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Abstract: A motion history image (MHI) is a temporal template that collapses temporal motion information into a
single image in which intensity is a function of recency of motion. In recent years, the popularity of deep learning
architectures for human activity recognition has encouraged us to explore the effectiveness of combining them and
MHIs. Based on this, two new methods are introduced in this paper. In the first method, which is called the basic
method, each video splits into N groups of consecutive frames, and the MHI is calculated for each group. Transfer
learning with the fine-tuning technique is used for classifying these temporal templates. The experimental results show
that some misclassification errors are created because of the similarities between these temporal templates; these errors
can be corrected by detecting specific objects in the scenes. Thus, spatial information consisting of a single frame is
also added to the second method, called the proposed method. By converting video classification problems into image
classification problems in the proposed method, less memory is needed and the time complexity is greatly reduced. They
are implemented and compared with state-of-the-art approaches on two data sets. The results show that the proposed
method significantly outperforms the others. It achieves recognition accuracies of 92% and 92.4% for the UCF Sport
and UCF-11 action data sets, respectively.
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1. Introduction
Human action recognition is a great scene understanding ability for usages such as surveillance, health care,
security, gaming, and intelligent environments. Different approaches have been used to solve the problem of
action recognition [1–3]. They can be classified into vision-based and sensor-based approaches [4]. In vision-
based approaches, a camera is used to capture information about human activities. Then computer vision
techniques can be applied for recognizing the human activities. These approaches can give good results in proper
light conditions but privacy is the main concern. In sensor-based approaches, human behavior is recorded by
different sensors. Sensor-based approaches can be divided into three classes, namely wearable, object-tagged, and
dense sensing [5]. These approaches have attracted much attention due to their low cost and the advancement
in sensor technology in recent years. In the wearable approach, humans have to carry the sensors when they
perform any activity, but wearing a tag is not feasible sometimes. In the object-tagged approach, sensors have
to be attached to objects in daily use. In this case, users must use tagged-objects and so it forces the users
to use specific objects. In the dense sensing approach, sensors are deployed in the environment (in which the
activity is being performed) and the data will be collected through those sensors when a person performs any
activity. The dense sensing approach is more practical and it does not have the limitations of the two previous
∗Correspondence: Correspondence: smta@yazd.ac.ir
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approaches. Nevertheless, vision-based approaches are focused on in this article because they can give good
results and applying computer vision-based techniques is easy.

First, global representations extract global descriptors directly from main videos or images and encode
them as features. Optical flow achieved by the Lucas–Kanade–Tomasi (LKT) feature tracker [6, 7], the motion
energy image (MEI) and the motion history image (MHI) (which were presented by Bobick and Davis [8, 9]),
3D space–time volumes (STVs) [10], and discrete Fourier transform (DFT) have been introduced as these
descriptors. Later, local descriptors such as the histogram of optical flow (HOF), speeded-up robust features
(SURF) [11], 2D scale-invariant feature transform (SIFT) [12], 3D SIFT [13], the histogram of oriented gradients
(HOG) [14], and the histogram of 3D-oriented gradients (HOG3D) [15] were presented. For constructing the
last of these descriptors, local patches are calculated using interest point detectors or dense sampling [15]. Most
local features are demonstrated to be robust against noise and partial obstructions compared to global features.

There have been many studies on human action recognition in videos that use these hand-crafted features
[16] and input them into the support vector machine (SVM) classifier. In Kovashka and Grauman [17], each
action was represented as an ensemble of local spatiotemporal feature vectors corresponding to sparse interest
points extracted from videos, and human action recognition was done by analyzing these spatiotemporal feature
vectors. Later, the improved dense trajectories (iDTs) [18] achieved the most outstanding performance as a
hand-crafted feature. Cho et al. [19] used traditional multicore sparse representation to express video local
motion features and global motion features. This method required learning the dictionary to express local
motion features and was limited by the dictionary’s expressive ability. In 2016, Abdulmunem et al. [20]
introduced an approach considering saliency guided features. With saliency guidance, local and global features
were extracted for encoding video information. Thus the saliency guided 3D SIFT-HOOF (SGSH) feature was
used for feature representation. Simultaneously, Souly and Shah [21] used group lasso regularization to find the
sparse representation for video saliency detection.

