
Turk J Elec Eng & Comp Sci
(2020) 28: 2096 – 2109
© TÜBİTAK
doi:10.3906/elk-1911-138

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Image denoising using deep convolutional autoencoder with feature pyramids

Ekrem ÇETİNKAYA1,2∗, M. Furkan KIRAÇ1
1Department of Engineering, Faculty of Computer Science, Özyeğin University, İstanbul, Turkey

2ITEC-Institue of Information Technology, Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria

Received: 23.11.2019 • Accepted/Published Online: 11.04.2020 • Final Version: 29.07.2020

Abstract: Image denoising is 1 of the fundamental problems in the image processing field since it is the preliminary step
for many computer vision applications. Various approaches have been used for image denoising throughout the years
from spatial filtering to model-based approaches. Having outperformed all traditional methods, neural-network-based
discriminative methods have gained popularity in recent years. However, most of these methods still struggle to achieve
flexibility against various noise levels and types. In this paper, a deep convolutional autoencoder combined with a variant
of feature pyramid network is proposed for image denoising. Simulated data generated by Blender software along with
corrupted natural images are used during training to improve robustness against various noise levels. Experimental results
show that the proposed method can achieve competitive performance in blind Gaussian denoising with significantly less
training time required compared to state of the art methods. Extensive experiments showed the proposed method gives
promising performance in a wide range of noise levels with a single network.

Key words: Image denoising, convolutional autoencoder, feature pyramid, image processing

1. Introduction
Image denoising is 1 of the fundamental problems in the image processing field due to being an essential step
in many computer vision applications such as medical imaging. For example, medical images tend to corrupt
more if the radiation level is decreased [1, 2]. Therefore, denoising techniques are important to shift the balance
towards less radiation exposure for patients in radiation level and image quality trade-off without sacrificing
the image quality.

The aim of image denoising is to obtain clean image x from corrupted version y that can be modeled as
x = y + n where n is the noise of specific type. Most of the methods in the literature [3–7] focus on specific
type for n , namely additive white Gaussian noise (AWGN) since natural images are assumed to have additive
random noise which can be modeled with AWGN.

Numerous methods have been proposed for image denoising throughout the years. Traditional model-
based methods rely on using image priors and exploiting nonlocal self-similarity of the images. They can
achieve high denoising performance, especially popular state of the art methods such as BM3D [3] and WNNM
[7]. However, they have several common drawbacks. First, these methods work based on solving a complex
optimization problem, hence making the inference process resource-consuming. Second, these models require
manually chosen image priors that require high domain knowledge and may not be able to characterize complex
image structures. Finally, these methods usually cannot be used to remove spatially varying noise.
∗Correspondence: ekrem@itec.aau.at

This work is licensed under a Creative Commons Attribution 4.0 International License.
2096

https://orcid.org/0000-0002-6084-6249
https://orcid.org/0000-0001-9177-0489


ÇETİNKAYA and KIRAÇ/Turk J Elec Eng & Comp Sci

Discriminative learning methods overcome the aforementioned problems by implicitly learning image
priors during the training phase using a set of noisy and clean input pairs. A nonlinear diffusion model,
trainable nonlinear reaction-diffusion (TNRD), is proposed in which parameters are learned through a loss-
based approach that can be used for image denoising in [8]. However, with [9] showing that it is possible to
achieve state of the art results with a plain multilayer perceptron (MLP); there has been a shift towards using
neural networks for image denoising recently [4–6, 10–12].

Most of the existing neural network-based methods follow a convolutional neural network (CNN) based
approach. The first utilization of CNNs for image denoising can be found in [10], but the first CNN based
method that can achieve state of the art performance is DnCNN [4]. Recent advancements in network training
methods for CNNs such as residual learning [13] and batch normalization [14] are utilized to achieve state of the
art performance. After the release of DnCNN, several approaches are proposed to further improve CNN based
denoisers. FFDNet [5] introduces a tunable noise level map as input to improve flexibility against noise levels
and types. It was shown in [6] that dilated convolution can be used to speed up the network without sacrificing
performance. A more realistic noise model than AWGN is proposed in [15] to achieve better real-world image
denoising performance.

