
Turk J Elec Eng & Comp Sci
(2020) 28: 1699 – 1715
© TÜBİTAK
doi:10.3906/elk-1910-168

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Investigating the efficiency of multithreading application programming interfaces
for parallel packet classification in wireless sensor networks

Mahdi ABBASI1,∗, Milad RAFIEE1, Mohammad R. KHOSRAVI2,3
1Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran

2Department of Computer Engineering, Persian Gulf University, Bushehr, Iran
3Telecommunications Group, Department of Electrical and Electronic Engineering, Shiraz University of Technology,

Shiraz, Iran

Received: 25.10.2019 • Accepted/Published Online: 08.01.2020 • Final Version: 08.05.2020

Abstract: This paper investigates the most appropriate application programming interface (API) that best accelerates
the flow-based applications on the wireless sensor networks (WSNs). Each WSN include many sensor nodes which
have limited resources. These sensor nodes are connected together using base stations. The base stations are commonly
network systems with conventional processors which are responsible for handling a large amount of communicated data in
flows of network packets. For this purpose, classification of the communicated packets is considered the primary process
in such systems. With the advent of high-performance multicore processors, developers in the network industry have
considered these processors as a striking choice for implementing a wide range of flow-based wireless sensor networking
applications. The main challenge in this field is choosing and exploiting an API which best allows multithreading; i.e.
one which maximally hides the latency of performing complex operations by threads and increases the overall efficiency
of the cores. This paper assesses the efficiency of Thread, Open Multiprocessing, and Threading Building Blocks (TBB)
libraries in multithread implementation of set-pruning and grid-of-tries packet classification algorithms on dual-core and
quad-core processors. In all cases, the speed and throughput of all parallel versions of the classification algorithms are
much more than the corresponding serial versions. Moreover, for parallel classification of a sufficiently large number
of packets by both classification algorithms, TBB library results in higher throughput and performance than the other
libraries due to its automatic scheduling and internal task stealing mechanism.

Key words: Packet Classification, Multi-threading, Thread, Open Multiprocessing, Threading Building Blocks, wireless
sensor network, efficiency

1. Introduction
Wireless sensor networks (WSNs) are ad hoc networks consisting mainly of small sensor nodes with limited
resources and one or more base stations, which are computationally more powerful nodes that connect the
sensor nodes to other parts of the network [1–6]. The rapid development of the WSN based on the Internet of
Things has brought considerable contest and complex problems in processing data in high-speed networks [7–9].
The continually growing number of sensor nodes in WSN has increased the transmitted traffic and the variety
of monitored parameters. This extensible complexity in the information of the WSN should be handled at the
base stations [7, 10–13].

To accelerate the complex functions in analyzing high-dimensional and self-correlated data over WSN,
packet classification, a primary process inherited form software-defined networking (SDN), is inevitable [7,
∗Correspondence: abbasi@basu.ac.ir

This work is licensed under a Creative Commons Attribution 4.0 International License.
1699

https://orcid.org/0000-0002-5373-5778
https://orcid.org/0000-0002-2029-5067

ABBASI et al./Turk J Elec Eng & Comp Sci

10, 11, 14–17]. This process accelerates the overall process of base stations by provisioning fast flow-based
network functions instead of slow packet-based ones [18, 19]. Packet classification is nothing but discriminating
packets according to a set of predefined rules [20, 21]. Accelerating this fundamental process directly affects
the overall performance of the WSN systems so that the packet loss, delay, and buffer requirement are reduced
[4, 11, 14, 18, 22, 23].

Work done on the parallelization of packet classification algorithms in wireless sensor networks is few
and far between. The work of Rjakamal et al. can be considered the preliminary work in using parallel packet
classification in WSNs [24]. They introduce the design of a parallel coprocessor which could assist the network
processor of a base station in a WSN to classify network packets very fast. Xianyang et al. introduced using
classification techniques for provisioning the quality of service in WSN [25]. Some researchers like Letswamotse et
al., introduce the idea of software-defined wireless sensor networks (SDWSN) as a network computing paradigm
for applying software-defined networking (SDN) strategies to WSNs [26]. This network paradigm is enriched
with the idea of the parallel classification of network packets.

The review of the literature shows a few studies that considered parallel packet classification techniques
in WSNs. Moreover, none of them considered the limited computational resources of the base stations of WSN
for parallel packet classification. This key challenge has been the main motivation of the proposed study which
investigates the best multithreading programming interface which lets optimum using of multicore processors
on the base stations of the WSNs to accelerate the flow-based applications.

Recently due to increasing volume of incoming packets, multicore processors are used in the architecture
of base stations to speed up packet classification [10, 27, 28]. Interestingly, while the concept of parallel pro-
gramming is almost as old as the computer itself, the design and implementation of parallel algorithms is still
a challenge for many developers. Various application programming interfaces (APIs) such as Open Multipro-
cessing (OpenMP) and Threading Building Blocks (TBB) have so far been produced for code parallelization
in different programming languages [29–31]. However, an important task ahead of the developers of parallel
programming on multicore systems is to select the most appropriate API to get a high-performance parallel
application.

