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Abstract: Accurate indoor localization technologies are currently in high demand in wireless sensor networks, which
strongly drive the development of various wireless applications including healthcare monitoring, patient tracking and
endoscopic capsule localization. The precise position determination requires exact estimation of the time varying
characteristics of wireless channels. In this paper, we address this issue and propose a three-phased scheme, which
employs an optimal single stage TDOA/FDOA/AOA indoor localization based on spatial sparsity. The first contribution
is to formulate the received unknown signals from the emitter as a compressive sensing problem. Then, we solve an ℓ1

minimization problem to localize the emitter’s position. To combat the nonstationary behavior of wireless channels
between sensor nodes, the results of our proposed localization algorithm are finally fused using a novel fusion method
based on the adaptive normal hedge algorithm. To improve the accuracy of the estimated location, an optimal set of
weighed coefficients are derived through introducing a new loss function. Monte Carlo simulation results show that the
accuracy of the proposed localization framework is superior compared to the existing indoor localization schemes in low
SNR regimes.

Key words: Wireless sensor networks, indoor localization, direct position determination, compressive sensing, normal
hedge

1. Introduction
With the rapid growth of wireless technology for location-based services (L BS), mobile devices and wireless
sensors can sense and respond to transmitters in their working surrounding, thereby, can execute sophisticated
tasks such as target tracking in indoor/outdoor applications. On the contrary to outdoor positioning services,
which exploit GPS signals, indoor localization intends to locate an unknown-position of the emitter in an
indoor environment using the received signals which are collected by known-position receivers [1–2]. Numerous
researches on the indoor localization services have been performed with a variety of applications such as robotic,
target tracking and environmental monitoring [3]. There are also various applications in wireless body area
networks (WBANs) such as localization of wireless endoscopic capsule, localizing tumor and patient monitoring
[4–5]. The results are useful for physicians to trace accurate positions of patients or implanted sensors inside
the human body. One challenge faced for such indoor localization applications is the positioning accuracy. For
this purpose, classical location-based methods which have been well matured employ a two step scheme [6].
∗Correspondence: mrtaban@cc.iut.ac.ir
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In the first step, some measurements such as time difference of arrival (TDOA), frequency difference of arrival
(FDOA), angle of arrival (AOA) and/or received signal strength (RSS) are extracted from received signals by
collectors inside or around the environment of interest. In the second step, the collection of extracted parameters
is employed to estimate the location of emitter. Such two-step methods will not be necessarily optimal from
the root mean square error (RMSE) points of view, if estimated parameters in the first step are not accurate
enough [7].

On the contrary, single-step method of L BS uses a simple closed-form cost function which can be optimized
using a two or three-dimensional search on an indoor environment. Direct-position-determination (DPD) is one
of the most efficient single-step localization methods which outperforms even conventional two-step methods
under low signal-to-noise ratio (SNR) conditions [8]. The DPD algorithm collects observation signals from all
receivers (e.g., the access points or anchor nodes) in sequential intersection times and tries to evaluate the
cost function for the candidate places. The DPD belongs to the least squares family if the noise statistics are
unknown, while for Gaussian noise, the DPD would be the exact maximum-likelihood estimation of location
[9]. In contrast to classical methods which determine the emitter position based on measuring one or more
position-dependent parameters from the received signals such as TOA, RSS, FDOA, TDOA and AOA, the
DPD method centrally processes all the received signals to estimate the location of emitter finely. In addition,
this algorithm can be combined with the minimum variance distortionless response (MVDR) criterion to solve
the DPD problem without the prior knowledge of the effective number of emitters [10].

On the other hand, the sparse nature of emitter’s locations makes the theory of compressive sensing
useful for the indoor localization [11–12]. The sparse vector of emitter’s locations is reconstructed by the convex
optimization or greedy algorithms [13]. In more recent literature, there have been several approaches presented
to localize the emitter using TDOA/FDOA scheme within a sparse representation [14]. The proposed approaches
exploit the sparsity of the multi-path channel with the knowledge of the pulse shape of the transmitted signal.
A one-step localization approach based on the spatial sparsity of the grid plane has been proposed in [15] which
directly estimates the location of the emitter without going through the intermediate stage of the TDOA/FDOA
estimation. In [16], a framework is proposed to enhance the accuracy of positioning using the DPD and Normal
Hedge (NH) algorithm. In this work, the defined loss function of NH algorithm is presented by the maximum
eigen value of cross correlation matrix of the received signals.

