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Abstract: In this article, a new solution method is proposed for plane wave diffraction by a strip. On the surface of the
strip, an integral boundary condition is used. The impedance of the strip is investigated. The theoretical and numerical
analyses show that there is a relation between the complex-valued fractional order of the integral boundary condition
and properties of the material such as the impedance. As a further study, the total radar cross-section is investigated
using the proposed method.
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1. Introduction
Initial studies about the application of the fractional approach to electromagnetic theory were performed by
Engheta in the 1990s [1–3]. He introduced the idea of the fractional paradigm in electromagnetics, which
states that there are continuous intermediate stages between two canonical states of the electromagnetic field.
Using the properties of the fractional derivative approach, the intermediate stages of fields or sources between
two canonical states can be described [1–5]. Since then, several studies have been performed on scattering
problems [6–10]. The integral boundary condition, which corresponds to an intermediate boundary condition
between Dirichlet and Neumann boundary conditions, is used in order to explain the scattering properties of
different geometries. By determining the fractional order (FO), the scattering properties of different materials
are investigated. Throughout the study, the integral boundary condition can also be pronounced as the fractional
boundary condition (FBC), which was explained in previous studies [7, 8].

The boundary conditions used in previous works [7–9] describe a new material property (perfect electric
conductor (PEC), perfect magnetic conductor (PMC), or in between). In these studies, theoretical and numerical
results are obtained for the plane wave diffraction by one strip, two strips with the same length, and a semiinfinite
strip. In the case of real fractional order, the impedance of the strip is found as a purely imaginary value.

In this paper, a complex fractional order that has both real and imaginary parts is introduced for the
first time. The impedance of the strip is found to be complex-valued. Therefore, the fractional boundary
condition with the complex fractional order describes a new kind of material with different properties. Several
different cases such as different operating frequencies, strip length, and fractional orders are investigated both
theoretically and numerically. Then the results are presented.

This paper is organized as follows. In Section 2, the formulation of the problem and the theoretical results
are introduced briefly. In Section 3, the convergence study for the numerical analysis is presented. Next, in
∗Correspondence: karacuha17@itu.edu.tr
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Sections 4 and 5, physical characteristics of the electric field and numerical results are introduced, respectively.
Finally, the conclusion of this paper is drawn in Section 6.

2. Formulation of the problem
The main focus of this section is the investigation of E–polarized electromagnetic plane wave diffraction by a
strip with the fractional boundary condition (FBC). There is a strip that has width 2a and infinitesimal height.
The strip is located at y = 0 and has an infinite length in the z–axis. The geometry of the problem is shown in
Figure 1. From the definition of the Riemann–Liouville equation [11], the fractional derivative can be found as:

Dν
yf(y) =

1

Γ(1− ν)

d

dy

∫ y

−∞

f(t)

(y − t)ν
dt. (1)

Here, Dν
y stands for the derivative operator and means that the derivative is taken with respect to y

in the order of ν . The real part of the fractional order is shown as Re(ν) , which varies within the range of
0 < Re(ν) < 1 , and Γ(ν) is the gamma function.

After defining the fractional derivative, it is necessary to define the FBC [7–10]. U(x, y) is the function
subjected to the FBC at y = d , which is the boundary of the strip in a two-dimensional case. For the plane
surface boundary S located at y = d , the general form of FBC is written as follows:

Dν
yU(x, y)|yϵS = 0, y = ±d. (2)

In electromagnetic problems, U(x,y) becomes Ez(x, y) or Hz(x, y) depending on the polarization. In this
problem, the incident wave is E–polarized; therefore, U(x, y) stands for Ez(x, y) . The total electric field E⃗z is
composed of the superposition of two fields, which are a plane wave as an incidence wave E⃗i and the scattered
electric field E⃗s

z , respectively. The monochromatic incidence wave can be denoted as

E⃗i = a⃗ze
−ik(xcosθ+y sin θ). (3)

Here, a⃗z is the unit vector along the z-axis, θ is the angle of incidence, k = 2π/λ is the wave number, and λ is
the wavelength in free space. Note that the time dependency throughout this study is taken as e−iωt and then
is omitted. The total electric field can be represented as follows:

E⃗z = E⃗i
z + E⃗s

z . (4)

In order to find the scattered electric field, the total electric field needs to satisfy the boundary condition
on the surface of the strip [7–10]. Here, the boundary condition is the fractional boundary condition and the
mathematical expression is given as:

Dν
kyEz(x, y)|y=±0 = 0. (5)

where x,−a < x < a .

