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Abstract: This paper develops a finite-time dynamic surface control (DSC) scheme for nonlinear systems with mis-
matched uncertainties via a high-order sliding mode(HOSM) observer. By designing a second-order terminal sliding
surface based on the estimated signals, an observer-based sliding mode control (SMC) is designed to counteract the
mismatched uncertainties in each step of backstepping. The proposed DSC scheme exhibits the following two attractive
features. One is the application of HOSM observer to deal with mismatched system uncertainty functions. This is very
different from the traditional approximator-based adaptive methods in dealing with high-order uncertain nonlinear sys-
tems. The other is the finite-time convergence of the provided algorithm, which guarantees the transient performance of
tracking signals. Especially, the finite convergence time is explicitly given in the controller design and stability analysis.
Simulation results of numerical example illustrates that the proposed approach shows better control performance than
traditional approximators-based adaptive methods.

Key words: High-order siding mode observer, dynamic surface control, extended state observer, finite-time convergence,
sliding mode control

1. Introduction
In the past decades, lots of adaptive control schemes have been proposed based on function approximators,
such as neural networks (NN) or fuzzy systems (FS), to deal with uncertain nonlinear systems with unknown
functions. For instance, Liu et al. [1] developed a NN-based adaptive control strategy of the full state constrained
nonlinear systems. Then, Yu et al. [2] extended adaptive neural control to a class of multiple-input multiple-
output (MIMO) strict-feedback nonlinear time-delay systems. Alternatively, Qiu et al. [3] considered an adaptive
fuzzy control approach for a pure-feedback nonlinear systems with unknown functions and unmeasured states.
Similarly, by considering simplified barrier Lyapunov function, Li and Tong [4] addressed the problems of
stability and finite-time tracking control for a class of MIMO nonlinear systems with errors constraint and
unknown dead zone. The aforementioned results and the references therein solved many nonlinear control
problems by employing function approximators to adaptive approximate uncertain system functions. Despite the
online estimating of uncertain functions and compensating them, the approximation precision of approximators
were not taken into consideration, which definitely affected the closed-loop tracking performance. Fortunately,
the reinforcement learning(RL) [5] improved the approximation ability, which resulted in the integral RL from
adaptive control in [6]. However, employing the learning ability of approximators to estimate uncertain functions
online increased the computation burden and thus the convergence time. In this paper, we will accordingly
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investigate the finite-time observation and finite-time tracking control of nonlinear systems with uncertain
nonlinear functions.

Sliding mode control (SMC) was a powerful tool in dealing with uncertain nonlinear systems with matched
disturbances. A brief survey on variable structure control systems with sliding modes was presented in [7]. Shi
et al. [8] considered the tuning of second-order sliding mode controller with finite-time convergence in single-
input-single-output nonlinear systems with uncertainties functions. Alternatively, in [9], a nonlinear sliding
surface included initial condition was proposed to alleviate chattering and ensure a smooth control for a rigid
spacecraft with external disturbances, where high accuracy and steady state precision was ensured. Furthermore,
to improve the control performance, many modified novel SMC has been reported. For instance, in [10], a
adaptive SMC scheme with adaptive super twisting algorithm was proposed for robotic manipulators including
actuator dynamics. Alternatively, Qiao and Zhang [11] proposed a second-order fast nonsingular terminal
sliding mode manifold for dynamic uncertainties and time-varying external disturbances. Furthermore, Feng
et al. [12] proposed a integral-type terminal sliding mode observer for estimating the variable of a LI-ion cell,
which was used for the real-time estimation on the state-of-charge and state-of-health of lithium-ion (Li-ion)
batteries. Then, based on extended state observer (ESO), Wu et al. [13] proposed a nonsingular terminal sliding
mode control for a flexible adsorption system by using Lyapunov synthesis. In this paper, we will incorporate
second-order terminal SMC into traditional DSC method to develop finite-time control for nonlinear systems
with mismatched uncertain functions.

Finite-time control has also been investigated for decades by lots of researchers. For example, in [14], a
class of bounded continuous time-invariant finite-time stabilizing feedback laws is given for the double integrator
by Bhat and Bernstein. Then, Abooee and Arefi [15] studied the problem of finite-time stabilization for a
connected chain of double-integrator systems. Furthermore, Hou et al. [16] developed continuous finite-time
control for servo motor systems with terminal sliding mode. Similarly, Yin et al. [17] presented a new fast finite-
time integral terminal sliding-mode for force tracking control problem. Meanwhile, Shao et al. [18] addressed the
global finite-time tracking of robot manipulators. Motivated by the aforementioned results, we will investigated
the finite-time DSC for a class of uncertain high-order nonlinear systems with mismatched nonlinear functions.