Since the accuracy of indoor localization often suffers from the multipath conditions under the low SNR
regime, in some methods, the average of estimated positions is considered as an accurate position [17]. Motivated
by the above consideration, the main contributions, novelty, and the advantages of our work are summarized
as follows:

• In this paper, a novel three-stage framework is developed for the reduction of the RMSE of the emitter’s
location. The first stage of the framework has extended the traditional DPD algorithms by a new attitude
of the signal model. We use a preprocessing stage in which the sampled signals in sequentially intersection
times are denoised using a mean filter, and are weightened by applying the Hamming window. On the
other hand, we have exploited the weighted least square error (WLSE) with new formulation. In addition,
the emitter localization problem is developed using the DPD formulas based on TDOA, FDOA and further
more AOA, contrary to other works which use only the TDOA and FDOA scheme [17–18].

• The proposed method exploits the theory of compressive sensing (CS), leads to an accurate recovery of
sparse signals by solving an ℓ1 -minimization problem. In the next stage, the proposed algorithm based on
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the spatial sparsity is executed and an ℓ1 -minimization problem is solved by the basis pursuit denoising
algorithm.

• As the proposed algorithm may have different estimations of the emitter’s location for each run in the
low SNR regime, the NH algorithm is employed for combining the distribution of emitter’s locations. The
NH is a decision-theoretic online learning problem which makes prediction based on some random inputs.
The goal here is to sequentially predict the proper weights to fuse the results of the emitter’s position.

• In addition, a new loss function is introduced which causes our algorithm to achieve a better performance
than some existing indoor localization schemes, specially in the low SNR regime and small number of
receivers. One of the advantages of the proposed algorithm is the fusion of the obtained results by defining
a considerable loss function in the adaptive NH algorithm. The loss function related to the results of the
last ℓ1 -minimization, has not ever been used so far for this problem.

• Moreover, the proposed algorithm can use in track a moving emitter and can also estimate the height of
the emitter.

Furthermore, modeling in the preprocessing and fusing of postprocessing information, and the combination of
methods together has led to a significant reduction in RMSE of position estimate at low SNR. From now on,
because of exploiting compressive sensing, TDOA/FDOA/AOA parameters and NH algorithm, the proposed
method is called CS-TFA-NH algorithm.

The rest of this paper is organized as follows. The problem definition and the proposed framework
are briefly given in Section 2. An overview of ℓ1 -minimization is discussed in Section 3. In addition, a brief
introduction of the NH algorithm is introduced in this section. Later, the performance of the proposed algorithm
is investigated by the Monte Carlo simulation in Section 4. In the last section, the results are discussed and
compared.

2. Problem formulation
Consider an unknown-position emitter which transmits a narrow band signal s(t) with bandwidth W ≪ f0 ,
where f0 is the carrier frequency. There are L number of known-position receivers (e.g., access points or
anchor nodes) around the indoor environment which collect received signals at equal and sequential intersection
times with index k ∈ {1, ...,K} during time interval T . The intersection time refers to the sequential interval
time when the received signal is sampled by applying a window function. We denote l ∈ {1, ..., L} as the
index of receivers. In each intersection time k , the signals processing task is performed in a central processing
unit. Suppose each receiver is equipped with a uniform linear array antenna with 2M + 1 elements at a
distance ∆ from each other. Denoting θl,k as the angle of arrival signal to lth receiver at kth intersection time,

a(θl,k) = [e−j 2π
λ

M
2 ∆sin(θl,k), ..., 1, ..., ej

2π
λ

M
2 ∆sin(θl,k)]T represents the steering vector corresponding to lth array

[19]. The complex baseband of the signal collected by lth receiver at kth intersection time would be as