Here, the derivative is taken with respect to ky , which is a dimensionless parameter, and y is the normal
direction on the strip. The boundary condition given in (5) covers both Dirichlet and Neumann type boundary
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Figure 1. The geometry of the problem.

conditions for ν = 0 and ν = 1 , respectively. For fractional order, ν is equal to 0; it corresponds to a PEC
surface, whereas for fractional order, ν is equal to 1 and the surface corresponds to a PMC surface. Therefore,
the FBC is a more general boundary condition covering both Dirichlet and Neumann type boundary conditions
[7–10].

The scattered electric field can be expressed as the convolution of fractional current density induced on the
strip and the fractional Green function given as:

Es
z(x, y) =

∫ ∞

−∞
f1−ν(x′)Gν(x− x′, y)dx′. (6)

Here, f1−ν(x′) is an unknown function, which is called the fractional current density and has only nonzero
values on the strip. The current density has zero values outside of the strip. The fractional Green’s function
Gν(x) has the form given as follows [5–7]:

Gν(x− x′, y) = − i

4
Dν

kyH
(1)
0 (k

√
(x− x′)2 + y2), (7)

where H
(1)
0 is the Hankel function of the first kind and zero order. Its spectral representation is given in

(8). By the spectral representation, the Hankel function can be written as the summation of plane waves [5–7]:

H
(1)
0 (k

√
(x− x′)2 + y2) =

1

π

∫ ∞

−∞
eik[(x−x′)α+|y|

√
1−α2] dα√

1− α2
. (8)

In order to find the expression for the scattered electric field, (7) is inserted into (6) using (8). Then the
scattered electric field is found as in (9). It should be denoted that the fractional derivative of the exponential
term is taken as Dν

xe
ikx = (ik)νeikx , which is found by using (1) [11, 12]. The reason for denoting the derivative

of exponents is that both the incidence and the scattered electric field can be expressed in terms of exponentials
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and then the FBC can be applied:

Es
z(x, y) = −i

e±
iπ
2 ν

4π

∫ ∞

−∞
F 1−ν(α)eik[(xα±y

√
1−α2](1− α2)

ν−1
2 dα, (9)

where

F 1−ν(α) =
∫ 1

−1
f̃1−ν(ξ)e−iϵαξdξ, f̃1−ν(ξ) = af1−ν(aξ),

ϵ = ka, ξ = x
a , f

1−ν(ξ) = ϵ
2π

∫∞
−∞ F 1−ν(α)e−iϵαξdα .

The integral representation in (9) satisfies the wave equation and the Sommerfeld radiation condition
where the (+) sign stands for the upper half space (y > 0) and (-) corresponds to the lower half space (y < 0).
After finding the scattered electric field, the FBC is applied to the total electric field as given in (5). Then the
integral equation (IE) is obtained as given in (10):

∫ ∞

−∞
F 1−ν(α)eiϵxα

(
1− α2

)ν−1/2
dα = −4iπe−

iπν
2 (sin θ)νe−ikx cos θ. (10)

By multiplying the integral equation in (10) by e−ixϵβ and integrating with respect to x from –a to a, IE (11) is
obtained. For any arbitrary fractional order ν , IE (11) needs to be solved in order to find the Fourier transform
of the fractional current density:

∫ ∞

−∞
F 1−ν(α)

sin ε(α− β)

α− β

(
1− α2

)ν− 1
2 dα = −4iπ(sin θ)νe−

iπν
2 (sin θ)ν

sin ε(β + cos θ)

β + cos θ
. (11)

In order to satisfy Meixner’s edge condition [13], a series of Gegenbauer polynomial representations Cν
n(ξ) for

the normalized current density f̃1−ν with the weighting function (1− ξ)ν−1/2 and the unknown ζαn are used.
The normalized current density can be expressed as in (12):

f̃1−ν(ξ) = (1− ξ)ν−
1
2

∞∑
n=0

ζνn
Cν

n(ξ)

ν
. (12)

Then the Fourier transform of the current density can be found as in (13) [7–10]:

F 1−ν(α) =
2π

Γ(ν + 1)

∞∑
n=0

(−i)nζνnβ
ν
n

Jn+ν(εα)

(2εα)ν
. (13)

Here, ϵ = ka , Jn+ν(ϵα) are Bessel functions and βν
n = Γ(n+ 2ν)/Γ(n+ 1) .