In this paper, HOSM observer is employed to handle mismatched uncertain functions in high-order low-
triangular nonlinear systems. As a result, no function approximators are needed and thus the computation
burden is significantly reduced. Different from traditional DSC method, second-order sliding mode will be
designed to achieve finite-time convergence of tracking errors. Furthermore, the whole closed-loop stability is
also proved to be finite-time.

The main contributions of this paper are summarized as follows. 1) The high-order mismatched uncer-
tain functions are viewed as disturbance signals, which are handled by HOSM observer rather than function
approximators. The finite-time feature of HOSM observer is attractive and allows finite-time DSC to be defined,
which is different from traditional DSC. 2) A novel terminal sliding surface is designed in each step of iteration
in DSC design. The developed sliding surface is also finite-time convergence with settling time given explicitly.
Thus, the whole closed-loop is proved to be finite-time stable.

The rest of this paper is organized as follows. Section II provides problem formulation and some
preliminaries about HOSM observer. Then, finite-time DSC design is given in Section III. In Section IV, stability
analysis of the whole closed-loop systems and finite-time convergence of all signals are shown in Lyapunov
method. In Section V, the proposed method is validated by two simulation examples with satisfactory results.
Finally, Section VI concludes this paper.
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2. Problem formulation and preliminaries
This section begins with providing system description and establishing the control objective. Then, some
preliminaries about HOSM observer are recalled to facilitate the finite-time control design.

2.1. System description

Consider a strict-feedback low-triangular nonlinear system with single-input and single-output (SISO) in the
form of {

ẋi = fi(x̄i, t) + xi+1, i = 1 · · · n
ẋn = fn(x̄n, t) + gn(x̄n)u

(1)

where x = [x1, · · · , xn]
T is the state vector, u is the control input, y is the controlled output, fi(x̄i), i =

1, · · · , n is the disturbance with at least ϱi th order bounded derivatives, and gn(x̄n) is smooth function of

x̄n . Suppose that f
(ϱi)
i has a Lipshitz constants Li .

In order to design second-order sliding surface, (1) is rewritten as
ẋj1 = fj1(x̄j1 , t) + xj2

ẋj2 = fj2(x̄j2 , t) + x(j+1)1

· · ·
ẋn = fn(x̄n, t) + gn(x̄n)u
y = x1

(2)

where j = 1, · · · ,m with m = round(n/2) .
For system (1) which can be written as (2), the control objective is to design finite-time DSC to make the

output signal y track a reference signal xd despite the existing disturbance caused by mismatched uncertain
signals fi .

2.2. High-order sliding mode observer

To deal with unknown functions fi in (1), define a high-order sliding mode(HOSM) differentiator[19, 20] as

żi0 = υi
0 + xi+1, żi1 = υi

1, · · · , żiρi−1 = υi
ρi−1, żiρi

= υi
ρi+1,

υi
0 = −κi

0L
1

ρi+1

i |zi0 − xi|
ρi

ρi+1 sign(zi0 − xi) + zi1,

υi
1 = −κ1L

1
ρi
i |zi1 − υi

0|
ρi−1

ρi sign(zi1 − υi
0) + zi2,

· · ·
υi
ϱi

= −κi
ϱi
L

1
2
i |ziρi

− υi
ρi−1|

1
2 sign(ziρi

− υi
ϱi−1) + ziρi

,
υi
ϱi+1 = −κi

ϱi
Lisign(ziρi+1 − υi

ϱi
)

y = x1

(3)

where xi+1 denotes gn(x̄n)u for the simplicity of expression, ϱi is the order of differentiator, κi
ι > 0(ι =

0, 1, · · · , ϱi; i = 1, · · · , n) are the coefficients of the differentiator to be designed, and zi0, · · · , ziι are the estimates

of xi, fi, ḟi, · · · , f (ϱi)
i , respectively.