rl,k(t) = αl,kϖ
T
l,ka(θl,k)e

−jωl,kts(t− τl,k) + nl,k(t), l = 1, . . . , L, (1)

where αl,k is the complex attenuation of the communication channel, ϖl,k is a (2M + 1) × 1 weight vector,
ωl,k = 2πfl,k is the Doppler shift effect, τl,k is the delay of signal which is considered as τl,k ≪ T , nl,k(t)

represents the additive noise and interference with a N (0, σ2 ) distribution, where it is assumed that σ2 is
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independent of parameter l . In addition, the Doppler frequency shift fl,k is evaluated by fl,k = f0
C

vl,k(pe−pl,k)
(∥pe−pl,k∥) ,

where C is the light speed and vl,k is the relative velocity between the emitter and receivers, pe = [xe, ye, ze]
T

and pl = [xl, yl, zl]
T denote the positions of the emitter and collectors, respectively.

The path loss and shadowing model for the communication channel is considered as follows:

PL(d) = PL(d0) + 10η log(
d

d0
) + χσ, (2)

where d0 and d are the reference distance and the distance between the emitter and the receiver, respectively,
η is the path loss exponent and χσ (in d B) is a random variable with N (0,σ2

χ ) distribution which represents
the shadowing effect [20].

The sampled version of the signal in (1) with Ns samples is given by

rl.k = αl.kϖ
T
l.ka(θl.k)Al.kFl.ksk + nl.k, (3)

rl.k = [rl.k(t1), rl.k(t2), ..., rl.k(tNs)]T , (4)

sk = [s(t1), s(t2), ..., s(tNs)]T ,

Al.k = diag{e−jωl.kt1 , e−jωl.kt2 , ..., e−jωl.ktNs },

nl.k = [nl.k(t1),nl.k(t2), ...,nl.k(tNs)]T ,

and Fl,k = Fml,k is a cyclic shift operator which is used to shift down the samples of received signals
by ml,k = ⌊τl,kfs⌋ where ⌊.⌋ denotes the integer part of a number. F is an Ns ×Ns matrix and is defined as
[Fij ] = 1 ,if i = j + 1 and [Fij ] = 0 otherwise, also [F1,Ns

] = 1 . Indeed, the signal delay τl,k in (1) in lth

reciever is considered at the shift down operator Fl,k . The expression in (3) can be simplified as

rl,k = αl,kHl,ksk + nl,k, k = 1, ...,K, (5)

where Hl,k = ϖT
l,ka(θl,k)Al,kFl,k . There is a procedure to estimate the emitted signal ŝk using the weighted

least square error (WLSE) to minimize the defined cost function as follow:

CF (pe) =

K∑
k=1

L∑
l=1

wl,k∥rl,k − αl,kHl,ksk∥2, (6)

where wl,k ’s are the weighting coefficients and can be selected by Ns√
rHl,krl,k

in each receiver and any intersection

time. The estimation is generally complicated; nevertheless, we can estimate the emitted signal ŝl.k in lth

receiver and kth slot as

ŝl,k = [(αl,kHl,k)
HWl,k(αl,kHl,k)]

−1(αl,kHl,k)
HWl,krl,k, (7)
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where Wl,k is a weighting diagonal matrix with elements wl,k [21]. Then the estimation of the emitted signal
in kth time intersection can be approximately computed from the average of all receivers. Therefore, the final
estimation of the emitted signal can be expressed as

ŝk =
1

L

L∑
l=1

ŝl,k . (8)

We assume Ng as the number of candidate positions of the emitter which are randomly generated in
the indoor space with the uniform distribution. This assumption is considered in many literatures [9–17].
These positions are supposed to be regularly distributed in the indoor space which forms a set P ≡ {pj =

[xj , yj , zj ]
T ; j = 1, . . . , Ng} . In kth intercept time, a variable θkj is assigned to jth candidate position and is

assumed to be equal to one for the point which is exactly the emitter position. Also, θkj is zero for the rest

of points in the indoor space. For the all members of Pk in kth intercept time, we have θk = [θk1 , . . . , θ
k
Ng

] .