By substituting (13) into (11), the integral equation (11) is converted into the system of linear algebraic
equation (SLAE) by introducing the unknown ζαn . Note that the properties of discontinuous integrals of Weber-
Shafheitlin and (14) are taken into account [14, 15]. The SLAE can be given as in (15):

1

π

∫ ∞

−∞

Jn+ν(εα)

αν

sin(ε(α− b))

α− β
dα =

Jn+ν(εβ)

βν
, (14)
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∞∑
n=0

(−i)nζαnβ
ν
nC

ν
mn = χν

m, (15)

where

Cν
mn =

∫ ∞

−∞
Jn+ν(εα)Jm+ν(εα)

(
1− α2

)ν− 1
2
dα

α2ν
,

χν
m = −2iΓ(ν + 1)(−i)ν(2ε)ν(sin θ)ν

Jm+ν(ε cos θ)

(cos θ)ν
.

3. Investigation of convergence in numerical analysis

When FO, ν becomes complex-valued, and the convergence of Cν
mn given in (15) is not satisfactory. In order

to have better convergence, the manipulation in the integral expression of Cν
mn is done. In other words, the

integral Cν
mn is split into two parts as the first integral from −∞ to 0 and the second integral from 0 to ∞ .

Then, in the first integral part, a change of variable is applied (q → –q). After that, the expression given in
(16) is found:

Cν
mn =

[
1 + (−1)m+n

] ∫ ∞

0

Jn+ν(εq)Jm+ν(εq)

(
1− q2

)ν− 1
2

q2ν
dq. (16)

In order to increase the convergence, the term (1− q2)ν−1/2 in (16) can be written as (17):

(
1− q2

)ν− 1
2 =

(
1 + (iq)2

)ν− 1
2 = q2ν−1

[
−
(
1− 1

q2

)]ν− 1
2

. (17)

Here, we define γν(q) as γν(q) = [−(1− 1
q2 )

ν−1/2]− 1 . Then γν(q) is substituted into (16). The corresponding

integral would have two parts as C1,ν
mn and C2,ν

mn , which are shown in (18):

Cν
mn =

[
1 + (−1)m+n] ∫ ∞

0

Jn+ν(εq)Jm+ν(εq)
q2ν−1

q2ν
[γν(q) + 1] dq = C1,ν

mn + C2,ν
mn. (18)

Here,

C1,ν
mn =

[
1 + (−1)m+n

] ∫ ∞

0

Jn+ν(εq)Jm+ν(εq)
dq

q
,

C2,ν
mn =

[
1 + (−1)m+n

] ∫ ∞

0

Jn+ν(εq)Jm+ν(εq)γν(q)
dq

q
.

C1,ν
mn has an analytical solution [14, 15]. The result of the integral C1,ν

mn is given in (19):

C1,ν
mn =

[
1 + (−1)m+n

] 2

π(m+ n+ 2ν)(m− n)
sin

(
m− n

2
π

)
, (19)

where Re(m+ ν, n+ ν) > 0 .

On the other hand, the integral C2,ν
mn is taken numerically. When q goes to infinity (q→∞), C2,ν

mn has
the same behavior as O( 1

q2(1+ν) ) .
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4. Physical characteristics of the electric field

In this section, the total radar cross-section (TRCS) and the relation between the impedance and the fractional
order are given. After having the expression for F 1−ν given as in (13), the radiation pattern of the scattered
electric field in the far zone can be found using (20). For large values of ka (ka → ∞), the scattered electric
field gets the next form by the stationary phase method [8]. Here, x = rcosϕ and y = rsinϕ .

Es
z(x, y) = A(kr)Φν(ϕ), (20)

where A(kr) =
√

2
πkr e

ikr−iπ
4 and Φν = − i

4 (±)νF 1−ν(cosϕ)sinν(ϕ) .

In (20), Φν(ϕ) is denoted as the radiation pattern (RP). The upper sign in the Φν expression is chosen
for ϕ ϵ [0, π ], and the lower sign stands for ϕ ϵ [π , 2π ], where ϕ is the observation angle. A(kr) corresponds
to the radial and Φν(ϕ) is the angular part of the scattered electric field in the far zone.