Recently, deep neural networks (DNNs) have attracted much attention in many areas such as object
detection, object tracking, image segmentation, image classification, and action localization [22], because the
feature construction process is automated. Image classification networks with high efficiency cause them to
be used with little change for video. Therefore, by using them in Karpathy et al. [23], features are extracted
independently from each frame and then their predictions are pooled across the entire video. In fact, this
approach completely ignores temporal structure. Moreover, 2D convolutional neural networks (2D CNNs) are
widely used in image analysis applications but they lose the ability to obtain motion information in terms of a
3D volume of video frames. Among the 2D CNN methods, it is preferable to add a recurrent layer such as an
LSTM to the model [24, 25]. It can code state and acquire temporal ordering. By adding it to the last layers of
the 2D CNN model, high-level changes are modeled, but small low-level motion that is important in many cases
may not be detected. It is also expensive to train as it requires unrolling the network through several frames for
back-propagation-through-time [26]. Sharma et al. [27] proposed a soft-attention LSTM model to selectively
focus on parts of the video frames and classify videos after taking a few glimpses. Later, Zhou et al. [28] showed
that a low dimension feature representation generated on the deep convolutional layers is more discriminative
compared to traditional CNN features, which explore the outputs from the fully connected layers in a CNN. In
addition, based on the convolutional feature maps, a multiscale pooling strategy was used to better handle the
objects with different scales and deformations.
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The 3D convolutional neural network (3D CNN) architecture [29–31] is one of the most usual deep models.
By implementing 3D convolutions, features are extracted from both the spatial and the temporal dimensions,
thereby acquiring the motion information coded in several neighbor frames. It works better than single frame
baseline [31] since the motion features have been learned adequately. Because this architecture has many more
parameters than a 2D CNN due to the additional kernel dimension, its training is more complex.

Simonyan and Zisserman [32] introduced a different approach. They thought that video could be
decomposed into spatial and temporal components. The spatial component carries information about scenes
and objects that are presented in the video. The temporal component gives the moving information of the
observer (the camera) and the objects. Motion features were clearly formed in the shape of stacked optical flow
vectors and so their architecture has two separate networks: one for spatial content and the other for motion
content. The input to the spatial net is a single frame of the video and the input to the temporal net was
tested by authors. They concluded that bidirectional optical flow stacked across ten frames performed best.
The two streams were trained separately and combined using an SVM. This method performed better than the
single stream method by obviously capturing local temporal movement. Since then, many video classification
approaches have followed this design and have made improvements in terms of new representation [33], different
backbone architecture [34, 35], and exploiting richer temporal structures [24, 36].

Ravanbakhsh et al. [37] first computed CNN features for each frame of a video and then mapped them
into a short binary code space. For selecting key frames, the changes in each bit of the binary codes were tracked
across time. Video snippets between consecutive key frames were fed into a hierarchical decomposition. PCA
was applied to each level of the hierarchy to reduce the dimension within each level. All levels were stacked as
a vector representation for a video snippet. In the last step, a histogram of temporal words was built for all the
videos and a classifier was trained to predict action labels.