In this regard, this paper examines the most common APIs (C++ 11, OpenMP, TBB) that support code
parallelization in different programming languages with the aim of parallelizing packet classification algorithms.
The std::thread class from the standard library of C++ 11 easily enables the programmer to create threads from
the thread library in the program code. In the simplest case, the task to be accomplished by the thread is a
recursive or void function with or without parameters. In this case, the function is executed by the thread until
the recursion, and then the thread stops. OpenMP API is another flexible API that allows for multithreaded
parallelization with shared memory architecture. OpenMP includes a set of compiler instructions, variables,
and library functions for parallelization of programs as used in computational applications in the fields of
science and engineering [32]. A great advantage of OpenMP is its simple programming method using compiler
instructions. However, the programmer should have a good command of these instructions to decide how and
when to use them [33]. TBB is a C++ library for parallelization that extends C++ through abstraction of
thread management and simple parallel programming. To use this library, the programmer specifies tasks
rather than threads and allows the library itself to efficiently assign tasks to threads. One of the advantages
of this strategy is its scalability. This means that the programmer can use more processor cores with higher
performance [30].

1700

ABBASI et al./Turk J Elec Eng & Comp Sci

The packet classification algorithms examined in this paper are the set-pruning trie algorithm and the
grid of tries (GOT) algorithm. These two algorithms use a data structure based on source and destination prefix-
address decision trees to solve packet classification issues [20]. The reason for choosing these two algorithms is
the difference in the tree structures produced as well as their method of traversal to classify an Internet packet
based on the fields of source and destination IP address. This difference in data structure and type of processing
during parallelization with these APIs results in different performances.

The innovations of this article are as follows:

• This paper examines for the first time the classification algorithms of set pruning and GOT in terms of
their parallelization on multicore processors.

• Different parallelization techniques such as thread, OpenMP, and TBB were used to implement the parallel
version of the above-mentioned algorithms.

• Having been parallelized with the mentioned APIs, the classification algorithms were then implemented on
a number of multicore processors and the results were compared according to several evaluation criteria.

The structure of the paper is organized as follows. In Section 2, the structure of the set-pruning trie and
GOT algorithms is reviewed. Section 3 discusses thread, OpenMP, and TBB parallelization libraries. In the
next section, related work on parallelization of classification algorithms on multicore processors is reviewed. The
proposed method for parallelizing the packet classification algorithms as well as how to implement and evaluate
the performance of each API in the parallelized algorithms is described in Section 5 after a brief discussion of
the performance indicators. The final part of the paper consists of some concluding remarks and suggestions
for further research.

2. Related tools and algorithms
This section describes set-pruning trie algorithm and GOT algorithm as well as their method of packet classifi-
cation. In these examples, the filter set in Table 1 is used to describe the algorithms.

Table 1. Example filter set.
Filter no Source prefix Destination prefix Source port Destination port Protocol
Filter 1 * 0* 53 1024-65535 6
Filter 2 1011* 01* 53 443 17
Filter 3 0010* 01100* 0-65535 5632 4
Filter 4 01* * 0-65535 25 17
Filter 5 * 10* 53 443 6
Filter 6 10110* 110* 0-65535 25 17

2.1. Set-pruning trie algorithm
The set-pruning trie algorithm is an improved hierarchical trie algorithm. To produce a hierarchical trie from
the prefixes of source and destination addresses in the classifying filters, a trie is first created based on the
distinctive prefixes of the source address. Each node in the source hierarchical trie which corresponds to one
or more filters with the same prefix is linked through a pointer to the root of a binary trie containing the
destination address prefixes of the same filters. The search function in the hierarchical trie is done sequentially

1701

ABBASI et al./Turk J Elec Eng & Comp Sci

in each trie. Thus, for each matching node in the source tree with the source address of the incoming packet,
the search continues on the destination trie which is attached to that node. After the target tree is scanned, the
search is returned to a node in the source trie at which the algorithm had jumped to the destination trie. This
process is called backtrack. It continues until it reaches a leaf node in the source trie. Backtrack is one of the
factors in a hierarchical trie that increases the amount of memory access and, thus, the time of traversal[34, 35].

The set-pruning algorithm avoids backtracking by copying the filters of the target trie of the ancestors
of each child node into the target trie of that node. The set-pruning trie corresponding to the hierarchical trie
of Figure 1a which was created for the filter set in Table 1 is shown in Figure 1b. In Figure 1a, for example,
the root node of the source trie is an ancestor for all other nodes. Moreover, the node corresponding to the
prefix 01* is an ancestor for the node 0010* and the node 1011* is an ancestor for the node 10110*. As shown
in Figure 1b, the entire target trie of ancestor nodes are copied and merged into the target trie of child nodes.
Filters copied from the ancestors into the target trie are displayed in green [36].

Figure 1. The structure of hierarchical trie, set-pruning trie, and GOT algorithm

2.2. Grid of tries (GOT) algorithm

The hierarchical trie algorithm imposes high costs as a result of backtracking. On the other hand, a set-pruning
trie algorithm needs too much storage space although it removes many of the back-tracks of the previous

1702

ABBASI et al./Turk J Elec Eng & Comp Sci

algorithm. The grid-of-tries approach uses the key ideas of precomputation and switch pointers to speed up the
search. By these means, GOT jumps from the failed F2 trie to another F2 trie. In the preprocessing step, all
of failure points in the F2 tries are identified and all of the required switch pointers are allocated. This pointer
in any failed F2-trie allows the search algorithm to jump directly to the next possible ancestor F2 trie that
contains a matching filter. The jump occurs at the lowest point in the ancestor F2 trie that has at least as good
an F2 prefix match as the current node. Furthermore, such a jump allows skipping over all filters in the next
ancestor F2 trie with shorter prefixes in the F2 field. This change in the data structure of the hierarchical trie is
shown in Figure 1a, and the results of its conversion to GOT trie data structure is indicated in Figure 1c. The
most important achievement of GOT algorithm is that its memory consumption is approximately equal to that
of the hierarchical trie algorithm while its search complexity is equal to that of the set-pruning trie algorithm.
The search function in this trie is executed in the same way as a set-pruning algorithm. For example, for the
input (10110, 11011, 53, 25, 17), the total number of traversed nodes is 10 [36].