From (1) and (3), it is obtained that the estimation errors are governed by
η̇i0 = −κi

0L
1

ρi+1

i |zi0 − xi|
ρi

ρi+1 sign(ηi0)
η̇iι = −κi

ϱi−1L
1
2
i |ziρi−1 − υi

ρi−2|
1
2 sign(ηiι − η̇iι−1)

η̇iϱi+1 ∈ −κi
ϱi
Lisign(ηiϱi+1 − η̇iϱi

) + [−Li, Li]

(4)
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where the estimation errors are defined as ηi0 = zi0−xi, ηiι = ziι − f
(ι)
i . It has been proved that the observer

error system (4) is finite-time stable [21], which implies that there is a finite time such that ηiι = 0 .

3. Controller design
To facilitate the design procedure, we first denote the tracking error signals as

ej1 = xj1 − ϑj−1,

ej2 = xj2 − ϑ̇j−1,
(5)

where ϑ0 denotes ϑ0 = xd .
The kth (1 ≤ k ≤ m− 1) error surface is defined as

sk = ek1 +
1

λk
(ek2 + z1

2k−1)pk . (6)

where λk is positive design parameter, and pk =
qk1
qk2

with qk2 > qk1 being positive odd integers.

3.1. Step 1:

From (6), define the first error surface as

s1 = e11 +
1

λ1
(e12 + z11)

p1 , (7)

where e11, e12 are defined as e11 = x11 − xd, e12 = x12 − ẋd . According to (2), (5) and (6), the time
derivatives of the tracking error signals e11 and e12 are

ė11 = x12 + f11 − ẋd,
ė12 = f12 + x21 − ẍd = f12 + e21 + ϑ1 − ẍd = f12 + s2 − 1

λ2
ẽp2

22 + ϑ1 − ẍd,
(8)

where ẽ22 = e22 + z31 .
Consider a Lyapunov candidate function as

V1 =
1

2
s21 (9)

with s1 defined as in (7).
Then, to stabilize dynamics in sliding surface (7), an intermediate virtual control is defined as

ϑ1 = −[
λ1

p1
ẽ2−p1

12 + z12 + z21 +K11s1 +K12sign(s1)|s1|α], (10)

where K11, K12, 0 < α < 1 are design parameters and α is odd. z12 and z21 are estimates of ḟ11 and f12 ,
respectively.

According to (7), (8) and (10), the time derivatives of s1 can be computed as

ṡ1 = ė11 +
p1
λ1

(e12 + z11)
p1−1(ė12 + z12) = f11 + x12 − ẋd +

p1

λ1
ẽp1−1
12 (f12 + s2 − 1

λ2
ẽp2

22 + ϑ1 − ẍd + z2
1)

= − p1

λ1
ẽp1−1
12 [K11s1 +K12sign(s1)|s1|α − η21 − s2 +

1
λ2
ẽp2

22 + ẍd]− η11
(11)
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with ẽ12 = e12 + z11 .
Then, the derivative of V1 is calculated as

V̇1 = s1ṡ1 = − p1
λ1

K11ẽ
p1−1
12 s21 −

p1
λ1

K12ẽ
p1−1
12 |s1|α+1 +

p1
λ1

ẽp1−1
12 s1(η

2
1 − 1

λ2
ẽp2

22 − ẍd)− s1η
1
1 +

p1
λ1

ẽp1−1
12 s1s2,

(12)
where K11 and K12 should be designed to make V̇1 negative definite.

It is easy to check that

s1(η
2
1 − 1

λ2
ẽp2

22 − ẍd) ≤
3

2
s21 +

1

2
(η21)

2 +
1

2
1
λ2
2
ẽ2p2

22 +
1

2
ẍ2
d, s1η

1
1 ≤ 1

2
s21 +

1

2
(η11)

2. (13)

Then, by substituting (13) into (12), one has

V̇1 ≤ −[
p1
λ1

ẽp1−1
12 (K11 −

3

2
)− 1

2
]s21 −

p1
λ1

K12ẽ
p1−1
2 sα+1

1 +
1

2
[(η21)

2 + (η11)
2 + (

1

λ2
ẽp2

22)
2 + ẍ2

d] +
p1
λ1

ẽp−1
12 s1s2. (14)

Furthermore, by choosing K11 >
λ1

2p1
ẽ1−p1

12 +
3

2
, one obtains

V̇1 ≤ −ρ11s
2
1 − ρ12s

α+1
1 + ς1 +

p1
λ1

ẽp1−1
12 s1s2 (15)

with

ρ11 =
p1
λ1

ẽp1−1
12 (K11 −

3

2
)− 1

2
, ρ12 =

p1
λ1

K12ẽ
p1−1
12 , ς1 =

1

2
[(η21)

