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Abstract: Classifiers overfit when the data dimensionality ratio to the number of samples is high in a dataset. This
problem makes a classification model unreliable. When the overfitting problem occurs, one can achieve high accuracy
in the training; however, test accuracy occurs significantly less than training accuracy. The random subspace method
is a practical approach to overcome the overfitting problem. In random subspace methods, the classification algorithm
selects a random subset of the features and trains a classifier function trained with the selected features. The classification
algorithm repeats the process multiple times, and eventually obtains an ensemble of classifier functions. Conic functions
based classifiers achieve high performance in the literature; however, these classifiers cannot overcome the overfitting
problem when it is the case data dimensionality ratio to the number of samples is high. The proposed method fills the gap
in the conic functions classifiers related literature. In this study, we combine the random subspace method and a novel
conic function based classifier algorithm. We present the computational results by comparing the new approach with a
wide range of models in the literature. The proposed method achieves better results than the previous implementations
of conic function based classifiers and can compete with the other well-known methods.
Key words: Random subspace, classification, linear programming, ensemble learning, conic functions

1. Introduction
Classification is a task that aims to obtain a model priorly by training a function with observed data and then
apply the learned function to unseen test data in order to label test data points to the correct category. In
most of the cases, algorithms require to solve an optimization problem to get the classification function. The
number of features in the dataset is always a subject that a researcher should consider while selecting the right
algorithm for an application. When the training data set has m data points from Rn and if m >> n , the data
space becomes denser. Under this situation, a large scale optimization algorithm becomes suitable to use. In
such a case, one can use data elimination methods for irrelevant data points or can divide the training data into
smaller subsets to build smaller optimization problems. Generally, it is a good case to have sufficient valuable
information to construct an accurate classifier.

There are many real-life applications of which data is hardy to collect, and the data feature size is
large. For example, in biotechnology-related problems, collecting many samples can be laborious, expensive, or
impossible. On the other hand, feature size (e.g., DNA, RNA, gene features, etc.) is generally high dimensional.
Machine learning helps researchers in disease diagnosis (cancer, heart diseases, etc.), agriculture [1], drug
development, and viral infection (SARS-CoV, COVID-19) studies. Since these researches try to bring solutions,
hunger, pandemics, and other life-threatening diseases, they are essential to be targeted. Another machine
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learning problem faces with high dimensionality is image processing. Although it is easier to collect samples in
image processing, we may need to have thousands of features to represent an image sample. In text processing
studies also the dimensionality is very high related to sample size. Even though there are efficient methods
to represent document feature space, still high dimensionality remains as a problem. In this case, data space
becomes sparse, and learning algorithms suffer from this sparsity. As a result of the curse of dimensionality,
classifiers overfit and cannot reach the same test accuracy with training accuracy. In other words, classification
error becomes high.

There are 3 components of classification error: bias, variance, and noise. Every classification model has
some assumptions. For example, a linear classifier assumes the border between classes is linear. However, it
may not be a real case; thus, this situation causes some error. Even we have sufficient data, the classifier
will produce incorrect decisions in some parts of the data space. Namely, the classification model will have a
bias. The models have strong assumptions about the problem have a high bias. On the other hand, random
selections of the training data cause to have different models after training. However, since there is only one
the real boundary, we would expect to have similar models at the end of the training. When the data size is
not sufficient, dimensionality is high, and the classification model is complex then it should be; different trained
models will fit the training data perfectly, but these models will make inconsistent predictions for a text sample.
Namely, the classification model has a high variance. overfitting and model variance is closely related. There
is a trade-off between bias and variance, and it is affected by every design choice of the model. Aggarwal [2]
provides a more detailed explanation about classification errors.