3. Parallelization libraries
3.1. Thread
One of the easiest ways to implement parallelization on multicore processors is to use the C++ standards.
C++ 11 is a shared-memory-concurrency language with explicit thread creation and implicit sharing. This
means that every address can be read and written by defined threads. Therefore, the programmer is responsible
for preventing interference among the threads, or the race state. Programming using a primary threading
interface, such as thread or Pthreads, is an option many programmers use for parallelization. Thread is part
of the standard C++ library. This library uses the std::thread class to manage thread execution. This class
can start a new thread and wait until the execution of that thread is complete. The thread processing library
provides a one-to-one mapping from std::thread onto the threads of the operating system. It also provides
simple instructions for working with operating system threads [37, 38].

3.2. OpenMP
OpenMP is a shared memory programming interface in C, C++, and Fortran on all major compilers and
platforms. The library includes parallelization patterns such as parallel blocks, loop, and tasks supported by
basic concepts like data sharing and synchronization. Parallel algorithms can be expressed in simple, compact
pieces of code to improve productivity. In addition, OpenMP provides a more abstract interface than many
common schedulers used in applied programming. This is a great advantage for implementation of scientific and
analytical algorithms. The underlying concept of this library is the Fork/Join model for parallelization which
is shown in Figure 2. The command used to interpret parallel blocks is #pragma opm parallel [39].

Figure 2. OpenMP parallelization model.

In this model, each parallel block has a master thread, a number of slave threads, and a specified operation.
The master thread and the slave threads are collectively called a team. Each team has a certain size which is

1703

ABBASI et al./Turk J Elec Eng & Comp Sci

expressed in terms of the number of master and slave threads. At the beginning of each parallel block, there
is a fork to synchronize the master and slave threads. After all the threads of the team have reached the fork,
each member of the team begins to execute part of the team’s operations that is assigned to it. These parts are
assigned by the compiler at compile time. At the end of each parallel block, a join barrier is used to synchronize
the master and slave threads so that the execution of the program continues sequentially through the master
thread. Therefore, it can be said that processing in this model is divided into three main steps: the first stage
is forking. At this step, the master thread first takes a team from the pool of defined teams or creates a new
team. Then it sets the team size to a specific value and starts to run. The second step is execution in which
the master thread processes along with slave threads that part of the team’s operations which is assigned to it.
The last step is joining. Here, the master thread creates a barrier and waits for all the slave threads to complete
their work. Eventually, the team is collected; that is, it is either returned to the pool team or destroyed [39].

3.3. Threading Building Blocks (TBB)

TBB was first introduced by Intel in 2006 as a parallel programming library. Figure 3 illustrates the general
structure of TBB and how it works to create threads and balance their workloads. This library allows
parallelization to be interpreted both explicitly and implicitly. In the explicit mode, spawning provides the
programmer with full control over the work of each task. The implicit state can be achieved using patterns
such as parallel_for or parallel_reduce that accelerate code-writing. Tasks created explicitly or implicitly are
added to the queue of thread tasks in an abstract space called threads arena. These tasks are carried out by
the master thread or by other workers through a mechanism called theft. In what follows we shall have a look
at this concept.

Figure 3. Components of TBB’s task scheduler.

TBB’s master thread represented by MT in this figure is a software thread that instantiates the
TBB::task_scheduler_init object. All threads that are created by MT and are used to complete MT’s task
are referred to as worker threads. The resource management layer (RML) is the host of a pool of worker
threads. The role of the Market is to distribute the workloads of master threads as well as to assign workers to
the arenas of master threads for carrying out the allocated workloads. The number of available worker threads
is always one less than the maximum of tbb::task_scheduler_ init argument and the total number of logical
cores on the system CPU. The next structure is the arena of each MT that encapsulates all the tasks and
resources available (worker threads) to execute a master thread. A number of slots are assigned to each arena
that represent the number of worker threads which are needed to complete the parallel tasks of the MT. If the

1704

ABBASI et al./Turk J Elec Eng & Comp Sci

total number of slots needed for all master threads exceeds the number of workers in the RML pool, allocation
of slots to the arena of MTs will be tailored to the needs. When the task of the master thread comes to an
end, the threads produced at the time of creating each arena are either destroyed or assigned by RML to active
arenas. Each working thread, when run in an arena, executes a scheduling procedure called wait_for_all()
which consists of three nested loops. The inner loop executes the current task by calling the execute() method.
Upon completion of this task, if no further task is called, the program exits the inner loop. In the middle
loop, the get_task() method attempts to dequeue local tasks in a last-in-first-out (LIFO) order. If successful,
the inner loop will be called again. Otherwise, the thread exits the middle loop and the outer loop activates
the stealing mechanism by calling the receive_or_steal_task() method. This method searches for all tasks on
this level. The search includes sending tasks through the task-thread dependency mechanism, reloading tasks
without uploading priority, or reloading tasks left by other workers. If the search does not return a task to run,
this method steals from a victim thread that is randomly selected at the current location. If the failures of a
worker thread to steal exceed a certain threshold (a default value of 100) and the arena of the MT is empty,
the failed worker is released and returned to the pool of RML. The details of how tasks are stolen can be found
in many sources such as [29, 40].