2 + (η11)
2 + ( 1

λ2
ẽp2

22)
2 + ẍ2

d] (16)

which are greater than zero.
From (2) and (5), it is obtained that

ė11 = e12 + f12, (17)

where f12 is estimated by HOSM observer (3).
Substituting (17) into (7) obtains

s1 = e11 +
1

λ1
(ė11 + η11)

p1 . (18)

Since the disturbance estimation error η11 converge to zero in a finite-time, (18) reduced to

λ1e11 + ėp1

11 = 0 (19)

which represents a sliding motion in the dynamic surface s1 .
It has been shown that the time for terminal attractor e11 = 0 reaching zero [22] is

t1 =
p1e

p1−1
p1

11 (0)

λ1(1− p1)
. (20)
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3.2. Step k (2 ≤ k ≤ m− 1) :

From (5), one obtains
ek1 = xk1 − ϑk−1

ek2
= xk2

− ϑ̇k−1.
(21)

The k th error surface is defined as

sk = ek1 +
1

λk
(ek2 + z2k−1

1 )pk , (22)

where λk is positive constant, pk = qk1

qk2
with qk2 > qk1 being positive odd integers.

The derivative of sk along system dynamics is

ṡk = ėk1
+

pk
λk

(ek2
+ z2k−1

1 )pk−1(ėk2 + z2k−1
2 ). (23)

Consider a Lyapunov candidate function as

Vk =
1

2
s2k (24)

with the derivative being

V̇k = skṡk. (25)

To stabilize dynamics in sliding surface (22), the k th virtual intermediate control signal is given as

ϑk = −[
λk

pk
(ek2

+ z2k−1
1 )1−pk(ẽk2 +

λk−1

pk−1
ẽ
pk−1−1
k−12 sk−1) + z2k1 + z2k−1

2 +Kk1
sk +Kk2sign(sk)|sk|α]. (26)

Similar to Step 1, it is proved that V̇1 satisfies

V̇k ≤ −ρk1s
2
k − ρk2s

α+1
k + ςk +

pk
λk

ẽpk−1
k2 sksk+1 −

pk−1

λk−1
ẽ
pk−1−1
k−1 2 sk−1sk (27)

with

ρk1 =
pk
λk

ẽpk−1
k2 (Kk1 −

3

2
)− 1

2
, ρk2 =

pk
λk

Kk2ẽ
pk−1
k2 , ς1 =

1

2
[(η2k1 )2 + (η2k−1

1 )2 + (
1

λk+1
ẽpk+1
k+12)

2] (28)

which are greater than zero.
From (2) and (21), it is calculated that

ėk1 = ek2 + fk1. (29)

Substituting (29) into (23) yields

sk = ek1 +
1

λk
(ėk1 + ηk11 )pk . (30)
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Since the disturbance estimation error η2k−1
1 converge to zero in a finite-time, (30) will reduce to

λkek1 + ėpk

k1 = 0 (31)

which represents the motion of the k th sliding surface sk .
It follows that

tk =
pke

pk−1

pk

k1 (0)

λk(1− pk)
. (32)

3.3. Step m:
This is the last step of the controller design procedure. It is divided into two cases according to the system
order n . If system n is even, the last sliding mode is defined as

sm = em1 +
1

λm
(em2 + z2m−1

1 )pm , (33)

where λm is positive constant, pm = qm1

qm2
with qm1 and qm2 being positve odd integers.

Differentiating (33) along (1) and (3) obtains

ṡm = ėm1 +
pm
λm

(em2 + z2m−1
1 )pm−1(ėm1 + z2m−1

2 ). (34)

Then, the actual control signal is given as

u = −g−1(x̄n)[
λm

pm
(ẽm2)

1−pm(ẽm2 +
λm−1

pm−1
ẽ
pm−1−1
m−12 sm−1) + z2m1 + z2m−1

2 +Kk1
sk +Km2sign(sk)|sk|α],

(35)
with Km1, Km2 are positive control gains, ẽm2 = em2

+ z2m−1
1 .