Gammulle et al. [38] extracted features frame-wise from each video through a CNN and passed those
features sequentially through an LSTM in order to classify the sequence. Based on this, four CNN-to-LSTM
fusion models were introduced. The architectures varied when it was considered how the features from the CNN
model were fed to the LSTM action classification model. Two direct mapping models, convolutional-to-LSTM
(conv-L) and fully connected-to-LSTM (fc-L), and two merged models, conv-L+fc-L fusion method 1 (fu-1) and
conv-L+fc-L fusion method 2 (fu-2), were considered. The direct mapping models had less accuracy compared
to the merged models, and the model conv-L had the lowest accuracy due to the highly dense features from the
convolutional layer that were difficult to discriminate. In the conv-L+fc-L fusion method 1 (fu-1), the outputs
of the first two models were merged and passed through a soft-max layer to evaluate the final classification. Two
types of LSTMs called sequence-to-one LSTM and sequence-to-sequence LSTM were used with their last model
such that the resultant sequence of predictions was fed to the final LSTM, which worked in a sequence-to-one
LSTM. Further performance improvement was gained by adding a third LSTM layer for combining the two
streams.

Wang et al. [39] proposed a lightweight architecture for video action recognition, which consisted of a
CNN, LSTM, and attention model. They used the convolution model to extract two kinds of features (semantic,
spatial) for each frame, followed by FC-LSTM with their temporal-wise attention model. This architecture was
designed for obtaining strong representational power for predicting just using RGB data, without optical flow
data needing additional computations. The weakness of this architecture was that the spatial information was
not encoded by the input-to-state or state-to-state transition in FC-LSTM.
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As mentioned before, more 3D-CNN based approaches have high computational complexity. They
concentrate on the problem of understanding the content of videos, which does not essentially require the
modeling of their dynamics. In addition, the spatiotemporal filters of CNNs that maximize the recognition
ability of the total system in an end-to-end manner should be learned. On the other hand, the high efficiency
of pretrained networks in image classification problems encourages us to use them with little change for video.

The first contribution of the present paper is converting the video classification problem into an image
classification one. To achieve this purpose, we just need to construct some simple and informative templates
that can effectively display the temporal and spatial information of videos. In addition, these templates should
not have high computational complexity. Thus, a global descriptor like MHI and one single frame of each video
are used for saving temporal and spatial information of videos, respectively. Furthermore, finding the effective
representation (combination of MHI and one single frame) for video classification is the second contribution.
Accordingly, two new methods are introduced, which are called the basic and proposed methods. In the
basic method, only the temporal stream based on MHI is used. The spatial stream is added to the proposed
method, which increases efficiency significantly. Pretrained network and fine-tuning techniques are used for the
classification problem. The rest of this paper is organized as follows. First, constructing the MHI is explained.
Then the two new methods are presented and are implemented on two data sets. Finally, the results are
compared with those of the state-of-the-art approaches.

2. Motion history image (MHI)

A MHI [9] is a static image in which the motion history of captured sequences at each point is represented by
its pixel intensity. It is defined by the following equation:

Hτ (x, y, t) =

{
τ if D(x, y, t) = 1

max(0,Hτ (x, y, t− 1)− 1) otherwise
,D(x, y, t) = B(x, y, t+ 1)−B(x, y, t), (1)

where Hτ is the MHI and D(x, y, t) is the binary difference image between two consecutive preprocessed binary
sequences B(x, y, t) and B(x, y, t + 1) . Variables x and y are image pixel coordinates and t is the temporal
index. The variable τ is a threshold for extraction moving patterns in video image sequences. The equation
D(x, y, t) = 1 shows a motion occurrence in the t time on the coordinate point (x, y) . Thus, the MHI is a
scalar-valued image with this feature in which more recently moving pixels are brighter than others.

Based on MHI usages, various methods can be applied for constructing the difference image. One of
them is the construction of the background image and subtraction of the frames from this background image
[40]. In this usage, similar to Keskin et al. [41], the difference in consecutive frames is applied because there
is no information about the background. Examples of MHIs constructed for 20 consecutive frames are shown
in Figure 1. As is obvious from this figure, more recently moving pixels are brighter than other pixels. Indeed,
MHIs show the direction of motion and this feature is used for action recognition in the following sections.