Total radar cross-section is another investigation of physical characteristics of the electric field. In order to
find TRCS, (21) is taken into account [16]:

σt =

∫ 2π

0

|Φν |2 dϕ. (21)

The other important physical characteristic of the strip is the impedance. The normalized impedance of
the strip can be found as ην = − i

sinθ tan(
πν
2 ) [7, 9]. Then the fractional order for the specific impedance value of

the surface can be found by using (22). Throughout this paper, the impedance, permittivity, and permeability
are assumed to be relative values with respect to the vacuum:

ν =
1

iπ
ln

(
1− ην sin θ

1 + ην sin θ

)
. (22)

For the normal incidence case, (22) becomes ν = 1
iπ ln( 1−ην

1+ην
) and this yields ην = −i tan(π2 ν) . When the

fractional order ν is complex-valued as ν = ν1+ iν2 , where ν1 and ν2 are real numbers and the incidence angle
is the normal incidence, the real and imaginary parts of the impedance can be found as (23) and (24). Here,
the impedance can also be denoted as ην = η1 + iη2 , where η1 and η2 are real numbers:

η1 =
tanh

(
π
2 ν2

)
+ tan2

(
π
2 ν1

)
tanh

(
π
2 ν2

)
1 + tan2

(
π
2 ν1

)
tanh2

(
π
2 ν2

) , (23)

η2 = −
tan

(
π
2 ν1

)
− tan

(
π
2 ν1

)
tan2

(
π
2 ν2

)
1 + tan2

(
π
2 ν1

)
tanh2

(
π
2 ν2

) . (24)

By the definition, the impedance can be expressed with the expression η =
√

µ
ϵ , where µ stands for the

magnetic permeability and ϵ , in general, is called the complex permittivity. The permittivity can be expressed
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as ϵ = ϵ′ + iϵ′′ , where ϵ′ is the electric permittivity, while ϵ′′ characterizes the absorption or the loss [17].
After some mathematical transformations by using 23 and 24, the real and the imaginary parts of the complex
permittivity can be found as follows:

ϵ′ = µ
η21 − η22

(η21 − η22)
2
+ 4η21η

2
2

, (25)

ϵ′′ = −µ
2η1η2

(η21 − η22)
2
+ 4η21η

2
2

. (26)

5. Numerical analysis and results

In this part, the total radar cross-section (TRCS), the near electric field distribution, the impedance, and the
complex permittivity variation with respect to the fractional order are given. Also, the comparison of radiation
patterns obtained by the FBC and the impedance boundary condition is done. The value of the TRCS is shown
with respect to ka . Note that fractional order ν can be denoted as ν = ν1 + iν2 , where ν1 and ν2 are real
numbers. Also, the impedance can be denoted as ην and the real and the imaginary parts of the impedance
can be written as ην = η1 + iη2 , where η1 and η2 are real numbers. In Figure 2, there is a family of graphs
in which the TRCSs of different fractional orders with normal incidence are investigated. The lateral straight
line in red corresponds to log10(TRCS) = 0 . Here, the half width of strip (a) is equal to 1. The real part of
fractional order ν1 is 0.75, and the imaginary part of fractional order ν2 changes from 0.1 to 0.8 with steps of
0.1. As seen in Figure 2, resonance peaks are observed. By changing the imaginary part of the fractional order,
the sharpness of resonances changes. The resonance becomes sharper when the imaginary part, ν2 , is increased
up to 0.7.

While having the imaginary part of the fractional order as 0.6, the TRCS is reaching beyond 1.2 on the
logarithmic scale ( log10(TRCS)), whereas, when the imaginary part of the fractional order is 0.5, the TRCS
becomes approximately 0.65 on the logarithm scale. For the imaginary part of the fractional order, which has
values from 0.1 to 0.4, the peak values change slowly. On the other hand, when the imaginary part of the
fractional order is between 0.4 and 0.7, the peak values are increasing very rapidly. For the imaginary part of
fractional order ν2 = 0.7 , the peak value becomes 3.3 on the logarithmic scale. While the imaginary part of the
fractional order, ν2 , is equal to 0.8, again the peak value is decreased. The highest peak value is that in the
case that ν2 is equal to 0.7.