The last Lyapunov candidate function is Vm =
1

2
s2m with derivative as

V̇m = smṡm (36)

satisfying

V̇m ≤ −ρm1s
2
m − ρm2s

α+1
m + ςm − pm−1

λm−1
ẽ
pm−1−1
m−1 2 sm−1sm (37)

with

ρm1 =
pm
λm

ẽpm−1
m2 (Km1 −

3

2
)− 1

2
, ρm2 =

pm
λm

Km2ẽ
pm−1
m2 , ςm =

1

2
[(ηn1 )

2 + (η2m−1
1 )2], (38)

which are greater than zero.
From (1), we have

ėm1 = em2 + fm1. (39)

Substituting (39) into (33) yields

sm = em1 +
1

λm
(ėm1 + ηm1

1 )pm . (40)
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Since the disturbance estimation error ηm1
1 converge to zero in a finite-time, (40) will induce to

λmem1 + ėpm

m1 = 0 (41)

which means terminal attractor em1 = 0 reachs to zeros in

tm =
pme

pm−1
pm

m1 (0)

λm(1− pm)
. (42)

For the case when system order n is odd, the last error surface is defined as

sm = em = xn − ϑm. (43)

Differentiate (43) along (1) yields

ṡm = fn(x̄n, t) + gn(x̄n)u− ϑ̇m. (44)

The actual control law is given as

u = −g−1
n (x̄n)[Kn1en + zn1 +Kn2sign(en)|en|α − λm−1

pm−1
ẽ
pm−1−1
m−12 sm−1 − ϑ̇m] (45)

where Kn1 and Kn2 are positive design parameters.
Then, the last Lyapunov candidate function is chosen as

Vm =
1

2
s2m (46)

with the derivative as

V̇m = −Km1s
2
m −Km2|sm|α+1 − ηm1 sm − ηm−1,2sm − λm−1

pm−1
ẽ
pm−1−1
m−12 sm−1sm (47)

satisfying

V̇m ≤ −ρm1s
2
m −Km2s

α+1
m + ςm − pm−1

λm−1
ẽ
pm−1−1
m−1 2 sm−1sm (48)

with

ρm1 = Km1 −
1

2
, ρm2 = Km2, ςm =

(ηm1
1 )2

2
, (49)

which are greater than zero.
In the coming section, we will prove that, by properly choosing the design parameters Kk1, Kk2, k =

1, · · · ,m, n , the whole closed-loop system is finite-time convergence.

4. Stability analysis
We have the following theorem to summarize the main results of our proposed finite-time control scheme for
uncertain nonlinear systems.
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Theorem 1 For system (1) with mismatched uncertain functions fi , if the virtual control signals are designed
as (10), (26), and actual control signal is provided as (35), the whole closed-loop system is finite-time stable
and all signals are SGUUB. Furthermore, the tracking errors converge to zero in finite-time.

Proof By virtue of (9), (24) and (36),we choose the Lyapunov candidate function

V =

m∑
j=1

Vj . (50)

From (15), (27) and (37), it is obtained that the derivative of (50) satisfies

V̇ ≤ −ρ1V − ρ2V
α+1
2 + ς, (51)

where K1, K2 and ς are defined as

ρ1 = min
1≤j≤m

{ρj1}, ρ2 = min
1≤j≤m

{ρj2}, ς =
m∑
j=1

ςj . (52)

Since the disturbance estimation errors ηi1, i = 1, · · · , n converge to zero in a finite-time, (51) then
reduces to

V̇ + ρ1V + ρ2V
β ≤ 0 (53)

with β = α+1
2 . Since V β(t) > 0 , (53) can be rewritten as

V −βV̇ + ρ1V
1−β(t) + ρ2 ≤ 0, ∀ t ≥ t0. (54)

Setting ξ = V 1−β(t) obtains
ξ̇ = −(1− β)V −β(t)V̇ (t). (55)

Multiplying 1− β on both side of (54) and substituting (55) into (54), one obtains

ξ̇ ≤ −(1− β)(ρ1ξ + ρ2). (56)

Integrating both side of (56) from t0 to t yields

ln(
ρ1ξ(t) + ρ2
ρ1ξ(t0) + ρ2

) ≤ −ρ1(1− β)(t− t0) (57)

which can be written as
ξ(t) ≤ (ξ(t0) +

ρ2
ρ1

)e−ρ1(1−β)(t−t0) − ρ2
ρ1

. (58)

Then, substituting ξ(t) = V 1−β(t) and ξ(t0) = V 1−β(t0) into (58) obtains

V 1−β(t) ≤ (V 1−β(t0) + ρ)e−ρ1(1−β)(t−t0) − ρ (59)

with ρ =
ρ2
ρ1

.