As seen, MHIs show temporal changes and the direction of motion. For example, Figure 1a shows that
a person is lifting; also pixel intensities show the direction of motion such that more recently moving pixels are
brighter than others. In other words, the MHI is a function of time and its pixel intensity on the coordinate
point (x,y) is a function of the temporal history of motion at that point.
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(a)                                                        (b)                                               (c)  

Figure 1. MHIs for 20 consecutive frames: (a) lifting, (b) walking-front, (c) biking.

3. Methods
In this section, two new methods are introduced. In the first method, which is called the basic method, only
the temporal stream (MHIs of frame sequences) is used. The spatial stream (a single frame) is added to the
second method, called the proposed method.

3.1. Basic method: MHIs of frame sequences
First, each video splits into N groups of consecutive frames. MHIs are calculated for each group, creating MHIs
of frame sequences. Then MHIs of frame sequences are fed to the classifier. These steps are shown in Figure 2.

By using this approach, motion information in N groups of consecutive frames is abstracted in MHIs of
frame sequences for each video. It is clear that N has an important role. A small value of N causes the temporal
differences of the first frames in actions to be ignored; on the other hand, by selecting a large value of N, fine
temporal differences in each group are considered. Therefore, it is necessary to select the optimal value for N
to maximize accuracy.

Designing a CNN from scratch is complex and time consuming, and training the weights from random
values increases computational complexity. For classifying, transfer learning with the fine-tuning technique
is used. Transfer learning is the reuse of a pretrained model on a new also relevant problem. VGG-16 is a
convolutional neural network that is trained on more than one million images from the ImageNet database1.
For the classifying problem with this pretrained network, two densely connected classifiers were added after
the flatten layer on top of the convolutional base before compiling the model. The neuron numbers for these
two fully connected layers are 100 and C neurons, respectively, where C is the number of classes. To prevent
overfitting, a dropout layer is added after the first dense layer. Fine-tuning consists of unfreezing a few of the
top layers of a frozen model base used for feature extraction and jointly training the newly added part of the
model and these unfrozen layers. For this purpose, all Conv blocks are frozen except Conv block 5 and the
newly added top layers. The rectified linear unit (ReLU) is used for the activation function. Classification is
done with the softmax function and cross-entropy loss function. The details of the VGG-16 convolutional base
architecture and its settings are shown in Figure 3.

It is worth noting that this pretrained network should have exactly three input channels, but MHIs of
frame sequences are grayscale images. The images simply need to appear to be RGB. Therefore, the images are

1ImageNet (2018). ImageNet database [online]. Website https://www.image-net.org/ [accessed 21 10 2018]
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Figure 2. Flow graph of the basic method.

                                                  Convolutional base 

      Conv block 1:              Conv block 2:            Conv block 3:             Conv block 4:            Conv block 5:         Domain classifier: 

             Frozen                         Frozen                        Frozen                         Frozen         Fine-tune                   Fine-tune   

     

      Convolution2D           Convolution2D          Convolution2D           Convolution2D          Convolution2D                 Flatten 

      Convolution2D           Convolution2D          Convolution2D           Convolution2D         Convolution2D                  Dense 

      MaxPooling2D           MaxPooling2D  Convolution2D           Convolution2D          Convolution2D               Dropout 

                                                                             MaxPooling2D           MaxPooling2D          MaxPooling2D                  Dense 

Figure 3. Pretrained network (VGG-16) and fine-tuning.

repeated three times on a new dimension. We will have them over all three channels, and the performance of
this network should be the same as it was for RGB images. This technique is shown in Figure 4. Therefore, by
using this technique the video classification problem is converted into an image classification one and training
the network will be much easier and faster.
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Figure 4. Expand grayscale images to RGB images.