In this paper, a deep convolutional autoencoder combined with a variant of feature pyramid network
[16] component is proposed as a different approach for image denoising. Benefiting from both convolutional
autoencoder and feature pyramid structures, the proposed network can achieve competitive results with state
of the art methods such as BM3D [3], DnCNN [4] and FFDNet [5] in blind Gaussian image denoising in
grayscale images. Extensive experiments showed that it can also be used in color image denoising with promising
performance. Moreover, the performance of the proposed network in denoising Blender renders is noteworthy.
It should also be noted that the proposed network does not require any prior information about the noise level
during the testing phase which makes it possible to use a single network for denoising images with various noise
levels.

The rest of the paper is organized as follows. Section 2 provides a summary of existing image denoising
methods in the literature. Section 3 presents the proposed method and discusses its features. In Section 4,
experimental setup is explained and extensive evaluations are given. Results are presented in Section 5 and
paper is concluded by discussing findings in Section 6.

2. Related work

Different approaches have been applied in the image denoising problem. Traditional methods such as BM3D [3]
or WNNM [7] uses image priors and exploit nonlocal self-similarity in the images. BM3D stands out with its
performance in model-based methods. It focuses on obtaining an enhanced sparse representation of the image
in the transform domain and uses that representation for denoising. However, the inference phase of BM3D
and WNNM are time-consuming and they require manually defined image priors.

In [8] a nonlinear diffusion model, trainable nonlinear reaction-diffusion (TNRD), is proposed in which
all parameters are learned from training data through a loss-based approach and it was shown that it can be
used for image denoising. Authors in [9] showed that using plain multilayer perceptron and training it with
noisy and clean image pairs is sufficient to achieve state of the art denoising performance.

The usage of CNNs in image denoising can be traced back to [10]. DnCNN [4] was the first CNN based
method that could achieve state of the art denoising performance. Residual learning [13] and batch normalization

2097



ÇETİNKAYA and KIRAÇ/Turk J Elec Eng & Comp Sci

[14] methods are used in DnCNN and it outperformed traditional methods such as BM3D [3] in blind Gaussian
denoising. Following the success of DnCNN, several more approaches are proposed to improve the performance
of CNN based denoisers. FFDNet [5] introduces a tunable noise level map as input to the network. This enables
a single network to effectively handle a wide range of noise levels and even spatially variant noises by using a
nonuniform noise level map. In [6], usage of dilated convolution is proposed to speed up the network without
sacrificing performance. To improve the performance of CNN denoisers in real-world images, a more realistic
noise model than AWGN that considers both heterogeneous Gaussian noise and in-camera processing pipeline
is proposed in [15].

Stacked denoising autoencoders (SDA) are introduced in [17] as a pretraining tool that can extract high-
level representation of data. Sparse SDAs (SSDA) are used in [11] to remove noise from images. Instead of
discarding hidden layer data of noisy input as in [17], authors use activated values of both noisy and clean data
to produce training data for the next layer. However, SSDA is not flexible against noise levels and types. In [12],
relatively simple convolutional autoencoder is used to remove noise from grayscale medical images. SSIM [18]
instead of PSNR was used as an evaluation metric to obtain a better-correlated report about image denoising
performance with human perception.

Generative adversarial network (GAN) [19] is used in [20] for image denoising. This method focuses on
projecting noisy images onto the range of GAN by recovering corresponding latent vector for a given image and
it can achieve favorable results if the uncorrupted version of the image is seen during GAN training.

Feature pyramids were commonly used in traditional object recognition in which the pyramids are
manually engineered to achieve scale-invariant methods. However, deep learning based methods avoided using
feature pyramids because of 2 reasons; they are expensive to compute and provided scale-invariance by using
convolutional networks were enough for many applications. Despite their drawbacks, feature pyramids are
required to achieve the most accurate results and a feature pyramid network (FPN) that can provide benefits
of traditional feature pyramids without sacrificing performance is proposed in [16]. The proposed architecture
can extract features in various frequency bands and combine them using lateral connections.

3. Proposed method

In this paper, a deep fully convolutional autoencoder with feature pyramid network component (AEFPNC) is
proposed as an alternative approach for image denoising. Proposed method benefits from rectifier linear unit
(ReLU) [21] and batch normalization [14] layers in the architecture.