Therefore, the signal vector received by lth receiver can be expressed as

rl,k =

Ng∑
j=1

θkj αl,kHl,ksk + nl,k. (9)

The emitter is supposed to be placed in ith position using path loss model in (2). Therefore, Hi
l,k , αi

l,k , ŝik can

be evaluated for ith position (pi ). Matrix Ψi
k is defined as an operator with respect to all L receivers which

can be shown as

Ψi
k =

[[
αi
1,kH

i
1,k

]T
,
[
αi
2,kH

i
2,k

]T
, · · · ,

[
αi
L,kH

i
L,k

]T ]T
LNs×Ns

. (10)

In addition, vector ϕi
k is defined which contains all evaluated received signals by L receivers as

ϕi
k = Ψi

k × ŝik. (11)

Considering all positions in the set P , the matrix Φk is constructed as follows:

Φk =
[
ϕ1
k, ϕ2

k, . . . ϕ
Ng

k

]
LNs×Ng

. (12)

So, we have
yk = Φk × θk +wk, (13)

where

yk =
[
rT1,k rT2,k · · · rTL,k

]T
LNs×1

θk =
[
θk1 θk2 · · · θkNg

]T
Ng×1

wk =
[
nT
1,k nT

2,k · · · nT
L,k

]
LNs×1

.

(14)

yk is the total observed vector and Φk is the sensing matrix in kth intercept time. In addition, wk is an
unknown noise vector in all receivers. Since, there is only one emitter in the indoor space at kth intersection
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time, θk is a sparse vector. A sparse estimation of θk can be obtained by solving the ℓ1 -minimization problem
[22]. Toward this goal and in the first contribution of this paper, three methods have been applied to (13) to
obtain θ̂k and their performance have been examined. These methods are basis pursuit (BP) [23], basis pursuit
denoising (BPDN) [24] and Dantzig selector method [25] as follow:

1. BP
θ̂k = arg min

θk∈RNg
∥θk∥1, s.t. yk = Φkθk (15)

2. BPDN
θ̂k = arg min

θk∈RNg
∥θk∥1, s.t. ∥yk −Φkθk∥2 ≤ ϵ (16)

3. Dantzig selector

θ̂k = arg min
θk∈RNg

∥θk∥1, s.t. ∥Φk
T (yk −Φkθk)∥∞ ≤ µ (17)

for carefully chosen µ < 1 and ϵ > 0 . Finally, the estimation of the emitter position would be as follows

p̂ek ≡ {pi : arg max |θki |}. (18)

Since wireless channels between sensor nodes have nonstationary characteristics due to the multipath
and movement of emitter, the position of emitter should be estimated in several times in kth intercept time.
In addition, the emitter movement is continuous in indoor environments and has no sudden change. For this
reason and in the second contribution of this paper, we use an online learning algorithm to fuse the results of
estimation which will be followed in the next section.

3. Proposed CS-TFA-NH framework

To increase the estimation accuracy of the emitter’s location, in this section we propose a three-stage processing
framework of indoor localization, namely, the CS-TFA-NH scheme, which is shown in Figure 1.

Figure 1. The proposed CS-TFA-NH framework of indoor localization using CS and NH.

In the first stage, receivers collect received signals by their antennas in the intercept time k . For smoothing
the truncated autocovariance function in the time domain, it is recommended to use sliding window. Therefore,
a hamming window is deployed to decrease the effect of discontinuity in extracted features of the received signal.
Since, the main idea of this paper is the improvement of accuracy in low SNR scenarios, a Gaussian mean filter
is used. It is quite evident that the noise reduction can play a significant role in improving the localization
accuracy, so, the observation vector yk is collected. As described in Section 2, a set of candidate points (P ) is
uniformly generated in kth intercept time. Then, the sensing matrix Ψk is constructed and a linear equation
is formed as (13).
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In the next stage, the ℓ1 -minimization algorithm is applied to find the sparsest solution for θk corre-
sponding to the lowest ∥θk∥1 . This can be achieved by first generating a set P as a coarse localization. Then,
the fine localization is performed during the following manner. Let pm be mth point of the set P which satisfies
the estimation of the emitter position in (18) and p̂ek ≡ pm . This point is considered as a coarse estimation. In
order to perform the fine localization in the following next step, another set P is randomly generated with the
normal distribution. To obtain the best estimation of the emitter’s location, the fine localization algorithm is
executed several times (t = 1, 2, . . . , Nt) and the final outcome is computed using the average results as follows:

p̂ek =
1

Nt

Nt∑
t=1

p̂t
ek
, (19)

where p̂t
ek

is the estimation of emitter’s location in tth iteration.