As stated above, high dimensionality causes overfitting and high model variance. To overcome the
overfitting problem, frequently, data is tried to be represented in a less dimensional space through dimensionality
reduction methods. Besides dimensionality reduction approaches, another way to reduce bias and variance
related errors is to use ensemble learning methods. Ensemble learning approaches increase the prediction
accuracy by combining the results from multiple classifiers [2]. There are various ensemble learning approaches,
and random subspace-based ensemble learning is one of them. Details about dimensionality reduction and
ensemble learning methods are given in the following section.

Any classification method can be chosen as the base algorithm of an ensemble learning approach.
Polyhedral conic functions (PCF) based classification algorithms are robust and accurate classifiers in the
literature. However, when the feature size to sample size ratio is high, PCF based classification algorithms
overfit to training data and perform poorly on the test dataset. Thus, the overfitting problem becomes a barrier
to apply PCF based classifiers to real-life problems. The motivation of this study is to develop a method
that overcomes the overfitting problem and maximizes the ability of generalization of PCF based classifiers.
Therefore, in this study we develop a classification algorithm that combines the random subspace ensemble
learning method and PCF (or CF) based classifiers. No study aims to solve overfitting problem of PCFs yet.
The proposed method helps to fill this gap in the literature. The first novelty of the study is the presented
algorithm called random subspace based conic functions ensemble classifier (RS-CF). The second novelty is the
used regularization method and it has not been applied conic function based classifiers before. We provide the
efficiency of the method on a wide range of problems such as image, arrhythmia, voice, text, and disability
classification. This study provides a new method to researchers who use PCFs (or CFs) for classification and
have relatively less sample size related to feature size.

Organization of the rest of the paper is as follows. We present existing work about the dimensionality
reduction methods, ensemble learning methods, and CF-based classifiers in Subsection 1.1. In Section 2, we
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explain the theoretical background of random subspace method and CF-based classifiers. We present the
proposed random subspace ensemble classifier based on conic functions in Section 3. In Section 4, we give
experimental results in comparison with the well-known algorithms in the literature. Finally, we provide
conclusions. One can reach to notations from Table 1.

Table 1. Notation table.

Notation Meaning
Capital boldface letters (A) 2-d matrices (datasets)
Lower case boldface letters (v) Vectors
Lower case italic letters (s) Scalars
∥.∥p p-norm of a vector
⟨., .⟩ Dot product
|A| Cardinality of a set A

1.1. Existing work
In this section, we discuss current work and provide a literature review about the methods that help to prevent
overfitting, such as dimensionality reduction methods and ensemble learning methods. Additionally, we give
applications and existing algorithms of the PCF-based classifiers used in this study.

Dimensionality reduction aims to represent data samples within a less dimensional space. The objective
is to minimize inevitable information loss. We can group dimensionality reduction methods into 3 categories:
feature selection, dimensionality reduction with axis rotation, and dimensionality reduction with type transfor-
mation [2].

Feature selection methods aim to select the best subset of features. A good feature selection algorithm
minimizes the relevant information loss while representing the input data with fewer features. Filter methods
[3, 4], wrapper methods [5, 6] and embedded methods [7] are various groups of feature selection algorithms.
While filter algorithms use ranking techniques to order the features, wrapper methods solve an optimization
model by using classification accuracy as an objective function. Chandrashekar et al. provide a survey on
feature selection methods. [8].

Dimensionality reduction with axis rotation techniques transforms input space into another space, which
is more significant and more discriminative for classification. This transformation can be supervised or unsu-
pervised. One of the most well-known unsupervised dimensionality reduction algorithm, principal component
analysis (PCA) [9], uses an orthogonal transformation to transform the input data linearly. The resulting
features are the linear combinations of the original features. Singular value decomposition (SVD) is another
linear transformation method [10]. It is closely related to PCA and also more general than PCA. SVD provides
the same basis vectors and data transformation as PCA for data sets in which the mean of each attribute is
0 [2]. An application of SVD to text-domain is latent semantic analysis (LSA) [11]. LSA assumes that words
with similar meanings occur in similar pieces of text. On the other hand, linear discriminant analysis (LDA,
sometimes called Fisher’s linear discriminant) is a supervised linear dimensionality reduction method, thus takes
class labels into account [12]. Transformation can be nonlinear too. Autoencoders [13] are an efficient neural
network-based unsupervised tools to make nonlinear transformations. Khalid et al. presented a detailed survey
of dimensionality reduction methods in [14].
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One can reduce dimensionality with type transformation as well. In such a case, the data represented
with a more complex type is transformed into a less complex one, e.g., time series to multidimensional. Discrete
wavelet transformation methods are in this group.