3.1. Network architecture
The network takes a single image as input with size MxN . Then it is passed through early encoder which
consists of 3 convolution layers. Each convolution layer is followed by ReLU and batch normalization operations.
Zero padding is applied to keep the input size constant (MxN ). 3 × 3 convolution is used throughout the
network. Also, batch normalization is used in the input layer to improve the performance. Early encoder part
increases the number of feature maps to 64 and prepares the input for feature pyramid subnetwork.

The output of the early encoder, C1 , is then downsampled using a convolution layer with stride = 2 to
obtain 3 more inputs for feature pyramid subnetworks. After this operation, there are 4 outputs {C1, C2, C3, C4}
with sizes D = {M×N, (M/2)×(N/2), (M/4)×(N/4), (M/8)×(N/8)} , respectively. Sizes are saved to be used
during the upsampling operation to prevent ambiguity if any of the resulting image sizes are odd. There are 4

2098



ÇETİNKAYA and KIRAÇ/Turk J Elec Eng & Comp Sci

feature pyramid branches in total in the network and each branch consists of 4 Conv+ReLU +BN layers with
each layer reducing the number of feature maps. Each branch gives a set of 16 feature maps {F1, F2, F3, F4}
with the same sizes in D respectively. Before the branches are merged, each output except F1 is upsampled
to size MxN using bilinear upsampling operation. Then, the feature maps are concatenated and passed to 3
smoothing convolution layers before passing to the decoder as in [16] to reduce the aliasing effect of upsampling
operation. The first 2 of those layers also reduce the number of feature maps to force the network to encode
information before passing the output to the decoder. The resulting latent vector in the encoder has size MxN

and 16 feature maps.
Final part of the proposed network is the decoder. Symmetric encoder-decoder architecture is used in

the network. The decoder first increases the feature maps in the first half, then reduces in the final half and
produces the final output. Sigmoid function in the final layer is used to limit the output values of the network
between 0− 1 .

Proposed network consists of 31 layers and 444, 347 trainable parameters in total. Network architecture
is shown in Figure 1. ADAM [22] optimizer with learning rate 10−4 is used. Mean squared error (MSE) is used
as loss function during training.

C
o

n
ca

te
n

at
e

Noisy Image Early Encoder

Feature Pyramid
Network Component

Smoothing Decoder

Denoised Image

Conv + ReLU + BN increasing feature map count

Conv + ReLU + BN decreasing feature map count

Conv + ReLU + BN same feature map count

Downsampling with Convolution

Bilinear Upsampling

Figure 1. Proposed network architecture

3.2. Training dataset

The dataset for color image denoising contains both simulated and natural images to achieve a robust network
against various noise levels. Blender software version 2.80 beta 1 is used to obtain simulated images with
various noise levels by altering the sampling count during rendering. Sampling count in Blender defines how
many different light paths will be traced during rendering process. The more sampling count means less noisy
render will be obtained.

Furthermore, 432 images from Berkeley segmentation dataset (BSDS500) [23] are used and images are
corrupted by adding AWGN with noise levels σ ∈ [15, 25, 35, 50, 75] . Images are corrupted with Poisson noise
additionally and 256 × 256 patches are cropped from them. For corrupting images, random_noise function
of scikit-image library [24] in Python is used. This process is done for both color and grayscale versions of

1Blender - a 3D modelling and rendering package (2018) [online]. Website http://www.blender.org [accessed 10 July 2019].

2099

http://www.blender.org


ÇETİNKAYA and KIRAÇ/Turk J Elec Eng & Comp Sci

BSDS500 [23] dataset, the latter one is used in training network for denoising grayscale images. In the end,
there are 5328 images of size 256× 256 with 3 channels for training the color network and 2592 images of size
256× 256 with a single channel for training the grayscale network.

Training dataset is further separated into 2 subsets to measure the effect of using simulated data in image
denoising. Blender Training Set consists of 2736 images generated in Blender and BSDS Training Set consists
of 2592 images obtained by corrupting 432 color images in BSDS500 [23] with mentioned noise levels above.