4. Related works
In this section, we shall review studies that have parallelized packet classification algorithms on multicore
processors. In 2011, Pong et al. parallelized the algorithm based on Hashing Round-Down Prefixes (HaRP) and
HyperCuts trie-based algorithm by using multicore processors [41]. Although the parallelization library used in
their research is not specified, their results at best represent a rate of 14.3 million and 4.07 packets per second
for HaRP and HyperCuts algorithms, respectively. Zhou et al. implemented in 2013 two packet classification
algorithms called linear search algorithm and domain tree search algorithm on a multicore processor [31]. In
their study, the algorithms were implemented using the Pthread parallelization library on a 16-core processor.
The maximum throughput obtained in this study was about 11.5 Gbps.

In 2015, Qu et al. implemented the bit-vector algorithm, which is a decomposition-based algorithm, in a
parallel manner on a multicore processor [42]. Decomposition-based algorithms have two phases of search and
combination of results. They used the OpenMP library to parallelize the algorithm. The maximum throughput
obtained in this study was 14.7 million packets per second.

A review of related research suggests that algorithms based on hierarchical set-pruning tries and GOT
have not yet been parallelized on multicore processors. Moreover, despite the extensive capabilities of the
TBB library compared to other parallelization libraries, none of the studies have made use of the TBB library
to parallelize classification algorithms on multicore processors. Therefore, the present study for the first time
implements and compares the performance of packet classification algorithms using C++ parallelization libraries
thread, OpenMP, and TBB. In the next section, we examine the parallelization of the set-pruning trie and GOT
trie algorithms using the above-mentioned parallelization libraries.

5. Implementation and assessment

To classify the input packets of a classifier on a single-core processor, at each step one input packet is received
and classified by traversing the tree created from the filters based on the fields extracted from the packet header.
In this case, it is obvious that increase in the number of packets increases the time of classification linearly.
Therefore, in order to reduce the time of classifying the set of input packets, we distribute them according to

1705

ABBASI et al./Turk J Elec Eng & Comp Sci

the mechanisms reviewed in Section 3 over the active threads on the cores of a multicore processor so that the
cores could classify the packets in a parallel manner. The main reason for choosing this approach is that when
a classification algorithm is divided into several parts which should be executed in parallel, the results of each
part may affect the functioning of other parts due to dependencies of data or controlling. Needless to say, this
dependency would reduce the efficiency of parallelization. To solve this problem, we parallelize the algorithm
in a way that the results of each part could not affect the other parts. This way, the highest performance will
be obtained. Therefore, in the proposed parallelization method, packets are distributed among cores that share
a copy of the classifying trie and perform their tasks independently.

The pseudocode of the proposed parallel implementation method is shown in Algorithm 1. The input of
this algorithm is filters F and header of packets P. This method stores the index of the filter that best matches
each packet in an output array (BMF_Result). In the preprocessing step, the tree is created using the filters
(lines 1-2). In the proposed method, the packets are divided between threads and each thread classifies the
number of specified packets (lines 3-10). At first, each thread computes a given packet index based on the total
number of threads and the number of packets, and stores it in the Pindex variable (line 5). Then, the specified
packet is classified by traversing the tree and the index of the best matching filter is stored in the fIdx variable
(line 6). Finally, the algorithm stores the result in the proper element of the output array (lines 7-9).

Due to data-parallel nature of the proposed parallelization model, it is applicable to other algorithms like
decomposition-based, tuple space-based, etc.

Input : Filters F, Packets P
Output: BMF_Result
Pre− processing construct T from F
ParallelPacketClassification

for j ← 0 to
[

|P |
|threads|

]
do

Pindex← (j, |threads|, |P |), fIdx← Null
fIdx← Classify(Pindex,T,F)
if fIdx ! = Null then

BMF_Result(Pindex, fIdx)
end

end
Algorithm 1: Parallel implementation of packet classification algorithm

5.1. Implementation

In this study, according to the architecture of the processors, whose exact specifications are listed in Table 2,
we have defined eight threads each of which selects and classifies a number of input packets corresponding to
its index. Moreover, we have used the thread, OpenMP, and TBB libraries for parallelization.

The proposed methods were implemented on two different multicore systems which are described in Table
2. The Classbench tool was used to create the required data set [43]. This tool generates the dummy filters
required for the classifier as well as the corresponding dummy header sets that are required as test input packets.
This tool meets the needs of the developers of packet classification algorithms to genuine and heterogeneous
filters used in firewalls, IP chains, and access control lists. Due to lack of real datasets, in the majority of the
studies [44–50], the ClassBench tool has been used for producing the required data structure due to a need for
filters and packets that are close to reality in terms of structural characteristics and statistical distribution. We

1706

ABBASI et al./Turk J Elec Eng & Comp Sci

Table 2. Specifications of the processors
Specifications First processor Second processor
Name Intel Core i7-740QM Intel Core i7-3770K
Clock speed 1733 MHz 3500 MHz
L1 data cache 4 * 32 KB 4 * 32 KB
L1 inst. Cache 4 * 32 KB 4 * 32 KB
L2 cache 4 * 256 KB 4 * 256 KB
L3 cache 6 MB 8 MB
Main memory 4 GB DDR3 32 GB DDR3
of Cores 4 4
Operation system Windows 7 Ultimate, 64-bit

produced a set of filters corresponding to the ACL2 parameter containing 1k and 10k filters with 1k to 64k
packets to assess the proposed method.

5.1.1. Results
The results of the implementation of the parallelization methods of set-pruning and GOT algorithms on 1k
filters and 10k filters are presented in Figures 4–11. The criteria for assessing the algorithm on each processor
include throughput, speedup, and efficiency which are presented by formulas (1)–(3), respectively. Throughput
refers to the number of packets classified per second, and speedup refers to the difference in packet classification
time between parallel and serial modes. Here, the unit of throughput is million packets per second.