As dimensionality reduction, ensemble learning methods also aim to reduce overfitting and improve test
performance of the classifiers. The well-known methods are bagging, random subspace methods, random forest,
and boosting. Bagging (aka bootstrap aggregating) creates different training sets with independently drawn
bootstrapped samples, and trains a classifier on each of them. Then, the final decision is made via a majority
voting (classification) or averaging (regression). Bagging methods aim to reduce variance. Random subspace
methods [15] (aka feature bagging) are ensemble learning approaches that use a random subset of the entire
feature set for each learner. Random subspace methods are adaptable to any classification approaches such as
support vector machines, nearest neighbors, and decision trees. A particular version of decision trees, which is a
version of the random subspace related method and decision trees, is a very well-known random forest algorithm
[16, 17]. The generalization error of random forest classifiers depends on the strength of the individual trees in
the forest [17]. Boosting weights each training sample, and then trains different classifiers with the use of these
sample weights. Based on classifier performance, the boosting method updates sample weights. More precisely,
while weights of the incorrectly classified samples are increased, weights of the correctly classified samples are
reduced. Thus, the selected base classification method gives more attention to incorrectly classified samples.
Finally, the boosting method creates an ensemble of classifiers. One of the most well-known boosting methods
is AdaBoost (adaptive boosting)[18].

Besides dimensionality reduction and ensemble learning methods, there are several recent studies in
the literature to prevent the overfitting problem with various points of view. Xiong et al. use a vibrating
mechanism to prevent overfitting [19]. Their method is a continuous version of dropout and can achieve a
certain L1 regularization. Authors show that their approach achieves better classification accuracy without
using L1 regularization or dropout. Werpachowski et al. detect overfitting via adversarial examples, and their
model correctly indicates the overfitting of the trained model to the training set [20]. Feldman et al. extend
developments in understanding overfitting due to adaptive data analysis to multiclass prediction problems [21].
They also claim that multiclass prediction problems are significantly more robust to overfitting when reusing
a test (or holdout) dataset. Wu et al. present a novel regularizer to reduce kernel redundancy in a deep CNN
model and prevent overfitting [22]. Salman et al. proposed a consensus-based classification algorithm that
enabled them to avoid overfitting and significantly improve classification accuracy, especially when the number
of training samples is limited [23].

The classifier used in this study is polyhedral conic functions (PCFs) that are presented by Gasimov
and Ozturk [24]. Since then, various classification algorithms developed by using PCFs [25–40]. Bagirov et
al. developed a piece-wise linear classifier based on polyhedral conic and max-min separabilities [26]. Oztruk
et al. presented an incremental version of a piece-wise linear classifier based on polyhedral conic separation
[27]. Oztruk and Ciftci used clustering as a preprocessing and built nonlinear decision boundaries with PCFs
[28]. Cimen et al. presented incremental conic functions (ICF) algorithm for large scale classification problems
[34, 35]. ICF algorithm provides a generalization of PCFs and applies smart steps to boost training speed in
large scale problems. Most of the PCF based classification algorithms require to solve linear programming (LP)
models, and that makes PCF based classifiers possible to run on larger data sets. Due to their short test time,
one can use PCF based classifiers on real-time problems such as gesture recognition [31]. Furthermore, success
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of PCF based classifiers has shown on arrhythmia classification [29], object detection [30] and text classification
[33].