Figure 3 corresponds to the real part of impedance η1 when the real part of fractional order ν1 is equal
to 0.75. In the figure, the imaginary part of fractional order ν2 changes from 0.1 to 0.8. The impedance has
both real and imaginary parts. The maximum value for the real part of the impedance is observed when the
imaginary part of fractional order ν2 is equal to approximately 0.3. Figure 4 corresponds to the complex part of
impedance ην when ν1 is equal to 0.75 and ν2 changes from 0 to 0.8. The complex part of impedance changes
the sign when ν2 is equal to 0.5. Here, the lateral straight line corresponds to the axis where the imaginary
part of impedance, η2 , is equal to zero. When ν2 = 0.5 , the impedance has only the real part. In both Figure
3 and Figure 4, the incidence wave is the normal incidence and the real part of fractional order, ν1 , has the
value of 0.75, which is close to the perfect magnetic conductor case.

In Figure 5, there is a family of graphs in which TRCSs of different fractional orders with normal incidence
are investigated. Here, the half width of strip (a) is again equal to 1. In this case, the real part of fractional
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Figure 2. TRCS for 1. ν = 0.75 + i0.1 , 2. ν = 0.75 + i0.2 , 3. ν = 0.75 + i0.3 , 4. ν = 0.75 + i0.4 , 5. ν = 0.75 + i0.5 ,
6. ν = 0.75 + i0.6 , 7. ν = 0.75 + i0.7 , 8. ν = 0.75 + i0.8 , a = 1 , θ = π/2 .

Figure 3. The dependency of the impedance’s real part
on the imaginary part of fractional order when the real
part of fractional order, ν1 , is equal to 0.75.

Figure 4. The dependency of the impedance’s imaginary
part on the imaginary part of fractional order when the
real part of fractional order, ν1 , is equal to 0.75.

order ν1 is 0.2, and the imaginary part of fractional order ν2 changes from 0.3 to 0.5 with steps of 0.1. As
seen in Figure 5, resonance peaks are observed. By changing the imaginary part of the fractional order, the
sharpness of resonances changes. When the imaginary part of the fractional order is between 0.3 and 0.4, the
peak values change slowly. On the other hand, the peak values are increasing very rapidly and the peaks have
higher values when the imaginary part of the fractional order is between 0.4 and 0.6. As seen in Figure 5, the
maximum peak value becomes 3.64 when the imaginary part of fractional order, ν2 , is equal to 0.6. Then the
peak value decreases again when the imaginary part of fractional order, ν2 , is higher than 0.6.

Figure 6 shows the relation between the real part of impedance η1 and the imaginary part of fractional
order, ν2 , when the real part of fractional order, ν1 is equal to 0.2. In the figure, the imaginary part of fractional
order, ν2 , changes from 0.1 to 0.7. In this case, on the contrary to the previous case given in Figure 3, there
is no local maximum. Figure 7 corresponds to the complex part of impedance ην when ν1 is equal to 0.2 and
ν2 changes from 0.1 to 0.7. As we see, the complex part of the impedance changes the sign when ν2 is equal
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to 0.5. The lateral straight red line corresponds to the axis where the imaginary part of the impedance η2 is
equal to zero. In both Figure 6 and Figure 7, the incidence wave is the normal incidence and the real part of
fractional order ν1 is 0.2, which is close to the perfect electric conductor.

Figure 5. TRCS for 1. ν = 0.2 + i0.3 , 2. ν = 0.2 + i0.4 , 3. ν = 0.2 + i0.5 , 4. ν = 0.2 + i0.6 , 5. ν = 0.2 + i0.7 , 6.
ν = 0.2 + i0.8 , a = 1 , θ = π/2 .

Figure 6. The dependency of the impedance’s real part
on the imaginary part of fractional order when the real
part of fractional order ν1 is equal to 0.2.

Figure 7. The dependency of the impedance’s imaginary
part on the imaginary part of fractional order when the
real part of fractional order ν1 is equal to 0.2.

In Figure 8, there is again a family of graphs in which the TRCSs of different fractional orders with
normal incidence are studied. Here, the half width of strip (a) is equal to 1. The real part of fractional order
ν1 is equal to 0.5, and the imaginary part of fractional order ν2 changes from 0.1 to 0.5 with steps of 0.1. As
seen in Figure 8, resonance peaks are observed. The values of resonances change with the imaginary part of
the fractional order. The resonance becomes sharper when the imaginary part is increased up to 0.7. When
the imaginary part is equal to 0.5, the TRCS is reaching beyond 0.72 on the logarithmic scale. TRCS becomes
approximately 0.35 on the logarithmic scale when the imaginary part of the fractional order is 0.4. For the
imaginary part of the fractional order, which is between 0.1 and 0.4, the peak values change slowly. On the
other hand, the peak values are increasing very rapidly in the case of having the imaginary part of the fractional
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order that has values between 0.4 and 0.7. Note that the imaginary part of fractional order ν2 has a value of
0.8, and again the peak value is decreased. Therefore, the highest peak value is seen in the case that ν2 is equal
to 0.7.