Throughput =
NumberofPackets

ClassificationT imeinsecond
(1)

Speedup =
SequentialClassificationT ime

ParallelClassificationT ime
(2)

Efficiency =
Speedup

NumberofCores
(3)

In this way, Figures 4–7 show the throughput and speedup of the two algorithms on the first processor
and Figures 8–11 plot the same criteria for the algorithms as implemented on the second processor for input
packets from 1k to 64k.

According to the results shown in the graphs of speedup and throughput for each threading library, thread
needs the highest time for parallel classification in different modes of equal input packets. Moreover, when the
number of input packets is small, the time needed by the thread-parallelized algorithm is higher than the time
needed by the serial version of the same algorithm for classification of the same packets. In other words, in
cases where the number of available components for parallel implementation is low, the relative increase in the
complexity of the timing of the threads in this library in comparison to the complexity of execution would
reduce its time efficiency. This can be seen in graph b in all Figures (4–11) when the number of input packets
in the parallel version of the algorithms on both processors is less than or equal to 4096. In graph b in Figures

1707

ABBASI et al./Turk J Elec Eng & Comp Sci

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1024 4096 8192 16,384 32,768 65,536

Sp
ee
d
u
p

Packets

 read OpenMP

TBB

(a) Speedup of set-pruning on 1th Processor

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1024 4096 8192 16,384 32,768 65,536

)
S
P
P
M(
t
u
p
h
g
u
o r
h
T

Packets

Seq read

OpenMP TBB

(b) roughput of set-pruning on 1th Processor

Figure 4. Results of implementation on 1k filters (set-pruning_1th processor).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1024 4096 8192 16,384 32,768 65,536

Sp
ee
d
u
p

Packets

 read OpenMP

TBB

(a) Speedup of GOT on 1th Processor

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1024 4096 8192 16,384 32,768 65,536

)
S
P
P
M(t

u
p
h
g
u
or
h
T

Packets

Seq read

OpenMP TBB

(b) roughput of GOT on 1th Processor

Figure 5. Results of implementation on 1k filters (GOT_1th processor).

9 and 11 which address the implementation of GOT algorithm on the second processor, for example, when
the number of packets is 1k and 4k, the throughput of thread is less than the serial version but this has not
happened in OpenMP and TBB and, even with a small number of packets, these libraries have led to a higher
throughput compared to the serial version.

With regard to the throughput graph b in Figures 4–11, TBB library shows the best performance in the
packet classification. In these graphs, the throughput of OpenMP is not optimum because the programmer
himself should choose a dynamic or static scheduling policy to execute the loops. In the meanwhile, the TBB
Scheduler automatically defines the execution of the loops through defined threads by using divide-and-conquer

1708

ABBASI et al./Turk J Elec Eng & Comp Sci

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1024 4096 8192 16,384 32,768 65,536

Sp
ee
d
u
p

Packets

 read OpenMP

TBB

(a) Speedup of set-pruning on 1th Processor

0

0.2

0.4

0.6

0.8

1

1.2

1024 4096 8192 16,384 32,768 65,536

)
S
P
P
M(
t
u
p
h
g
u
or
h
T

Packets

Seq read

OpenMP TBB

(b) roughput of set-pruning on 1th Processor

Figure 6. Results of implementation on 10k filters (set-pruning_1th processor).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1024 4096 8192 16,384 32,768 65,536

Sp
ee
d
u
p

Packets

 read OpenMP

TBB

(a) Speedup of GOT on 1th Processor

0

0.2

0.4

0.6

0.8

1

1.2

1024 4096 8192 16,384 32,768 65,536

)
S
P
P
M(
t
u
p
h
g
u
o r
h
T

Packets

Seq read

OpenMP TBB

(b) roughput of GOT on 1th Processor

Figure 7. Results of implementation on 10k filters (GOT_1th processor).

method. In addition, TBB becomes more efficient than dynamic and static schedules by using the technique
of stealing tasks during the execution of threads. Comparison of the throughput of the corresponding data on
both processors as represented in Figures 4–11 indicates that the throughput of both classification algorithms
with all of the three libraries (i.e. OpenMP, thread, and TBB) is better on the second processor than on the
first one. The main reason for this superiority is that the classification time of the second processor is much
less than the first processor. The maximum throughput for set-pruning algorithm using thread, OpenMP, and
TBB is 4.6, 6.37, and 8.09 million packets per second, respectively. This value for GOT algorithm and using
the same libraries is 4.96, 6.5, and 7.97 million packets per second.

1709

ABBASI et al./Turk J Elec Eng & Comp Sci

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1024 4096 8192 16,384 32,768 65,536

Sp
ee
d
u
p

Packets

 read OpenMP

TBB

(a) Speedup of set-pruning on 2th Processor

0

1

2

3

4

5

6

7

8

9

1024 4096 8192 16,384 32,768 65,536

)
S
P
P
M(
t
u
p
h
g
u
or
h
T

Packets

Seq read

OpenMP TBB

(b) roughput of set-pruning on 2th Processor

Figure 8. Results of implementation on 1k filters (set-pruning_2th processor).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1024 4096 8192 16,384 32,768 65,536

Sp
ee
d
u
p

Packets

 read OpenMP TBB

(a) Speedup of GOT on 2th Processor

0

1

2

3

4

5

6

7

8

9

1024 4096 8192 16,384 32,768 65,536

)
S
P
P
M(
t
u
p
h
g
u
or
h
T

Packets

Seq read

OpenMP TBB

(b) roughput of GOT on 2th Processor

Figure 9. Results of implementation on 1k filters (GOT_2th processor).