4. Experiments

This paper focuses on removing noise from both grayscale and color images. To demonstrate the effectiveness
of the proposed method, Pytorch [25] is used to train and evaluate proposed models. All the experiments are
carried out in Python 3.6.8 environment running on a PC with Intel(R) Core(TM) i7-7700K CPU 4.20 GHz
and Nvidia GTX 1080 GPU. The training of a single model can be done in about 7.5 h for the grayscale model
and 10 h for the color model. Training setups for different models are given in Table 1. Source code for this
paper is made available2.

Table 1. Training hardware and times for different models. Reported training setups in [4] and [5] are used for DnCNN
and FFDNet values.

Method Hardware Training time

DnCNN Intel(R) Core(TM) i7-5820K CPU @ 3.3GHz 32 GB of RAM
NVIDIA Titan X Pascal GPU

3 days

FFDNet Intel(R) Core(TM) i7-5820K CPU @ 3.3GHz 32 GB of RAM
NVIDIA Titan X Pascal GPU

2 days

AEFPNC Intel(R) Core(TM) i7-7700K CPU @ 4.2GHz 32 GB of RAM
NVIDIA GTX 1080 GPU

10 h

4.1. Test datasets
Three test sets are used for evaluating color image denoising performance. Blender test set, CBSDS68 and
Kodak243. Blender test set consists of 52 different renders with 5, 10 and 20 sample counts. CBSDS68 consists
of 68 images from validation set of BSDS500 [23] that are also used in evaluation of [4–6]. Images in CBSDS68
are corrupted by adding AWGN with noise levels σ ∈ [15, 25, 35, 50, 75] . Kodak24 contains 24 natural images
and corrupted with the same settings as well.

For evaluating grayscale image denoising performance, 2 datasets are used, namely BSDS68 and Set12.
BSDS68 contains grayscale version of images in CBSD68 set. Images are first converted to grayscale then the
same corruption process is applied to obtain noisy samples. Set12 consists of commonly used 12 images in the
literature for evaluating different image processing methods with same corruption process applied as above.

4.2. Effect of downsampling images

To test the effect of downsampling, 2 separate networks are trained with and without downsampling operation.
Changing image size during encoding or decoding significantly declines denoising performance and causes

2https://github.com/ekremcet/AEFPNC
3Kodak Lossless True Color Image Suite (1999) [online]. Website http://r0k.us/graphics/kodak [accessed 02 August 2019].

2100

https://github.com/ekremcet/AEFPNC
http://r0k.us/graphics/kodak


ÇETİNKAYA and KIRAÇ/Turk J Elec Eng & Comp Sci

artifacts in the resulting image. These artifacts are produced because network loses spatial location information
during downsampling and it cannot be recovered for decoding. To avoid that, zero padding is used throughout
the layers in encoder and decoder as many methods in literature follow the same approach (e.g. ,[4–6]).

4.3. Incorporating simulated data

To test the effect of using simulated data, network is trained with 2 different datasets. The first training was
done using only BSDS Training set and second training was done by using Blender dataset only. Then, network
is once again trained using both datasets. Including Blender dataset resulted in ≈ 1.5 dB increase in average
PSNR values in natural image datasets BSDS68 and Kodak 24. Including Blender dataset also significantly
improves Blender render denoising performance since AWGN fails to model noise in Blender renders.

To better understand how simulated data in Blender boosts the performance, one can examine the noise
generated in Blender. Noise generated in Blender rendering engine is dependent on the context and it can be
seen in Figure 2 that the noise is concentrated around strong features of the image such as edges and corners.
The noise is also dependent on the materials in the scene. Materials that affect the path of light traces such as
glass have higher noise density compared to opaque materials. Moreover, the noise follows a similar pattern to
AWGN in the rest of the image.

(a) Noise (b) Noisy Image (c) Ground Truth

Figure 2. Noise images of Blender renders.

2101



ÇETİNKAYA and KIRAÇ/Turk J Elec Eng & Comp Sci

4.4. Including feature pyramid network-based component

The main reason behind including a feature pyramid network-based component (FPNC) is to benefit from
strong features in different frequency bands. Feature pyramid networks have already proven to be useful in
image classification [16]. To test how they perform in image denoising, different network architecture is used.
The network is a deep convolutional autoencoder with the same encoder and decoder structures as the proposed
model. This is what the network would be if outputs of FPNC branches are ignored and the latent vector that is
obtained from input with size d×d is passed to decoder in the proposed network. Using FPNC in the proposed
network increases average PSNR by ≈ 1 dB and also helps preserving details which can be seen in Figure 3.