2. Theoretical background
In this section, we explain theoretical background about the random subspace method and conic functions to
make the proposed method more understandable and clear. The random subspace method and conic functions
are two main nested parts in the proposed method.

2.1. Random subspace method
The random subspace method is introduced by Ho to improve the generalization accuracy of complex decision
forests [15]. The method is an ensemble construction technique and iterates multiple loops. In each iteration,
selects a small number of features from the input feature space and then train a classifier with the selected subset
of the features. In contrast to the sample bagging (bootstrap aggregating), features are bagged in the random
subspace method. Essentially, this process yields a bunch of classifiers by training them with various projections
of input space to the other lower-dimensional spaces. Ensemble construction with a random subspace method
is given in Algorithm 1. The training set T is given in Equation 1. yf is the class label of tf where ν is the
number of classes in Equation 2.

T = {t1, . . . , te}, tf ∈ Rn, f ∈ F = {1, . . . , e} (1)

y = {y1, . . . , ye}, yf ∈ {1, . . . , ν}, f ∈ F = {1, . . . , e} (2)

Algorithm 1 Random subspace method.
0: Input: Training set T ∈ Re×n , number of classifiers to be trained is m, dimension of subspaces is ñ .

Output: Ensemble of classifiers G = {g1, . . . , gm} .
1: for i = 1 to m:
2: Select a random subset of 1, . . . , n with ñ elements.
3: Obtain a subset T̃i of training set T, where T̃i ∈ Re×ñ .
4: Train classifier gi with the set T̃i .
5: end for

Once the ensemble of classifiers are obtained, a data point x ∈ Rn can be classified via calculating the
average class probabilities or majority voting. The variable qiy ∈ {0, 1}, equals 1 if the classifier i assigns the
data point to the yth class where y ∈ {1, . . . , ν} . The probability of the data point x to be predicted in the
class y represented as pry and can be calculated as in Equation 3. Predicted class label can be found as in
Equation 4.

pry =

∑m
i=1 qiy
m

, ∀y ∈ {1, . . . , ν} (3)

ŷ = argmax
y

{pry} (4)

We predict class label ŷ by assigning the data point x to the class with the maximum probability.
Although most classification methods suffer from the curse of dimensionality, the random subspace method
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takes advantage of high dimensionality. Opposite to the Occam’s razor, generalization accuracy improves as the
complexity of classifier increases [15].

2.2. Conic functions for classification

Conic functions to separate 2 sets of data is presented by Gasimov and Ozturk [24]. A conic function,
g : Rn → R , is defined as in Equation 5. In this equation, x,w, c ∈ Rn and ξ, p, γ ∈ R , where x is the
data point, w is the aim, c is the vertex point and γ is the bias. We summarize parameters of a PCF in Table
2. In [24], the authors use a special case of this definition when p = 1 and named the function polyhedral conic
functions due to these type of functions have at most 2n sides in Rn . Essentially, separation border between 2
data sets correspond to a level set of a PCF and this border is formed via intersection of utmost 2n half-spaces.
Level set of a PCF is convex polyhedron. Figure 1 interprets the graph and level set of a PCF when the feature
size is 2 of a data point. One can also see a decision boundary contructed by a PCF for a binary classification
task from Figure 1. We label a data point as blue class or red class according to data point’s value at that PCF.
More specifically if a data point lays in the blue region, it gets a negative value at the PCF and gets a positive
value, otherwise. Cimen et al. use p = 2 norm to obtain circular separation borders [34].

g(w,ξ,γ,c)(x) = ⟨w, (x− c)⟩+ ξ∥x− c∥p − γ (5)

Table 2. Parameters of a PCF.