Moreover, comparison of the speedup in parallelization of the algorithms using the three libraries as
shown in graph a of Figures 4–11 would indicate that TBB yielded better results for both algorithms and on
both processors. Moreover, in most scenarios for both evaluated algorithms, the speedup of classifying a certain
number of packets based on 1k or 10k filter sets in the first processor is higher than in the second processor. This
observation could be best justified by the higher classification time of the serial version on the first processor in
comparison with the second one as well as the greater time difference between the serial and parallel versions
of the algorithm on the first processor. The best speedup value obtained by using thread, OpenMP, and TBB
for the set-pruning algorithm is 2.93, 3.69, and 4.58 times, respectively, and for GOT 2.91, 3.65, and 4.2 times,
respectively.

1710

ABBASI et al./Turk J Elec Eng & Comp Sci

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1024 4096 8192 16,384 32,768 65,536

Sp
ee
d
u
p

Packets

 read OpenMP

TBB

(a) Speedup of set-pruning on 2th Processor

0

1

2

3

4

5

6

7

8

1024 4096 8192 16,384 32,768 65,536

)
S
P
P
M(t

u
p
h
g
u
or
h
T

Packets

Seq read

OpenMP TBB

(b) roughput of set-pruning on 2th Processor

Figure 10. Results of implementation on 10k filters (set-pruning_2th processor).

0

0.5

1

1.5

2

2.5

3

3.5

4

1024 4096 8192 16,384 32,768 65,536

Sp
ee
d
u
p

Packets

 read OpenMP

TBB

(a) Speedup of GOT on 2th Processor

0

1

2

3

4

5

6

7

8

1024 4096 8192 16,384 32,768 65,536

)
S
P
P
M(
t
u
p
h
g
u
or
h
T

Packets

Seq read

OpenMP TBB

(b) roughput of GOT on 2th Processor

Figure 11. Results of implementation on 10k filters (GOT_2th processor).

As can be seen from Figures 4–11, the throughput and speedup of parallelization for both algorithms
using the three libraries has reduced in the classification of a certain number of input packets. This reduction
is partly due to the values of the header fields of the packets in a class as well as the number of threads defined
on the processor that executes classification. When the address field of the packet header can be matched with
longer prefixes in the corresponding fields of classifying filters, the first factor above can increase the frequency
of memory access and classification time as in the serial version of the algorithm. In Graph b in Figures 10 and
11, for example, the throughput of the serial version of set-pruning and GOT algorithms on both processors is
significantly reduced in the 8k input packet classification as compared to the 4k packet classification.

1711

ABBASI et al./Turk J Elec Eng & Comp Sci

On the other hand, given the fact that packets are divided among the defined threads for classification,
the volume of thread tasks varies with the number of packets to be classified. For these reasons, the performance
of the parallel libraries in question depends on the number of packets.

Table 3 compares the maximum, minimum, and the average efficiency of competitor multithreading APIs
in parallel classification of different volumes of packets. According to this table, the maximum, minimum, and
the average efficiency of the APIs in parallelizing GOT are more than those in parallelizing set-pruning. In all
cases, the efficiency of TBB is the highest whereas the OpenMP and Thread stand in second and third ranks,
respectively.

Table 3. Efficiency of parallel packet classification methods.

Algorithm Efficiency 1th Processor 2th Processor
Thread OpenMP TBB Thead OpenMP TBB

Set-pruning
Max 0.73276 0.76588 0.90941 0.65169 0.76636 0.90185
Min 0.03981 0.27891 0.23429 0.02771 0.37903 0.37903
Avg 0.34725 0.50614 0.54418 0.36072 0.60507 0.66607

GOT
Max 0.72832 0.73783 0.87527 0.68212 0.77172 0.9127
Min 0.0367 0.24982 0.18957 0.04073 0.478 0.48337
Avg 0.35171 0.47526 0.53249 0.37813 0.58382 0.69321

It can generally be concluded that the TBB library is better than other libraries in parallelizing the two
algorithms on different processors so that it results in the highest throughput and speedup in classification of
1k to 64k test packets by matching them with 1k to 10k classifying filters. Moreover, the OpenMP achieves the
second rank in accelerating the packet classification algorithms on both of multicore processors. Moreover, the
second processor, due to higher performance parameters such as clock frequency, shows better results than the
first processor.

6. Conclusion
In this paper, set-pruning and GOT algorithms which use decision trees to classify network packet headers
were parallelized with thread, OpenMP, and TBB libraries and the performance of these libraries for this task
was investigated and assessed. To this end, due to the different capabilities of the above-mentioned libraries,
the parallelized versions of the two algorithms were executed on two multicore processors to classify various
numbers of input packets (from 1k to 64k) by matching them with filter sets of varying sizes (from 1k to 10k).
The aim was to measure and compare the speedup and throughput in all scenarios. It can be inferred from the
obtained values of speedup and throughput that all parallel versions of the classification algorithms were much
more efficient than the serial versions. Moreover, comparison of the parallelization libraries in corresponding
scenarios would indicate that the number of input packets of the parallel classifier is so effective on the thread
library that, in some cases, the small number of packets causes the performance of the library to become lower
than the serial version of the algorithms. In general, using the TBB library to parallelize both classification
algorithms resulted in higher throughput and performance than other libraries due to its automatic scheduling
and internal task stealing mechanism. The highest throughput rates obtained by the set-pruning algorithm and
the GOT algorithm were 8.09 and 7.97 packets per second, respectively. In future research, we will parallelize the
algorithms on graphics processing unit (GPU) and compare the results with the best parallelization scenario

1712

ABBASI et al./Turk J Elec Eng & Comp Sci

obtained in the present study which was implemented with the help of the TBB library. Investigation of
the efficiency of different multithreading APIs on clusters of multicore processing systems is one of the most
important feature works.

