT
No. of samples per speaker 10 for each of TIMIT
Testing samples for each database Total 480 utterances
Training samples for each database Total 720 utterances
Average sample duration 8 seconds in length, 129250 (for each speech utterance in both

training and testing); all speech samples were taken with fixed
length of 129250 samples; concatenation is applied where necessary

Features MFCC and PNCC
Feature dimensions 16
Feature normalization FW and CMVN
Modeling i-vector
Classifier ELM and BPNN
UBM mixture sizes {8, 16, 32, 64, 128, 256, 512}
System environment Original speech recordings, AWGN with street traffic, bus interior,

and crowd talking NSN
SNR levels in dB {0, 5, 10, 15, 20, 25, 30}
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