Parameter Meaning
x Data point
w Aim
c Vertex point
ξ Measure of folding of a PCF
γ Bias
p Norm
n Feature size

Assume that a multiclass classification problem is converted into a binary classification problem where
class y∗ is the target. Then, training set T is split into 2 sets; A (target class) and B (rest) as in Equation
6 and Equation 7. One way to obtain a PCF that separates A and B , is solving a linear programming (LP)
model as given in Equation 8.

ah ∈ A ⊂ T h ∈ H = {f |yf = y∗, f = 1, . . . , e} (6)

bj ∈ B ⊂ T j ∈ J = {f |yf ̸= y∗, f = 1, . . . , e} (7)
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Figure 1. Graph and level set of a PCF in R2 where z dimension is PCF value.

min
1

|A|
∑
h∈H

θh +
1

|B|
∑
j∈J

ψj

s.t.
⟨w, (ah − c)⟩+ ξ

∥∥ah − c
∥∥
1
− γ ≤ θh ∀h ∈ H

−⟨w, (bj − c)⟩ − ξ
∥∥bj − c

∥∥
1
+ γ ≤ ψj ∀j ∈ J
ξ, γ ≥ 1
θh ≥ 0 ∀h ∈ H
ψj ≥ 0 ∀j ∈ J

(8)

In the LP model in Equation 8, a constraint is added to the model for each data point in sets A and
B . On obtained the PCF, it is expected that all the data points belong to set A , ah ∈ A , takes a positive
value and all the data points belong to set B , bj ∈ B , takes a negative value. That’s the reason of opposite
signs in the constraints. θh and ψj are the classification errors of the corresponding data points and obviously,
the objective function aims to minimize weighted sum of the classification errors. It should be stated that the
center c ∈ Rn is calculated as mean value of set A , prior to the LP solution. By this way, linearity is satisfied
in the model. Once the parameters w , ξ and γ are obtained as a solution of the LP, any data point x ∈ Rn

in the test set can be classified as A if g(w,ξ,γ,c)(x) < 0 or classified as B , otherwise.

3. Proposed method: random subspace based conic functions ensemble classifier (RS-CF)

In this study, we present an ensemble classification method based on conic functions. This method consists
of multiple steps and in each step, our algorithm repeats the following processes: Firstly, training data is
represented into fewer dimensional space by selecting dimensions randomly. Then, the corresponding LP model
is solved to get the classifier parameters for each target class. At the end of these repeated steps, an ensemble
of conic classifiers is obtained.

With this study, it is expected to reduce the overfitting problem of conic classifiers, when the dimension-
ality is high. In order to reach this goal, we get to benefit from the random subspace approach. The reason we
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Algorithm 2 A random subspace ensemble classifier based on conic functions.
0: Input: Training set T ∈ Re×n , number of classifiers to be trained for each class is m, dimension of subspaces

is ñ , class labels y ∈ {1, . . . , ν} .
Output: Ensemble of classifiers G = {g11, . . . , g1m, . . . , gν1, . . . , gνm} and selected random feature subsets
S = {S1, . . . , Sm} .

1: for i = 1 to m:
2: Select a random subset of features {1, . . . , n} with ñ elements.
3: Hold selected random subset of features as Si .
4: Project training set T into Si and get projection as T̃i ∈ Re×ñ .
5: for y = 1 to ν :
6: Split T̃i into Ãi and B̃i where:

ãh ∈ Ãi ⊂ T̃i h ∈ H = {f |yf = y, f = 1, . . . , e} (9)

b̃j
∈ B̃i ⊂ T̃i j ∈ J = {f |yf ̸= y, f = 1, . . . , e} (10)