3.2. Proposed method: MHIs of frame sequences + spatial

Besides the temporal information used in the basic method, some actions are strongly dependent on particular
objects. In fact, some actions with similar motions (or subsequently similar MHIs of frame sequences) cannot
be distinguished with only the temporal stream. One single frame of each video was also selected for the spatial
stream. For selecting this frame, each video was split into three sections. Experiments showed that choosing
a random sample frame from the first or last (third) section was not desirable because of low spatial accuracy.
Presumably, specific objects have not entered the scenes yet, or they have left the scenes such that most of the
spatial information (specific object) exists in the second section. By choosing random sample frames from the
second section, the same accuracies will be obtained. A pretrained network (VGG-16) and fine-tuning are also
used here for image classification architecture. An overview of the proposed method is shown in Figure 5.

As shown in Figure 5, two separate streams are used for classification. A single frame of each video and
MHIs of frame sequences are used for spatial and temporal stream recognition, respectively. Both streams have
the same architecture. Each stream is implemented using a pretrained network (VGG-16) and fine-tuning, the
same as the basic method. For each video, a probability matrix of size N by C is achieved with a temporal
stream, where C is the number of classes (columns) that exist in the data set, and N is the number of frame
sequences (rows). The sum of each row of the matrix is 1. Similarly, a probability matrix of size 1 by C is
acquired with a spatial stream for each video. By averaging the N+1 row matrices, a predictive row matrix
of size 1 by C is generated. Finally, the column label that has the maximum value shows the predicted class.
Thus late average fusion is used for combining softmax scores and acquiring the final decision.

4. Experiments

In this section, experiments were performed on two action data sets for comparing these two methods with
state-of-the-art methods.

4.1. Data sets
Two benchmark data sets were considered, which include the UCF Sport [42] and UCF-11 [43]. Sample frames
from these data sets are presented in Figure 6.

The UCF Sport data set includes 150 video sequences with a resolution of 720 × 480 . It comprises
10 actions that include walking, running, kicking, lifting, diving, golf swing, riding horse, skate boarding,
swinging-side, and swinging-bench. These actions are performed in different real environments that cover
various viewpoints and include a lot of camera motion.

The UCF-11 action data set is a challenging data set because of large variations in camera motion,
illumination, viewpoint, background clutter, etc. It contains 1600 videos, each labeled as one of the following 11
action categories: basketball shooting, biking/cycling, diving, golf swinging, horseback riding, soccer juggling,
swinging, tennis swinging, trampoline jumping, volleyball spiking, and walking with a dog.
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Figure 5. Flow graph of the proposed method.

A summary of the explained data sets is presented in Table 1, in order to present the information more
clearly.

Table 1. Summary of the explained data sets.

Data sets Classes Videos Resolution Year
UCF Sport 10 150 720× 480 2008

UCF–11 11 1600 − 2009

4.2. Experimental setting

Videos contain various numbers of frames. They are divided into N groups of consecutive frames. MHIs of
frame sequences are calculated for these groups of frames. Considering N = 1 does not seem sensible to achieve
high efficiency, the assumption that temporal changes that occur in the initial frames are ignored. The neuron
number for the last fully connected layer is equal to 10 and 11 for the UCF Sport and UCF-11 action data sets,
respectively. RMSprop with a learning rate of 0.0001 is used for the optimization of the two methods. RMSprop
(root mean square propagation) almost immediately heads off in the right direction, scales the learning rate,
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Figure 6. Samples of experimental action data sets: (a) UCF Sport, (b) UCF-11 action data set.

converges fast, and performs well in practice. Moreover, it is recommended to leave the parameters of RMSprop
at their default values (except the learning rate, which can be freely tuned). Due to these properties, RMSprop
is chosen as an optimization method for classifier training. N starts from 2 and increases until the best result
is achieved. The number of epochs is set to 100, the batch size is fixed at 10, and the dropout rate is set to 0.9
in dropout layers to prevent overfitting. Moreover, such as in Liu et al. [43], five-fold cross-validation is used
for experimental setups. Experiments have been implemented on a Python-based deep learning library called
Keras2 with one NVIDIA GeForce GTX 1050 card and 8 GB RAM.