Finally, it can be concluded that V (t) ≡ 0, ∀ > ts with ts defined as

ts = t0 +
1

ρ1(1− β)
ln

V 1−β(t0) + ρ

ρ
. (60)

This completes the proof.
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5. Simulation studies
To illustrate our proposed finite-time control scheme, consider a third-order low-triangular nonlinear system in
the form of  ẋ1 = f1(x1, x2) + x2

ẋ2 = f2(x1, x2, x3) + x3

ẋ3 = f3(x1, x2, x3) + g3u
(61)

where f1, f2 and f3 are unknown smooth functions with mismatched conditions and g3 = 1 . The control
objective is to design a feedback law u to achieve that the output of the closed-loop system asymptotically
tracks a reference signal xd = sin(t) in finite time. In this paper, it is assumed that

f1(x1, x2) = 2x1 sin(x1) + x2
1x2,

f2(x1, x2, x3) = x2
1 + x1x2 + x2 cos(x1) +

x2

1 + x2
3

,

f3(x1, x2, x3) = x1x3 +
1

1 + x2
2

+ x3 sin(x2).

(62)

To handle the mismatched unknown functions, a third-order HOSM is defined as
ż10 = υ1

0 + x2, ż11 = υ1
1 , ż12 = υ1

2 ,

υ1
0 = −κ1

0L
1
3
1 |z10 − x1|

2
3 sign(z10 − x1) + z11

υ1
1 = −κ1

1L
1
2
1 |z11 − υ1

0 |
1
2 sign(z11 − υ1

0) + z12
υ1
2 = −κ1

2L1sign(z12 − υ1
1)

(63)

where z10 = x̂1, z11 = f̂1 , and z12 =
ˆ̇
f1 denote the estimates of x1, f1 , and ḟ1 , respectively.

Similarly, two second-order HOSM are designed as follows.


ż20 = υ2

0 + x3, ż21 = υ2
1 , ż22 = υ2

2 ,

υ2
0 = −κ2

0L
1
2
2 |z20 − x2|

1
2 sign(z20 − x2) + z21

υ2
1 = −κ2

1L2sign(z21 − υ2
1)

(64)

where z20 = x̂2 and z21 = f̂2 denote the estimates of x2 and f̂2 , respectively.


ż30 = υ3

0 + g3u, ż31 = υ3
1 , ż32 = υ3

2 ,

υ3
0 = −κ3

0L
1
2
3 |z30 − x3|

1
2 sign(z30 − x3) + z31

υ3
1 = −κ3

1L3sign(z31 − υ3
1).

(65)

with z30 = x̂3 and z31 = f̂3 denote the estimates of x3 and f̂3 , respectively.
Then, define the sliding surface as

s1 = e11 + (e12 + z11)
p1 (66)

with e11 = x11 − xd and e12 = x12 − ẋd . As detailed in Step 1 of the controller design procedure, an
intermediate virtual control signal is given as

ϑ1 = −[
λ1

p1
ẽ2−p1

12 + z12 + z21 +K11s1 +K12sign(s1)|s1|α] (67)
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with ẽ12 = e12 + z11 . Moreover, the actual control signal is provided as

u = −g−1
21 [K21e21 + z31 +K22sign|e3|α − ϑ̇1] (68)

with e21 = x21 − ϑ1 .
The values of design parameters used in simulation are listed as in Table 1.

Table 1. Designed parameters of finite-time DSC

HOSM observer 1 κ1
0 = 10 κ1

1 = 8 κ1
2 = 20 L1 = 15

HOSM observer 2 κ2
0 = 10 κ2

1 = 13 x L2 = 10

HOSM observer 3 k30 = 10 κ3
1 = 10 x L3 = 10

s1 λ1 = 3 q1 = 5 q2 = 3 p1 = 5/3

ϑ1 K11 = 30 K12 = 0.15 α1 = 2/3 x
u K21 = 3 K22 = 0.25 α2 = 2/3 x

The simulation results are depicted in Figures 1–3. Figure 1 depicts the control performance under control
law with two different types of disturbances. The HOSM performance of estimating unknown system status
and uncertain functions are shown in Figure 2. The corresponding estimate errors are given in Figure 3, which
are all finite-time convergence. To summarize, the proposed scheme combining the modifed DSC and HOSM
observer successfully achieves finite-time feedback control problem of (61) with satisfactory results.
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Figure 1. Output signal (dashed line) tracks reference signal (solid line) in the upper subfigure with convergence error
in the lower subfigure.