(a) Noisy σ = 25 (b) Without FPNC (c) With FPNC (d) Ground Truth

Figure 3. Denoised images with and without FPNC in autoencoder. Notice how FPNC helps preserving details in the
image and produces smoother images.

4.5. Using wavelet transformation

Inspired by [26], the effect of wavelet transformation is also tested in this study. To achieve that, the early
encoder component of our network is modified by including a discrete wavelet transformation (DWT) at the
beginning with Haar wavelet and applying inverse wavelet transform (IWT) at the end. Then, the output is
passed to FPNC. The resulting network increased the average PSNR by ≈ 0.15 dB for natural images and
≈ 0.30 dB for Blender images. However, training time is also increased by 35% . The usage of wavelet seemed
promising, especially for Blender, but it is not included in the final network due to prolonged training time.

4.6. Effect of smoothing layers

In [16], authors use 3 convolutional layers after adding upsampled feature maps together to smooth out the
aliasing effect of upsampling operation. Those layers are called smoothing layers in the proposed network. To
test the effect of smoothing layers in the network, a separate network is trained without using them. It is seen
that aliasing effect is observable if smoothing layers are removed. Figure 4 shows denoised images with noise
level σ = 25 in Kodak 24 dataset by both networks.

2102



ÇETİNKAYA and KIRAÇ/Turk J Elec Eng & Comp Sci

(a) Without Smoothing (b) With Smoothing

Figure 4. Denoised images with and without smoothing layers. Notice how smoothing reduces aliasing effect in the
images.

5. Results

This section presents results of the proposed network in blind AWGN removing in both grayscale and color
images both quantitatively and qualitatively. The results are compared with three state of the art methods,
BM3D [3], DnCNN [4] and FFDNet [5]. Same datasets are used for testing and images are corrupted with
the same settings, hence reported results of those works are referred to while doing the comparison. Moreover,

2103



ÇETİNKAYA and KIRAÇ/Turk J Elec Eng & Comp Sci

qualitative results in Blender render denoising are given. More denoised image samples are available on a demo
website4.

5.1. Grayscale image denoising
The proposed network can achieve competitive performance with state of the art methods and even surpasses
BM3D [3] in BSDS68 dataset. It can also achieve competitive denoising performance in Set12 dataset. It falls
behind BM3D in this dataset and the possible main cause behind this is the repetitive structures of the images
help BM3D to exploit nonlocal self-similarity. Table 2 shows the average PSNR values of different methods
in BSDS68 and Set12 datasets. Figure 5 displays denoised versions of image 102061 in BSDS68 dataset with
different methods.

Table 2. Average PSNR values of different methods in BSDS68 and Set12 datasets. Reported results in [5] are used for
BM3D, DnCNN and FFDNet values.

Dataset Methods σ = 15 σ = 25 σ = 35 σ = 50

BSDS68

BM3D 31.07 28.57 27.08 25.62
DnCNN 31.72 29.23 27.69 26.23
FFDNet 31.63 29.19 27.73 26.29
AEFPNC 31.14 28.84 27.38 25.92

Set12

BM3D 32.37 29.97 28.40 26.72
DnCNN 32.86 30.43 28.82 27.18
FFDNet 32.75 30.43 28.92 27.32
AEFPNC 32.04 29.85 28.37 26.73

5.2. Color image denoising
The proposed method falls behind other methods in color image denoising with quite a little margin. It can still
be observed that the proposed method produces smoother images as in grayscale denoising and it is also better
at preserving details while denoising images. Average PSNR values obtained by different methods in CBSDS68
and Kodak 24 datasets are given in Table 3 and an example denoising result is shown in Figure 6.

Table 3. Average PSNR values of different methods in CBSDS68 and Kodak24 datasets. Reported results in [5] are
used for CBM3D, CDnCNN and FFDNet values.