7: Calculate cyi ∈ Rñ as centroid of Ãi .
8: Solve the LP model to obtain w̃1

yi, w̃2
yi, ξyi, γyi parameters of gyi :

min
1

|Ãi|

∑
h∈H

θh +
1

|B̃i|

∑
j∈J

ψj + λ(∥w̃1
yi∥1 + ∥w̃2

yi∥1 + ξyi + γyi)

s.t.
⟨(w̃1

yi − w̃2
yi), (ãh − cyi)⟩+ ξyi

∥∥∥ãh − cyi

∥∥∥
1
− γyi ≤ θh ∀h ∈ H

−⟨(w̃1
yi − w̃2

yi), (b̃
j
− cyi)⟩ − ξyi

∥∥∥b̃j
− cyi

∥∥∥
1
+ γyi ≤ ψj ∀j ∈ J

ξyi, γyi ≥ 1
w̃1

yi, w̃2
yi ≥ 0
θh ≥ 0 ∀h ∈ H
ψj ≥ 0 ∀j ∈ J

9: end for
10: end for

want to solve this problem is that the effectiveness of conic function based classifiers on high dimensional data
is low. The overfitting drawback of current conic function based classifier methods prevents the application of
these approaches to some real-life problems. In Algorithm 2, developed random subspace-based conic functions
ensemble classifier method is given.

Algorithm 2 differs from previous implementations of conic function based methods, in terms of model
creation and the LP model. Algorithm 2 requires to solve (m× ν) LP models. By this way, m conic functions
are obtained for each class. In step 2 of Algorithm 2, active ñ dimensions are randomly selected from feature set
{1, . . . , n} . In step 4, the training set T is projected into that particular subspace and T̃i ∈ Re×ñ is obtained.
Following to that process, T̃i is split into Ãi and B̃i , where data points of Ãi are in T̃i and their labels
are equal to y . Oppositely, class labels of the data points of B̃i , do not equal to y . Essentially, this part is
none other than one-vs-all approach for multiclass classification. Once the target class Ãi , and the rest B̃i are
get, then the corresponding LP problem is solved to get w̃1

yi, w̃2
yi, ξyi, γyi parameters of classifier gyi . Here,
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gyi stands for the classifier of yth class in ith random subspace selection. When all iterations are completed,
ensemble of classifiers G = {g11, . . . , g1m, . . . , gν1, . . . , gνm} are obtained.

The LP model in step 8 of Algorithm 2 consists a constraint for each data point in Ãi and B̃i , in
addition to the sign constraints. The first constraint group is all ah ∈ Ãi and θh is the classification error for
the corresponding data point. θh is equal to 0, as long as related data point remains at the negative side of the
PCF. Oppositely, in the second group of the constraints, the LP model tries to force all bj ∈ B̃i to be at the
positive side of the PCF. ψj is the classification error for bj and it is equal to 0 if bj has a positive value in
the PCF.

The objective function of the LP has 2 parts. The first part, 1
|Ãi|

∑
h∈H θh + 1

|B̃i|

∑
j∈J ψj , is basically

sum of classification errors in the training. Clearly, this part is balanced with the cardinality of Ãi and B̃i . The
second part, ∥w̃1

yi∥1 + ∥w̃2
yi∥1 + ξyi + γyi , is the l-1 norm regularization term [41], which is not seen in previous

implementations of PCF based methods. λ is the tuning parameter between sum of classification errors and
regularization term.

One can notice the difference between PCF definition in Equation 5-8 and the LP model in Algorithm
2. Such a redefinition as in Equation 11 is needed not to violate linearity in the regularization part in step 8 of
Algorithm 2. Otherwise, it would be needed to use absolute value of w̃ ∈ Rñ because of w̃ is unconstrained
in sign and that makes the model is not solvable by an LP model. In order to overcome this barrier, w̃ is
rerepresented as in Equation 11 and one can see, thanks to Equation 12, l -1 norm of the vector does not violate
the linearity in the objective function. Additionally, it should be noted that the objective function will always
force the w̃1

yi or w̃2
yi to be 0 .

w̃ = w̃1 − w̃2; w̃1, w̃2 ≥ 0 (11)

∥w̃∥1 = ∥w̃1∥1 + ∥w̃2∥1 =
∑ñ

d=1 w̃
1
d + w̃2

d

w̃1 = {w̃1
1, . . . , w̃

1
ñ}; w̃2 = {w̃2

1, . . . , w̃
2
ñ}

(12)

Prediction of any test point, x is made according to majority voting as given the Algorithm 3. This
computation is repeated for each data point in the test set.