From comparison, the NN-based control method proposed in is also employed to control (61). The
adaptive NN controller used in simulation is in the form of

ϑ1 = −c1e1 − ŴT
1 ϕ(Z1) + ẋd, ϑ2 = −c2e2 − ŴT

2 ϕ(Z2) + ϑ̇1, uN = −c3e3 − ŴT
3 ϕ(Z3) + ϑ̇2 (69)

where tracking errors are defined as e1 = x1 − xd, e2 = x2 − ϑ1, e3 = x3 − ϑ2 , NN input vectors are
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Figure 2. (a)The estimate performance of HOSMs with solid line being the real states and dashed line being their
estimation.(b)The estimate performance of HOSMs with solid line being the real uncertain functions and dashed line
being their estimation.
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Figure 3. Finite-time convergence for estimate errors of HOSM observer.

defined as Z1 = [x1, x2], Z2 = [x1, x2, x3], Z3 = [x1, x2, x3] , and the adaptive laws are

˙̂
Wi = Γ−1

i (eiϕ(Zi)− σiŴi), i = 1, 2, 3, (70)

with ϕ(Zi) being the Gaussian functions. The parameters used in simulation are given as in Table 2.

Table 2. Designed parameters of adaptive NN controller

NN 1 Γ1 = 15 σ1 = 0.02 N1 = 25

NN 2 Γ2 = 11 σ2 = 0.02 N2 = 35

NN 3 Γ3 = 3 σ3 = 0.5 N3 = 35

Gains c1 = 13 c2 = 15 c3 = 12
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The simulation results are depicted in Figures 4–6. From Figure 4, it is observed that the tracking
performance is also acceptable. However, from Figure 5 , we see that the estimate performance of NNs is not
so satisfying. By comparing Figure 2 and Figure 5 with corresponding errors in Figure 3 and Figure 5, it
is concluded that the designed HOSM observer is superior to NN in online estimating mismatched uncertain
nonlinear functions in system (1). In addition, norms of NN weights are depicted in Figure 6 which are also
bounded.
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Figure 4. Tracking performance using adaptive NN controller with solid line being the reference signal and dashed line
being system output in the upper subfigure.
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Figure 5. (a)The estimate performance of NNs with solid line being the real unknown functions and dashed line being
their estimation.(b)The estimate errors of NN approximators.
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Figure 6. Norms of the employed NNs.

To evaluate the control performance quantitatively, four indices are adopted as:

IAE =
∫
|e1(t)|dt, ITAE=

∫
t|e1(t)|dt, ISE =

∫
e1

2(t)dt, ITDE =
∫
te1

2(t)dt. (71)

and the results of estimate performance of e1 , η11 , η21 and η31 are shown in Table 3.

Table 3. Observers performance analysis

IAE ITAE ISE ISDE
NN HOSM NN HOSM NN HOSM NN HOSM

e1 36.23 18.44 100.54 30.85 2.89 1.81 4.43 1.03
η11 124.17 12.70 466.58 43.31 28.02 0.41 86.33 0.85
η21 327.67 74.03 1.13 ∗ 103 165.97 213.46 54.60 607.79 68.51
η31 2.49 ∗ 103 1.87 ∗ 103 8.37 ∗ 103 1.10 ∗ 103 5.16 ∗ 103 7.40 ∗ 104 2.13 ∗ 105 1.77 ∗ 104

It can be found from these results that the modified DSC via HOSM observer method is robustness for
time-varying signals with good tracking performance.

6. Conclusion
In this paper, we reported a novel finite DSC method for tracking control of uncertain nonlinear systems with
mismatched unknown functions. By designing HOSM observer, the unknown functions and its derivatives
were finite-time online obtained. Subsequently, second-order sliding surfaces with finite-time convergence were
developed to allow finite-time controller design. Furthermore, finite-time DSC scheme of the whole-closed loop
was provided in detail with stability analysis by Lyapunov method. The proposed approach do not need function
approximators with fast convergence. Simulation results illustrated that, compared with the approximators-
based adaptive methods, the proposed algorithm in this paper was more effective and applicable.
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