Dataset Methods σ = 15 σ = 25 σ = 35 σ = 50

CBSDS68

CBM3D 33.52 30.71 28.89 27.38
CDnCNN 33.89 31.23 29.58 27.92
FFDNet 33.87 31.21 29.58 27.96
AEFPNC 32.35 30.24 28.79 27.26

Kodak24

CBM3D 34.28 31.68 29.90 28.46
CDnCNN 34.48 32.03 30.46 28.85
FFDNet 34.63 32.13 30.57 28.98
AEFPNC 33.24 31.13 29.69 28.16

4https://aefpncdemo.github.io/

2104

https://aefpncdemo.github.io/


ÇETİNKAYA and KIRAÇ/Turk J Elec Eng & Comp Sci

(a) Ground Truth (b) Noisy σ = 50 (c) BM3D (26.21 dB)

(d) DnCNN (26.89 dB) (e) AEFPNC (26.50 dB)

Figure 5. Grayscale image denoising results of image 102061 in BSDS68 dataset with noise level σ = 50 . BM3D and
DnCNN results are taken from [5].

5.3. Blender render denoising

One possible use case of the proposed method is denoising Blender renders. Obtaining noise-free renders in
Blender is a time-consuming process since it requires numerous calculations depending on the scene complexity.
To reduce the required number of operations, a denoising method is applied after rendering the scene with

2105



ÇETİNKAYA and KIRAÇ/Turk J Elec Eng & Comp Sci

fewer samples in Blender. Performance of the proposed method is evaluated for render denoising. Pavillion,
Classroom, Agent 327 Barbershop and Car demo demo files from Blender website are used. Figure 7 shows the
results.

(a) Ground Truth (b) Noisy σ = 35 (c) CBM3D (25.93 dB)

(d) CDnCNN (26.58 dB) (e) AEFPNC (26.01 dB)

Figure 6. Color image denoising results of image 101085 in BSDS68 dataset with noise level σ = 35 . CBM3D and
CDnCNN results are taken from [4].

Using the proposed method for taking renders can dramatically speed up the process. To demonstrate
it, two renders of the Pavillion scene are taken with 50 and 1000 sample counts. Then 50 sampled renders are

2106



ÇETİNKAYA and KIRAÇ/Turk J Elec Eng & Comp Sci

(a) Pavillion (b) Classroom (c) Barbershop (d) BMW

Figure 7. Blender render denoising results with four different scenes. Top row is noisy renders and bottom row is
denoised renders by proposed model. Notice that when an object takes up relatively large portion of the scene, as pool
in Pavillion, proposed method achieves better denoising performance.

denoised with the proposed method and resulting images are compared in Figure 8. Rendering the scene with
1000 sample counts takes 107.32 s while denoising approach takes 7.08 s in total.

6. Conclusions

In this paper, a convolutional autoencoder combined with a variant of feature pyramid network is proposed as an
alternative approach to image denoising problem. Blender software is used to generate simulated noisy data to
improve the robustness of the proposed network against noise types. Results show that the proposed network can
achieve competitive results with state of the art methods in blind Gaussian image denoising for both color and
grayscale images with significantly less training time. Moreover, it can achieve favorable denoising performance
in removing corruption from Blender renders and it can significantly speed up rendering process in Blender. The
proposed framework has the potential to achieve improved denoising performance with improvements, especially
in color image denoising. As a future study, Wavelet transformation can be better utilized since it was proved
to be useful in the experiments. Also, the proposed method can be extended to handle other image restoration
tasks such as single image super-resolution (SISR) and JPEG image deblocking.

2107



ÇETİNKAYA and KIRAÇ/Turk J Elec Eng & Comp Sci

(a) 1000 Samples (b) 50 Samples + Denoised

Figure 8. Blender render denoising results in Pavillion scene with two different approaches. Image on the left is rendered
with 1000 samples and it takes 107.32 seconds to complete. Image on the right is first rendered with 50 samples and
then denoised by the proposed network which takes 7.08 seconds to complete in total.

References

[1] Goldman LW. Principles of CT: radiation dose and image quality. Journal of Nuclear Medicine Technology 2007;
1; 35 (4): 213-225.

[2] Huda W. Dose and image quality in CT. Pediatric Radiology 2002; 1; 32 (10): 709.

[3] Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3-D transform-domain collaborative filtering.
IEEE Transactions on Image Processing 2007; 16; 16 (8): 2080-2095.