ŷ = argmax
y

{pry} (13)

In step 5 of Algorithm 3, x̃i is classified as class y by gyi , if gyi(x̃i) < 0 is satisfied. In step 6, probabilities
of corresponding classes are found and the predicted class label ŷ is found in Equation 13.

4. Experimental results

In this section, training/testing accuracy and training/testing times of the proposed method are presented
in comparison with support vector machines (SVM) [42], random forest [16, 17], AdaBoost [43], extreme
learning machine (ELM)[44], single polyhedral conic function and k -means based polyhedral conic functions
[28] classifiers. Such a comparison is essential to present the advantages and disadvantages of the study. SVM
and random forest are selected for comparison due to being 2 of the most widely used classifiers. Another
important point of comparison with random forest and AdaBoost is that they are ensemble learning-based
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Algorithm 3 Class label prediction.
0: Input: Ensemble of classifiers G = {g11, . . . , g1m, . . . , gν1, . . . , gνm} , selected subsets Si where i ∈

{1, . . . ,m} and test point x ∈ Rn .
Output: Class label ŷ and classification probabilities pr of test point x .

1: Set class probability vector pr = {pr1, . . . , prν} = 0
2: for i = 1 to m:
3: Project x into Si and obtain x̃i ∈ Rñ .
4: for y = 1 to ν :
5: if gyi(x̃i) < 0 :
6: pry = pry + (1/m)
7: end if
8: end for
9: end for

methods. Extreme learning machine represents neural network based classifiers in this comparison. k -means
based polyhedral conic functions method and single PCF can be shown as 2 of the most successful classifiers
that use conic functions. We present results of classifiers when principal component analysis (PCA) [9] and
linear discriminant analysis (LDA) [12] are applied to datasets to reduce dimensionality.

The hyper-parameters of the classifiers are optimized with grid search and the best test accuracy is
selected among the obtained results. The λ of the proposed method is chosen from {0.01, 0.05, 0.1, 0.2}, ñ is
chosen from data set feature size × {0.1, 0.2, 0.3} and the number of classifiers in the ensemble (M) is chosen
from {5, 10, 20}. Gaussian radial basis kernel (RBF) is used while training the SVM. γ of the RBF kernel
is chosen from {auto calculation, 2−5, 2−3, 2−1, 1, 21, 23, 25}. The cost of the SVM is searched in {1, 23, 25 }.
Random forest number of estimators are selected among {5, 10, 20, 30}. The cluster size of the k -Means PCF
method is searched in {1, 3, 5}. The number of principal components selected among data set feature size
× {0.1, 0.2, 0.3, 0.4}. AdaBoost’s number of estimators are selected from {5, 10, 20, 30, 50, 100}. 5 -fold cross
validation procedure is used in the tests.

We implement the proposed algorithm in MATLAB and Python 3.7. One can reach source codes from
CIOL laboratory GitHub page1. We solve linear programming models with the Gurobi package [45] in Python
and with MATLAB’s linear programming solver. Tests are carried out on a computer with Intel (R) Core (TM)
i7 CPU running at 2.5 GHz and 16 GB RAM.

7 benchmark data sets are selected from UCI ML data set repository [46]. Statlog data set [46] consists
of multispectral values of pixels in 3×3 neighborhoods in a satellite image, and the classification associated
with the central pixel in each neighborhood. SCADI data set [47] contains measurements of 70 children with
physical and motor disability based on ICF-CY. The aim in arrhythmia [48] data set is to distinguish between
the presence and absence of cardiac arrhythmia and to classify it in 1 of the 16 groups. The classes in the
data set are converted to 2 classes as healthy and patient. LSVT voice rehabilitation data set [49] features to
correspond to speech signals, and the aim is to classify whether voice rehabilitation treatment leads to phonations
considered acceptable or unacceptable. Parkinson’s disease (PD) data set [50] consists of speech signal features
of healthy controls and patients. CNAE-9 [51, 52] is a highly sparse (99.2%) data set containing 1080 documents
of free text business descriptions of Brazilian companies. TTC-3600 Turkish text categorization data set [53]