5. Results and discussion
The basic method was initially applied to these data sets. The results for different N-values are listed in Table
2. As shown, the best efficiencies are achieved with N = 3 and N = 4 for UCF Sport and UCF-11, respectively.
Confusion matrices for the best efficiencies are shown in Figures 7a and 7b. The time complexity of computing
MHIs of frame sequences (N temporal templates) for each video is 1.05 s, and this time is independent of the
value of N.

Table 2. Accuracy of the basic method.

UCF Sport
Training setting N = 2 N = 3 N = 4 N = 5

Basic method 79.6 ± 3.7% 85.3 ± 3.9% 82.4 ± 5.2% 80.2 ± 5.7%

UCF–11
Training setting N = 2 N = 3 N = 4 N = 5

Basic method 54.4 ± 1.1% 82 ± 1.2% 82.4 ± 0.7% 80.7 ± 1.6%

The proposed method was applied to these data sets, and the results are summarized in Table 3. The
results show that temporal information is not sufficient for acquiring high accuracy and so spatial information is
added to the proposed method. As shown, by considering two streams and fusing them, the standard deviation

2Keras (2015). Chollet F [online]. Website https://github.com/fchollet/keras/ [accessed 04 07 2018]
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Figure 7. Confusion matrices resulting from the basic method for (a) UCF Sport, (b) UCF-11 data sets.

is decreased and the accuracy is effectively improved. This performance improvement is obvious on both data
sets, as the proposed method performs better than the basic method with an improvement of 6.7% for UCF
Sport and 10% for UCF-11. Confusion matrices for these improved results are shown in Figure 8. Furthermore,
the time complexity of this method is similar to that of the basic method.

Table 3. Results of individual streams and fusing them.

UCF Sport
Basic method (temporal stream) Spatial stream Proposed method (temporal stream + spatial stream)
85.3 ± 3.9% 62 ± 6.1% 92 ± 1.6%

UCF–11
Basic method (temporal stream) Spatial stream Proposed method (temporal stream + spatial stream)
82.4 ± 0.7% 85.7 ± 2.9% 92.4 ± 0.4%
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Class 7(Swing-Bench) 0 0 0 0 0.06 0 0 0.94 0 0 
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class 9(Walk-Front) 0 0 0 0.07 0 0 0 0 0 0.93 
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class 0(shoot) 0.88 0 0.03 0.01 0 0 0 0.02 0.01 0.05 0 

class 1(biking) 0.01 0.9 0.01 0 0.04 0 0.01 0 0.01 0 0.02 

class 2(diving) 0 0 0.98 0 0 0 0 0 0 0.01 0.01 

class 3(g-swing) 0 0 0 0.95 0 0 0 0 0.01 0.02 0.02 

class 4(horse-riding) 0 0 0.01 0 0.95 0.02 0.01 0 0.01 0 0 

class 5(juggling) 0 0.02 0 0.02 0 0.93 0.01 0 0 0 0.02 

class 6(swing) 0 0.02 0 0 0 0 0.95 0 0.02 0 0.01 

class 7(tennis) 0.01 0 0 0 0 0 0 0.99 0 0 0 

class 8(jump) 0 0 0 0.01 0 0 0.04 0 0.95 0 0 

class 9(v-spiking) 0.01 0 0.05 0 0 0 0.01 0 0 0.93 0 

class 10(dog-walking) 0.01 0.02 0.03 0 0.09 0.04 0.06 0 0 0 0.75 

(b) 

Figure 8. Confusion matrices resulting from proposed method for (a) UCF Sport, (b) UCF-11 data sets.