[4] Zhang K, Zuo W, Chen Y, Meng D, Zhang L. Beyond a gaussian denoiser: Residual learning of deep cnn for image
denoising. IEEE Transactions on Image Processing 2017; 1; 26 (7): 3142-3155.

[5] Zhang K, Zuo W, Zhang L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE
Transactions on Image Processing 2018; 25; 27 (9): 4608-4622.

[6] Wang T, Sun M, Hu K. Dilated deep residual network for image denoising. In: 2017 IEEE 29th International
Conference on Tools with Artificial Intelligence (ICTAI); Boston, MA, USA; 2017. pp. 1272-1279.

[7] Gu S, Zhang L, Zuo W, Feng X. Weighted nuclear norm minimization with application to image denoising. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Columbus, OH, USA;
2014. pp. 2862-2869.

[8] Chen Y, Pock T. Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration.
IEEE Transactions on Pattern Analysis and Machine Intelligence 2016; 39 (6): 1256-1272.

[9] Burger HC, Schuler CJ, Harmeling S. Image denoising: can plain neural networks compete with BM3D? In: 2012
IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Providence, RI, USA; 2012. pp. 2392-2399.

[10] Jain V, Seung S. Natural image denoising with convolutional networks. In: Advances in Neural Information
Processing systems (NIPS); Vancouver, B.C., Canada; 2009. pp. 769-776.

[11] Xie J, Xu L, Chen E. Image denoising and inpainting with deep neural networks. In: Advances in Neural Information
Processing Systems (NIPS); Lake Tahoe, NV, USA; 2012. pp. 341-349.

2108



ÇETİNKAYA and KIRAÇ/Turk J Elec Eng & Comp Sci

[12] Gondara L. Medical image denoising using convolutional denoising autoencoders. In: 2016 IEEE 16th International
Conference on Data Mining Workshops (ICDMW); Barcelona, Spain; 2016. pp. 241-246.

[13] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR); Las Vegas, NV, USA; 2016. pp. 770-778.

[14] Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167. 2015.

[15] Guo S, Yan Z, Zhang K, Zuo W, Zhang L. Toward convolutional blind denoising of real photographs. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Long Beach, CA, USA; 2019. pp.
1712-1722.

[16] Lin TY, Dollár P, Girshick R, He K, Hariharan B et al. Feature pyramid networks for object detection. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); Honolulu, HI, USA;
2017. pp. 2117-2125.

[17] Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA. Stacked denoising autoencoders: learning useful
representations in a deep network with a local denoising criterion. Journal of Machine Learning Research 2010;
11: 3371-3408.

[18] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural
similarity. IEEE Transactions on Image Processing 2004; 13 (4): 600-12.

[19] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D et al. Generative adversarial nets. In: Advances
in Neural Information Processing Systems (NIPS); Montreal, QC, Canada; 2014. pp. 2672-2680.

[20] Tripathi S, Lipton ZC, Nguyen TQ. Correction by projection: denoising images with generative adversarial networks.
arXiv preprint arXiv:1803.04477. 2018.

[21] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th
International Conference on Machine Learning (ICML); Haifa, Israel; 2010. pp. 807-814.

[22] Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980. 2014.

[23] Arbelaez P, Maire M, Fowlkes C, Malik J. Contour detection and hierarchical image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 2010; 33 (5): 898-916.

[24] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B et al. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research 2011; 12: 2825-2830.

[25] Paszke A, Gross S, Chintala S, Chanan G, Yang E et al. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In: Advances in Neural Information Processing Systems (NeurIPS); Vancouver, VN, Canada;
2019. pp. 8024-8035.

[26] Liu P, Zhang H, Zhang K, Lin L, Zuo W. Multi-level wavelet-CNN for image restoration. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); Salt Lake City, UT, USA;
2018. pp. 773-782.

2109


	Introduction
	Related work
	Proposed method
	Network architecture
	Training dataset

	Experiments
	Test datasets
	Effect of downsampling images
	Incorporating simulated data
	Including feature pyramid network-based component
	Using wavelet transformation
	Effect of smoothing layers

	Results
	Grayscale image denoising
	Color image denoising
	Blender render denoising

	Conclusions