Figure 9 investigates the relation between the real part of impedance η1 and the imaginary part of
fractional order ν2 when the real part of fractional order ν1 is equal to 0.5. In this case, on the contrary to
the previous case given in Figure 3, there is no local maximum. Figure 10 corresponds to the complex part
of impedance ην when ν1 is 0.5. Here, ν2 changes from 0.1 to 0.8 and the complex part of the impedance
changes the sign when ν2 is equal to 0.5. The lateral straight line in Figure 10 corresponds to the axis where
the imaginary part of impedance η2 is equal to zero. When ν2 is equal to 0.5, the impedance has only the real
part. In both Figure 9 and Figure 10, the incidence wave is the normal incidence and the real part of fractional
order ν1 is 0.5, which is exactly the middle of the perfect electric conductor and the perfect magnetic conductor
case.

Figure 8. TRCS for 1. ν = 0.5 + i0.1 , 2. ν = 0.5 + i0.2 , 3. ν = 0.5 + i0.3 , 4. ν = 0.5 + i0.4 , 5. ν = 0.5 + i0.5 , 6.
ν = 0.5 + i0.6 , 7. ν = 0.5 + i0.7 , 8. ν = 0.5 + i0.8 , a = 1 , θ = π/2 .

In Figures 11–16, the distributions of the total electric field are given. As can be seen in Figure 11,
the scattered electric field dominates the total electric field distribution, which is symmetric with respect to
the y-axis where the strip is located. In Figure 2, the TRCS gives the resonance ka value of the strip with
parameters given as ν = 0.75 + i0.7 , a = 1 , θ = π/2 . As can be seen in Figure 13, in the resonance case
(ka=0.495) found in Figure 2, the near field distribution has a peak value of approximately 40. This is the
maximum value of the E–field amplitude for given parameters. In Figure 12, the near field distribution of the
total electric field is given for parameters listed as ka = 0.5, ν = 0.75 + i0.6 , a = 1 , and θ = π/2 . In this
case, the incidence wave dominates and the peak value is approximately reaching up to 4.25. When Figure 11
and Figure 12 are compared, it can be understood that the complex part of the fractional order affects the
distribution of the E–field in the region abruptly.

In Figure 13, again, the near field distribution of the total electric field is given. In the same figure, the
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Figure 9. The dependency of the impedance’s real part
on the imaginary part of fractional order when the real
part of fractional order ν1 is equal to 0.5.

Figure 10. The dependency of the impedance’s imaginary
part on the imaginary part of fractional order when the
real part of fractional order ν1 is equal to 0.5.

Figure 11. The near field distribution of total electric
field at the resonant frequency for ka = 0.495 , ν = 0.75+
i0.7 , a = 1 , θ = π

2
.

Figure 12. The near field distribution of total electric
field at the resonant frequency for ka = 0.5 , ν = 0.75 +
i0.6 , a = 1 , θ = π

2
.

scattered electric field dominates the incidence field. The field distribution is symmetric with respect to the y-
axis where the strip is located. In Figure 5, the TRCS gives the resonance ka value of the strip with parameters
as ν = 0.2 + i0.6 , a = 1 , θ = π/2 . As can be seen in Figure 13, in the resonance case (ka=0.146) found in
Figure 5, the near field distribution has a peak value of 66. This is the maximum value of the E–field amplitude
for given parameters. In Figure 14, the near field distribution of the total electric field is shown. Here the
variables are listed as ka=0.169, ν = 0.2+ i0.7 , a = 1 , and θ = π/2 . In this case, the incidence wave dominates
and the peak value is approximately reaching up to 3.21. When Figure 13 and Figure 14 are compared, it can
be understood that the complex part of the fractional order dramatically affects the distribution of the E–field
in the region.