3.1. Normal hedge algorithm

Due to the random nature of the proposed algorithm, in each time that the set P is generated and the ℓ1 -
minimization algorithm is executed, various results are obtained displaying an error with respect to the exact
location of the emitter. In order to achieve a more accurate result in complex scenes, an adaptive NH algorithm
is used. The NH algorithm uses a set of weighted actions to predict the real location of the emitter [26]. This
algorithm is a solution for the decision-theoretic online learning (DTOL) [27] problem which is explained as
follows.

At the beginning of estimating the emitter’s location, it is assumed that there is a learner who receives
the results of Nt actions in kth intercept time. The learner maintains a weight distribution Ωk = {ω1

k, ..., ω
Nt

k } .
Each action incurs a loss ℓtk and the learner’s expected loss under this distribution is obtained by ℓAk =∑Nt

t=1 ω
t
kℓ

t
k .

The motivation is that the difference between the estimated and the real values is implied by the loss
function. Moreover, the learner attempts to maintain a distribution over actions and to minimize its net loss
defined by ℓnetk =

∑k
k′=1 ℓ

A
k′−min

t

∑k
k′=1 ℓ

t
k′ . The instantaneous regret to an action t is defined as rtk′ = ℓAk′−ℓtk′

and the cumulative regret to an action t is obtained by

Rt
k =

k∑
k′=1

rtk′ = Rt
k−1 + (ℓAk − ℓtk). (20)

The NH algorithm is based on a potential function with the half-normal distribution which is separately convex
in x and c as follows:

f(x, c) = exp

(
([x]+)

2

2c

)
, for x ∈ R, c > 0, (21)

where [x]+ denotes max{0, x} . The NH algorithm attempts that the average of potential, over all actions at
the intercept time, evaluated at Rt

k and ck , remains constant at e defined as follows:

1

Nt

Nt∑
t=1

exp

(
([Rt

k]+)
2

2ck

)
= e. (22)
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In this case, the weight is updated for t action as

ωt
k+1 =

[Rt
k]+
ck

exp

(
([Rt

k]+)
2

2ck

)
. (23)

The cumulative regret which depends on the previous values in action t is computed as

Rt
k = λkR

t
k−1 + (ℓAk − ℓtk), (24)

so that λk is considered as

λk =

{
1− 1

2 exp
{
− γ(ℓAk − ℓik)

2}, if ℓAk > ℓik
1
2 exp

{
− γ(ℓAk − ℓik)

2}, else
(25)

where γ is a constant that controls the shape of the exponential function [28]. Therefore, Eq. (19) can be
changed to

p̂ek =
1

Nt

Nt∑
t=1

ωt
k+1 ⊙ p̂t

ek
, (26)

where ωt
k+1 denotes the vector of weights corresponding to different coordinates of space and ⊙ represents the

hadamard product.
Since, in the localization stage, the ℓ1 -minimization of θk is considered as the suitable criteria, the

following loss function is proposed:
ℓtk = exp(∥θtk∥1). (27)

Considering the defined loss function, it can be seen that decreasing ∥θk∥1 causes decreasing the loss function in
each action. The detailed localization procedure is summarized in Algorithm 1. In this algorithm, the weights
and related functions must be evaluated in 2 or 3 dimensions. Thus, these variables are indicated by index z

in Algorithm 1.

4. Simulation results
In this section, performance of the proposed algorithm is evaluated and compared with the classical DPD
scheme in [7] by Monte Carlo simulations for different scenarios. The patient localization problem is considered
by taking into account the IEEE 802.15.6 standard in the wireless body area networks. The simulations are
performed on a 64-bit processor Core(TM) i7 , 2.2 GHz and 8 GB RAM and using MATLAB R2013a software.
The initial values of basic parameters are shown in Table 1.