These matrices show that for UCF Sport in the basic method, most misclassification errors occur between
Run-Side, SkateBoarding-Front (true labels), and Walk-Front (predicted label). It seems that by splitting each
video into N groups of consecutive frames and changing the view angle of the camera throughout the videos,
MHIs of frame sequences acquired from these actions will be similar. In addition, dynamic backgrounds increase
this problem. This problem also exists in the proposed method, but some misclassification errors are resolved
by detecting specific objects in the scenes. For example, by detecting skate, some errors that occurred between
SkateBoarding-Front (true label) and Run-Side, Riding-Horse, and Golf-Swing (predicted labels) are removed.
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For UCF-11, most misclassification errors occur between these classes (shoot and v-spiking, dog-walking,
and horse-riding). Presumably, similar motions of the ball and persons in MHIs of frame sequences from shoot
and v-spiking videos can create these errors. Similar MHIs of frame sequences can also be created with dog-
walking and horse-riding because of the similarity of these activities. In the proposed method, this problem
is partly fixed with the spatial stream by detecting the type of tour in shoot and v-spiking and distinguishing
horse and dog shapes. The spatial stream can correct errors that are produced between two completely different
classes (dog-walking (true label) and biking (predicted label), jump (true label), and swing (predicted label))
by detecting different objects (e.g., dog, bike, swing).

The performance of these two methods has also been compared with other methods on these data sets
in Table 4. As seen in this table, the proposed method achieved better performance than the others. By
using the proposed method, each video has abstracted to 1 and N templates for spatial and temporal streams,
respectively, and there is no more need to save all frames of videos. Only 1.05 s is needed for computing the
MHIs of frame sequences (N temporal templates) for each video, and this time is independent of the value of N.
Thus less memory is needed and the time complexity is greatly reduced. Furthermore, by converting the video
classification problem into an image classification one, network training is much easier and faster compared to
other methods like 3D-CNN-based approaches.

Table 4. Comparison with other methods on UCF Sport and UCF-11.

UCF Sport
Methods Accuracy
(Souly and Shah, 2016) [21] 85.10%

(Wang et al., 2009) [16] 85.60%

(Le et al., 2011) [1] 86.50%

(Kovashka and Grauman, 2010) [17] 87.20%

(Wang et al., 2011) [18] 89.10%

(Weinzaepfel et al., 2015) [22] 90.50%

(Abdulmunem et al., 2016) [20] 90.90%

(Ravanbakhsh et al., 2015) [37] 88.10%

(Wang et al., 2018) [39] 91.89%

(Zhou et al., 2017) [28] 90.00%

Basic method 85.30%

Proposed method 92.00%

UCF-11
Methods Accuracy
(Hasan et al., 2014) [2] 54.50%

(Liu et al., 2009) [43] 71.20%

(Ikizler-Cinbis et al., 2010) [36] 75.20%

(Wang et al., 2011) [18] 84.20%

(Sharma et al., 2015) [27] 84.90%

(Cho et al., 2014) [19] 88.00%

(Ravanbakhsh et al., 2015) [37] 77.10%

(Wang et al., 2018) [39] 98.76%

(Gammulle et al., 2017) [38] 89.20%

(Gilbert et al., 2017) [3] 86.70%

Basic method 82.40%

Proposed method 92.40%
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6. Conclusion
The main idea of this work is converting the video classification problem into an image classification one.
Based on this idea, two new methods are introduced. In the basic method, each video splits into N groups of
consecutive frames and MHIs are calculated for them. MHIs of frame sequences show temporal changes and
the direction of motion. Results of the basic method show that some misclassification errors are created due
to the similarity of these temporal templates and can be resolved by detecting specific objects in the scenes.
In the proposed method, MHIs of frame sequences and one single frame are used to train the temporal and
spatial streams, respectively. The final decision is achieved by applying the average fusion method. These two
methods have been tested on two common data sets. The results show that the proposed method achieves
better performance compared to the state-of-the-art methods. By using this proposed method, each video has
been abstracted to N+1 images, and there is no more need to save all frames of videos. The time complexity
is greatly reduced because of the simplicity of temporal template calculations. Moreover, network training is
also much easier and faster compared to other methods like 3D-CNN-based approaches. In future work, we will
attempt to amend these temporal templates for confronting interclass similarities such as SkateBoarding-Front
and Walk-Front classes.
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