In Figure 15, similarly, the near field distribution of the total electric field is illustrated. In the same
figure, the scattered electric field dominates with respect to the incidence field. The field distribution is not
symmetric completely with respect to the y-axis where the strip is located because, in this case, the ka value is
not the same as the resonance value, but still, the scattering field dominates. As can be seen in Figure 15, the
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Figure 13. The near field distribution of total electric
field at the resonant frequency for ka = 0.146 , ν = 0.2 +
i0.6 , a = 1 , θ = π

2
.

Figure 14. The near field distribution of total electric
field at the resonant frequency for ka = 0.169 , ν = 0.2 +
i0.7 , a = 1 , θ = π

2
.

near field distribution has a peak value of approximately 13.5 when ka is chosen near the resonance value. In
Figure 16, for parameters given as ka = 0.331, ν = 0.5+ i0.6 , a = 1 , and θ = π/2 , the near field distribution of
the total electric field is given. In this case, the incidence wave dominates and the peak value is approximately
reaching up to 4.51. When Figure 15 and Figure 16 are compared, again, it can be understood that the complex
part of the fractional order plays an important role in the distribution of the E–field in the region.

Figure 15. The near field distribution of total electric
field for ka = 0.331 , ν = 0.5 + i0.7 , a = 1 , θ = π

2
.

Figure 16. The near field distribution of total electric
field near for ka = 0.331 , ν = 0.5 + i0.6 , a = 1 , θ = π

2
.

In Figure 17 and Figure 18, in order to verify the fractional derivative method (FDM), the compar-
isons of radiation pattern Φν(ϕ) are done between the results obtained by the fractional boundary condition
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and impedance boundary condition (IBC) for two different values of the fractional order and corresponding
impedance values (ϕ ϵ [0, π ]) [9]. For the fractional order ν = 0.5 + i0.5 , the corresponding impedance value
becomes η = 0.9172 , and for the fractional order ν = 0.75 + i0.7 , the corresponding impedance value becomes
η = 1.1546 + i1.4546 as found by (23) and (24).

Figure 17. Comparison of radiation pattern for nor-
mal incidence between the fractional boundary condition
(FBC) and the impedance boundary condition (IBC) for
ν = 0.5 + i0.5 .

Figure 18. Comparison of radiation pattern for normal
incidence between fractional boundary condition (FBC)
and impedance boundary condition (IBC) for ν = 0.75 +
i0.7 .

Figure 19 shows a graph on which the real part of the complex permittivity ϵ′ changes when the imaginary
part of the complex fractional order changes in the range of 0.1 < ν2 < 0.8 while ν1 is 0.75. There are the
maximum and the minimum values in the range. Figure 20 shows the relation between the imaginary part of
the complex permittivity ϵ′′ on the imaginary part of the complex fractional order when it changes in the range
of 0.1 < ν2 < 0.8 . When ν2 is 0.6, the graph has a minimum. Besides, in the range of 0.5 < ν2 < 0.8 , ϵ′′

is negative-valued. This means that the strip with corresponding parameters has “negative absorption” [17].
This explains why there are peak values in Figure 2. As can be seen in Figure 2, after the complex part of
the fractional order ν2 reaches 0.5, TRCS values are increasing sharply for the specific ka values because the
complex part of the permittivity becomes negative for this range as given in Figure 20. When the complex part
of the fractional order ν2 becomes 0.7, the TRCS has the maximum value. After that, the resonance values
are decreasing for increasing values of the complex part of the fractional order ν2 because, for this case, the
complex part of the permittivity is again closing to the zero value. In other words, when the complex part
of the permittivity ϵ′′ is getting negative minimum values, the resonance values increase because the negative
absorption property of the material is increasing as seen in Figure 20.

6. Conclusion

In this article, the plane electromagnetic wave diffraction was considered by the strip. The two-dimensional
problem was solved when the strip is infinite in z-direction. As the boundary condition, the fractional boundary
condition with complex-valued fractional order is required on the surface of the strip. The complex-valued
fractional order gave interesting results. In the results, a new type of resonance is observed, and its property
was studied using the TRCS and the near field distribution. This resonance does not exist for real fractional
order. Therefore, this is a unique property of the complex-valued fractional order boundary condition. The
corresponding impedance value of the strip was also demonstrated.
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Figure 19. The dependency of the permittivity’s real part
on the imaginary part of the fractional order when the real
part of the fractional order ν1 is 0.75.

Figure 20. The dependency of the permittivity’s imag-
inary part on the imaginary part of the fractional order
when the real part of the fractional order ν1 is 0.75.
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