Four receivers (L = 4) were located in the corner of a 100m × 100m building. The number of random
particles (Ng) has been considered to be 64 , the same as [17]. The emitter position has been considered to be
random in each round of the Monte Carlo simulation. The proposed algorithms have been repeated 100 times
for the range of SNR ∈ [−30dB 10dB] . The geometry of the localization problem is shown in Figure 2.

The appropriate channel model for the IEEE 802.15.6 standard is discussed in [29] with CM4 scenario
in 2.4 GHz. According to Eq. (2), the parameters PL(d0) , η and σ are selected to be equal to 25.8dB, 2
and 3.6 , respectively. Although, there are many considerations for choosing parameters µ and ϵ in statistical
models, however, in our proposed algorithm, we consider an appropriate value for these parameters which takes
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Algorithm 1 : The Proposed Algorithm based on the NH
1: procedure
2: Set initial values: k = 0 , ωt

z,1 = 1/Nt for t = (1, ..., Nt), R
t
z,0 = 0 , e = e0 , γ = γ0

3: topk: k ← k + 1
4: Collect signals from receivers in time interval k
5: for t = 1, ..., Nt

6: Generate Ng uniformly distributed particles (pj) in the indoor space
7: Estimate p̂t

ek
for all actions using Eq. (18)

8: Compute loss function ℓtk = exp(∥θtk∥1) .
9: end

10: ẑek =
∑Nt

t=1 ω
t
z,kẑ

t
ek

for z = x and y

11: Learner incurs loss ℓAz,k =
∑Nt

t=1 ω
t
z,kℓ

t
k for z = x and y .

12: Compute the adaptive coefficients λx,k and λy,k using (25).
13: Update Cumulative regrets: Rt

z,k = λz,kR
t
z,k−1 + (ℓAz,k − ℓtk) for z = x and y .

14: Find cz,k > 0 satisfying 1
Nt

∑Nt

t=1 exp

{
([Rt

z,k]+)2

2cz,k

}
= e for z = x and y .

15: Update distribution ωt
z,k+1 =

[Rt
z,k]+
cz,k

exp

{
([Rt

z,k]+)2

2cz,k

}
for each t and for z = x and y .

16: p̂ek = 1
Nt

∑Nt

t=1 ω
t
k+1 ⊙ p̃t

ek
.

17: go to topk.

Table 1. The simulation parameters

Parameter Value
f0 2.4GHz
fs 8× 108Hz
Symbol rate 1× 108bps
Modulation BPSK
C: Light velocity 3× 108m/s

Size of area 100× 100m2

Ns ( Number of samples) 2048
L (Number of receivers) 4
M (Number of arrays) 3

a tradeoff between the minimum norm of solution and the required iteration to reach the best answer. Hence,
the exact values of ϵ and µ parameters in Eq. (16) and Eq. (17) differ in simulation step, but these parameters
are considered about 0.01 and 0.05 , respectively.

The RMSE is defined as the average Euclidean distance between the exact position and the estimated
position of the emitter for all repetition of algorithm as follows:

RMSE =

√√√√ 1

NMC

NMC∑
n=1

∥p̂e − pe∥2, (28)

where NMC is the number of Monte Carlo repetitions of the proposed algorithms.
In the first scenario of our simulation results, we start with the ℓ1 minimization block in Figure 1. We

evaluate in Figure 3 the RMSE performance of our proposed indoor localization framework versus SNR for
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Figure 2. The problem geometry of indoor localization.