References

[1] Belfkih A, Duvallet C, Sadeg B. A survey on wireless sensor network databases. Wireless Networks 2019; 25(8):
4921-4946.

[2] Menon VG, Pathrose PJ, Priya J. Ensuring reliable communication in disaster recovery operations with reliable
routing technique. Mobile Information Systems 2016; 1: 1-10.

[3] Prathap PJ. Comparative analysis of opportunistic routing protocols for underwater acoustic sensor networks. In:
International Conference on Emerging Technological Trends (ICETT); Kollam, India; 2016. pp. 1-5.

[4] Borges LM, Velez FJ, Lebres AS. Survey on the characterization and classification of wireless sensor network
applications. IEEE Communications Surveys & Tutorials 2014; 16(4): 1860-1890.

[5] Vukobratovic D, Stankovic L, Stankovic V. Performance analysis of node cooperation with network coding in wireless
sensor networks. In: 4th IFIP International Conference on New Technologies, Mobility and Security; Paris, France;
2011. pp. 1-4.

[6] Stankovic L, Stankovic V. Cooperative network-coding system for wireless sensor networks. IET communications
2012; 6(3): 344-352.

[7] Kumar S, Chaurasiya VK. A strategy for elimination of data redundancy in internet of things (IoT) based wireless
sensor network (wsn). IEEE Systems Journal 2018; 13(2): 1650-1657.

[8] Wan S, Gu Z, Ni Q. Cognitive computing and wireless communications on the edge for healthcare service robots.
Computer Communications 2019; 149(1): 99-106.

[9] Wan S, Zhao Y, Wang T, Gu Z, Abbasi QH, Choo KKR. Multi-dimensional data indexing and range query processing
via Voronoi diagram for internet of things. Future Generation Computer Systems 2019; 91(1): 382-391.

[10] Salma B, Youssef B, Abderrahim H. Software Defined Networking Based for Improved Wireless Sensor Network.
In: Ezziyyani M (editors). International Conference on Artificial Intelligence and Symbolic Computation. Cham,
Switzerland: Springer, 2019, pp. 246-258.

[11] Wee J, Choi JG, Pak W. Wildcard fields-based partitioning for fast and scalable packet classification in vehicle-to-
everything. Sensors 2019; 19(11): 2563.

[12] Attar H, Alhihi M, Zhao B, Stankovic L. Network Coding Hard and Soft Decision Behavior over the Physical
Payer Using PUMTC. In: International Conference on Advances in Computing and Communication Engineering
(ICACCE); Paris, France; 2018, pp. 471-474.

[13] Prathap PJ. Opportunistic routing with virtual coordinates to handle communication voids in mobile ad hoc
networks. In: Thampi S, Bandyopadhyay S, Krishnan S, Li KC, Mosin S, Ma M (editors). Advances in Signal
Processing and Intelligent Recognition Systems. Cham: Springer, 2016, pp. 323-334.

[14] Rabileh AA, Bakar KAA, Mohamed RR, Mohamad MA. Enhanced buffer management policy and packet pri-
oritization for wireless sensor network. International Journal on Advanced Science, Engineering and Information
Technology 2018; 8(4): 1770-1776.

[15] Chithaluru P, Prakash R, Srivastava S. WSN Structure Based on SDN. In: Dumka A (editors). Innovations in
Software-Defined Networking and Network Functions Virtualization. India: IGI Global, 2018, pp. 240-253.

[16] Rao VS, Dakshayini M. SDN Based Energy Efficient Mechanism for Constrained Networks. Procedia computer
science 2018; 143(1): 341-348.

1713

ABBASI et al./Turk J Elec Eng & Comp Sci

[17] Wan S, Li X, Xue Y, Lin W, Xu X. Efficient computation offloading for Internet of Vehicles in edge computing-
assisted 5G networks. The Journal of Supercomputing; 2019; 1-30.

[18] Inoue T, Mano T, Mizutani K, Minato Si, Akashi O. Fast packet classification algorithm for network-wide forwarding
behaviors. Computer Communications 2018; 116(1): 101-117.

[19] Abbasi M, Tahouri R, Rafiee M. Enhancing the performance of the aggregated bit vector algorithm in network
packet classification using GPU. PeerJ Computer Science 2019; 5(1): e185.

[20] Taylor DE. Survey and taxonomy of packet classification techniques. ACM Computing Surveys (CSUR) 2005; 37(3):
238-275.

[21] Rafiee M, Abbasi M. Pruned Kd-tree: a memory-efficient algorithm for multi-field packet classification. SN Applied
Sciences 2019; 1(12): 1537.

[22] Nayyar A, Mahapatra B. Effective Classification and Handling of Incoming Data Packets in Mobile Ad Hoc Networks
(MANETs) Using Random Forest Ensemble Technique (RF/ET). In: Sharma N, Chakrabarti A, Balas V (editors).
Data Management, Analytics and Innovation. Singapore: Springer, 2020, 1016(1): pp. 431-444.

[23] Gao Z, Xuan HZ, Zhang H, Wan S, Choo KKR. Adaptive fusion and category-level dictionary learning model for
multi-view human action recognition. IEEE Internet of Things Journal 2019; 6(6): 9280-9293.

[24] Rajkamal R, Ranjan PV. Packet classification for network processors in wsn traffic using ann. In: 6th IEEE
International Conference on Industrial Informatics; Daejeon, South Korea; 2008, pp. 707-710.

[25] Xianyang F. Design and implementation of QoS routing protocol for wireless sensor network. In: Fourth Interna-
tional Conference on Digital Manufacturing & Automation; Qingdao, China; 2013, pp. 428-431.