the 3 ℓ1 minimization algorithms, namely  BP [23] , CS- BPDN [24] and CS-Dantzig [25] selector described in
(15)-(17). In this case, we have not applied the adaptive NH algorithm in the proposed framework in Figure
1. The emitter’s location is just estimated using Eq. (19). As shown in Figure 3, the CS- BPDN provides the
most accurate approach for solving ℓ1 minimization in comparison to CS-Dantzig and  BP methods. This fact
comes from the effect of the noise in the BPDN algorithm. For the convenience of comparing methods, we
define CS-TFA as the proposed method of localization based on the ℓ1 -minimization in (19) and CS-TFA-NH
as the proposed algorithm in (26). It should be noted that TFA is the abbreviation of TDOA/FDOA/AOA.
The RMSE performance of the proposed CS-TFA-NH algorithm for each time interval is plotted in Figure 4.
The plot shows a better accuracy of the CS-TFA-NH method over the CS-TFA, DPD-NH [16], classical DPD,
and AP-DPD1 [10], at low SNR regimes. These results show that the proposed algorithms can provide a very
effective improvement in the reduction of the RMSE in lower SNRs, whilst the result of reference [10] is ideal
in the high SNR regime.

Theoretically, Φk in Eq. (12) is a kind of cross ambiguity function which is computed among all receivers.
Thus, the correlation of the received signals in low SNRs can indirectly considered in the next steps of our
proposed algorithm. In addition, utilizing the sparsity in the space domain and fusion of the results based on
the normal hedge algorithm helps the scheme to reduce the multipath and noise effects, and makes the algorithm
capable to reduce the RMSE in low SNRs.

In addition, to verify the performance of the proposed algorithms in tracking problems, we consider a
moving emitter whose path is given as follows: ẋe

ẏe
że

 =

vxvy
0

 , (29)

where [ẋe, ẏe, że]
T represents the derivative of the emitter’s position and [vx, vy, 0]

T is its velocity. The velocity
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is assumed to be [1 + 0.5sin(2πt/100), 1, 0]Tm/s and the initial position of the emitter is selected as [1, 1, 0]T .
The total time of tracking and the SNR are considered as 100 s and 0 dB, respectively. By running the tracking
simulation, at each time interval, the emitted signal is intercepted by receivers and the proposed algorithms
are performed for 100 times. After estimating the emitter’s position in the first interval, and to decrease the
computation complexity, our proposed algorithm further restricts the searching area in the next intervals. The
processor and the algorithm’s speed are important for the fast tracking of a moving emitter. However, in this
paper, we have focused on wireless body area networks in which the maximum speed will be about 1 to 5 meters
per s. Examine for various velocities has the same results as one depicted in Figure 5. It can be seen that the
proposed loss function in (27), improves the positioning accuracy in tracking of the emitter. As depicted in
magnified area of Figure 5, the position of moving emitter is tracked by the CS-TFA-NH with more accuracy
than its counterparts.
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Figure 3. The RMSE performance of the proposed framework versus SNR for various ℓ1 -minimization algorithms.

A comparison between the methods CS-TFA-NH, CS-TFA, DPD-NH [16], classical DPD and AP-DPD1
[10] in SNR=–10dB is tabulated in Table 2. It is shown that the RMSE for the CS-TFA-NH algorithm is less
than the CS-TFA-NH. It is also shown that the average run time for the CS-TFA-NH is slightly longer than the
CS-TFA, which is acceptable in applied works. As it can be derived from Table 2, the CS-TFA-NH algorithm has
a lower RMSE with the average run time about 0.8 s, while the classic DPD algorithm with large RMSE 3.1402

has an average run time of 0.3251 s. It is worth mentioning that even though the average run time of the CS-
TFA-NH algorithm is almost 3 times higher, but it is still acceptable for indoor applications. The complexity of
classical DPD algorithm is O(L2N2

s ) which is smaller than the proposed algorithm with O(L2N2
sN

2
g ) . For this

reason, the elapsed time for executing the DPD is more less than other algorithms. According to Table 2, the
delay for DPD is more less than the proposed algorithm, whilst the RMSE of DPD is not acceptable. Contrary,
the RMSE of proposed algorithm is impressive. The effect of the number of collectors and their locations have
been examined in a separate study and simulation. These results show that the proposed algorithms can provide
a very effective improvement in the reduction of RMSE.

It should be noted that the whole processing tasks are accomplished in a main processor in the central
unit which there is no restriction for its resources and power. The wireless sensors play as emitters of their
signals. In contrast to energy-constrained WBANs and WSNs in which the main focus is to enhance the energy
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Figure 4. The RMSE of the proposed algorithm versus SNR compared to other DPD algorithms.
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Figure 5. The performance of proposed algorithms in tracking an emitter in SNR 0dB in comparison with the classical
DPD.

Table 2. The comparison of the proposed algorithm with DPD-NH and classical DPD based on the RMSE and the
average run time in SNR = −10dB.

Algorithm CS-TFA-NH CS-TFA DPD-NH[16] DPD AP-DPD1[10]
RMSE (m) 0.6241 1.521 1.0170 3.1402 10

Average run time (s) 0.7945 0.762 0.734 0.3251 0.3503

efficiency of the network by targeting the performance metric like first node died (FND) and residual energy,
in our work, the main contribution is to execute all processes in a central processing unit. For this reason,
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assumptions for the battery life and resources are not considered in the evaluation of the proposed CS-TFA-NH
algorithm.

Remark 1: The computational complexity of the first stage of the proposed framework is of order
O(LNs × LNsN

2
g ) or equivalently O(L2N2

sN
2
g ) , where L denotes the number of receivers, Ns represents the

number of samples, and Ng is the number of grids in 2 dimensional (2D) area. The main process is to compute
ℓ1 -minimization of a compressive sensing equation. It is worth mentioning that the normal hedge algorithm in
our problem has very low complexity. According to the expression of the estimated position in Eq. (26), we need
to compute the Nt summation of 2D vectors. In this case, the complexity of this part is of order O(2Nt) , which
is comparable to the above dominant term. In the normal hedge algorithm which is presented in Algorithm 1,
we only need to compute the summation of 2D vectors in Nt iteration which has very low complexity, therefore,
the complexity of the proposed algorithm is of order O(L2N2

sN
2
g ) . On the other hand, the complexity of the

classical DPD algorithm is of order O(L2N2
s ) , which is smaller than that of the proposed algorithm. For this

reason, the elapsed time for executing the DPD is much less than other algorithms. According to the results
in Table 2, the delay for DPD is much less than the delay of the proposed algorithm, whilst the RMSE of the
DPD scheme is not acceptable. Contrary, the RMSE of the proposed algorithm is impressive.

Remark 2: Note that the challenge of locating one unknown-position emitter is considered in many
research works (e.g., [1–3]). In most of the proposed algorithms, many receivers may be existed in the
environment, e.g., in tracking the patient in the hospital, positioning firefighters in emergency situations and
many location base services (LBS), however, 3 or 4 of them are simultaneously necessary for localizing the
emitter with the acceptable accuracy. Thus, we do not need to increase the number of receivers (or equivalently,
increase the complexity) to achieve a very high accuracy for exact location of patients with a millimeter error.
On the other hand, the whole processing are accomplished in a central unit. Thus, the proposed CS-TFA-NH
framework can be useful for practical works.

5. Conclusion
In this work, a framework for the indoor localization problem was proposed based on the compressive sensing
and the normal hedge algorithm. A method was also developed to address a single-step TDOA/FDOA/AOA
indoor localization based on the spatial sparsity in the wireless sensor networks. More specifically, several
random points with uniformly distributed in the (x, y) plane are generated, as candidates for the emitter
position. A sparse vector was then assigned to indicate the existence of the emitter in these random points.
Using ℓ1 -minimization, the sparsest vector was obtained, which satisfies a linear equation among the observed
signals in the receivers and the TDOA/FDOA/AOA sense matrix. The indoor localization methods suffer from
multipath reflections in an indoor setting. In addition, since in applied works, such as wireless body sensors,
the wireless channel is unstationary, estimated position of the emitter differs in every run of the algorithm.
To combat this problem, a novel fusion method was proposed based on the normal hedge algorithm. Finally,
a framework was proposed consisting of 3 stages, i.e., preprocessing of the received signals in the first stage,
using localization algorithm based on the compressive sensing in the second stage and fusing the results using
the normal hedge algorithm in the last stage. Simulation results showed that the proposed framework improves
the accuracy and the elapsed time of emitter’s localization. It was also verified that with the proposed loss
function in the adaptive normal hedge algorithm for fusing the results, the performance of indoor localization
and tracking would be improved.
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