[26] Letswamotse BB, Malekian R, Chen CY, Modieginyane KM. Software defined wireless sensor networks (SDWSN): a
review on efficient resources, applications and technologies. Journal of Internet Technology 2018; 19(5): 1303-1313.

[27] Farhan L, Kharel R, Kaiwartya O, Hammoudeh M, Adebisi B. Towards green computing for Internet of things:
Energy oriented path and message scheduling approach. Sustainable Cities and Society 2018; 38(1): 195-204.

[28] Modieginyane KM, Letswamotse BB, Malekian R, Abu-Mahfouz AM. Software defined wireless sensor networks
application opportunities for efficient network management: A survey. Computers & Electrical Engineering 2018;
66(1): 274-287.

[29] Kim CG, Kim JG, Lee DH. Optimizing image processing on multi-core CPUs with Intel parallel programming
technologies. Multimedia tools and applications 2014; 68(2): 237-251.

[30] Reinders J. Intel threading building blocks: Outfitting C++ for multi-core processor parallelism. O’Reilly Media
Inc, 2007.

[31] Zhou S, Qu YR, Prasanna VK. Multi-core implementation of decomposition-based packet classification algorithms.
In: Malyshkin V (editors). International Conference on Parallel Computing Technologies. Berlin: Springer, 2013,
pp. 105-119.

[32] Wu X, Taylor V. Performance modeling of hybrid MPI/OpenMP scientific applications on large-scale multicore
supercomputers. Journal of Computer and System Sciences 2013; 79(8): 1256-1268.

[33] Memeti S, Pllana S. PAPA: A parallel programming assistant powered by IBM Watson cognitive computing
technology. Journal of computational science 2018; 26(1): 275-284.

[34] Abbasi M, Rafiee M, A calibrated asymptotic framework for analyzing packet classification algorithms on GPUs.
The Journal of Supercomputing 2019; 6574-6611.

[35] Rafiee M, Abbasi M, Nassiri M, An Efficient Method for Parallel Implementation of H-Trie Packet Classification
Algorithm on GPU. Tabriz Journal of Electrical Engineering 2016; 46(3): 181-196.

[36] Lim H, Lee S, Swartzlander Jr. A new hierarchical packet classification algorithm. Computer Networks 2012; 56(13):
3010-3022.

1714

ABBASI et al./Turk J Elec Eng & Comp Sci

[37] Batty M, Memarian K, Owens S, Sarkar S, Sewell P. Clarifying and compiling C/C++ concurrency: from C++ 11
to POWER. ACM SIGPLAN Notices 2012; 47(1): 509-520.

[38] Stroustrup B. A Tour of C++. Addison-Wesley Professional, 2013.

[39] Wolf F, Psaroudakis I, May N, Ailamaki A, Sattler KU. Extending database task schedulers for multi-threaded
application code. In: Proceedings of the 27th International Conference on Scientific and Statistical Database
Management: ACM; La Jolla, California; 2015, pp. 1-12.

[40] Kim W, Voss M. Multicore desktop programming with intel threading building blocks. IEEE software 2010; 28(1):
23-31.

[41] Pong F, Tzeng NF. HaRP: rapid packet classification via hashing round-down prefixes. IEEE Transactions on
Parallel & Distributed Systems 2010; 22(7): 1105-1119.

[42] Qu YR, Zhang HH, Zhou S, Prasanna VK. Optimizing many-field packet classification on FPGA, multi-core general
purpose processor, and GPU. In: Architectures for Networking and Communications Systems (ANCS): ACM/IEEE
Symposium; Oakland, CA, USA; 2015, pp. 87-98.

[43] Taylor DE, Turner JS. Classbench: A packet classification benchmark. IEEE/ACM Transactions on Networking
(ton) 2007; 15(3): 499-511.

[44] Varvello M, Laufer R, Zhang F, Lakshman T. Multilayer packet classification with graphics processing units.
IEEE/ACM Transactions on Networking 2016; 24(5): 2728-2741.

[45] Deng Y, Jiao X, Mu S, Kang K, Zhu Y. NPGPU: Network Processing on Graphics Processing Units. In: Zhou Q.
(editors). Theoretical and Mathematical Foundations of Computer Science. Singapore: Springer, 2011, pp. 313-321.

[46] Kang K, Deng YS. Scalable packet classification via GPU metaprogramming. In: Design, Automation & Test in
Europe Conference & Exhibition (DATE); Grenoble, France; 2011, pp. 1-4.

[47] Zhou S, Singapura SG, Prasanna VK. High-Performance Packet Classification on GPU. In: High Performance
Extreme Computing Conference (HPEC); Waltham, MA, USA; 2014, pp. 1-6.

[48] Zheng J, Zhang D, Li Y, Li G. Accelerate Packet Classification Using GPU: A Case Study on HiCuts. In: Park J,
Stojmenovic I, Jeong H, Yi G (editors). Computer Science and its Applications. Berlin: Springer, 2015, pp. 231-238.

[49] Abbasi M, Fazel SV, Rafiee M. MBitCuts: optimal bit-level cutting in geometric space packet classification. The
Journal of Supercomputing 2019; 1-24.

[50] Khezrian N, Abbasi M, Comparison of the performance of skip lists and splay trees in classification of internet
packets. PeerJ Computer Science 2019; 5(1): e204.

1715

	Introduction
	Related tools and algorithms
	Set-pruning trie algorithm
	Grid of tries (GOT) algorithm

	Parallelization libraries
	Thread
	OpenMP
	Threading Building Blocks (TBB)

	Related works
	Implementation and assessment
	Implementation
	Results

	Conclusion