1CIOL (2020). A random subspace based conic functions ensemble classifier source code [online]. Website
https://github.com/emrecimen/CIOL-ConicFunctionsBasedClassifiers [accessed 13 April 2020].
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consists of documents including 600 news/texts from 6 classes: economy, culture-arts, health, politics, sports,
and technology. The number of features, classes, and data points in the data sets can be found in Table 3. We
choose these datasets because their number of features/number of samples ratio are high.

Table 3. Description of the datasets.

Data set # Data points # Features # Classes
Statlog 6435 36 6
SCADI 70 206 7
Arrhythmia 452 279 2
LSVT 126 309 2
PD 756 754 2
CNAE-9 1080 857 9
TTC-3600 3600 4814 6

Training and testing times are provided in Tables 4 and 5. The proposed method requires more training
time than other methods. It is because an LP is solved recursively m× ν (number of classifiers in the ensemble
× number of classes )times. Random forest algorithm has an advantage on the other methods in terms of
training and testing time. AdaBoost and ELM requre very short time for testing. Combining a classifier with
PCA shortens its test time. However since computing principal components takes time, it increases training
time in some tests. All methods’ testing times are less than 2 min.

Training and testing accuracies are presented in Tables 6 and 7. SVM and random forest have an
overfitting problem in all data sets. Similarly, k -Means PCF overfits in all data sets except Statlog. ELM,
AdaBoost, and the RS-CF methods are more robust to overfitting. However, AdaBoost fails on CNAE-9,
and ELM fails on TTC-3600. Although combining classifiers with PCA to get fewer dimensions has some
improvements on overfitting, it does not solve this problem.

Out of 7 sets, in the 2 sets SVM + PCA, in the 1 set RF, in the 2 sets ELM + PCA, in the 1 set AdaBoost
and in the 3 sets the proposed method RS-CF achieve the best performance. No method dominates the others.
Although PCA does not prevent overfitting of classifiers, it is clear that PCA provides some improvement in
the test performances. Contrary to PCA, LDA could not help to improve test performances. Furthermore, it
could not prevent overfitting in most of the tests. Especially in the TTC-3600 dataset, LDA combined classifiers
performed poorly. AdaBoost fails on CNAE-9 but achieves consistent results in the other test sets. Similarly,
ELM performs poorly on TTC-3600 but achieves the best results in the 2 of the sets. RF never fails but can
achieve the best test accuracy only in 1 of the tests. RS-CF achieves the best accuracy on 3 of the sets and lays
in the first or second place on 5 of the tests. RS-CF achieves better accuracy than the previous implementations
of conic function based classifiers k -Means PCF and single PCF. On 6 of the tests, RS-CF achieves better
accuracy than k -Means PCF and single PCF. One can see graphs of training and test accuracies can in Figures
2 and 3 .

5. Conclusions
High dimensionality in the data has always been a problem when the number of samples is not enough, and
the number of features/number of samples ratio is high. This problem may arise in many real-life problems,
e.g., medicine, biology, physics. In this case, the feature space cannot be well-represented, and almost all of the
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Table 4. Training times.

Statlog SCADI Arrhythmia LSTV PD CNAE-9 TTC-3600
SVM 2.11 0.01 0.20 0.03 1.24 1.80 333
SVM + PCA 1.44 0.01 0.04 0.01 0.16 0.73 186
SVM + LDA 2.54 0.05 0.16 0.06 0.87 1.48 91.9
RF 1.24 0.03 0.21 0.09 0.81 0.31 4.35
RF + PCA 1.22 0.13 0.19 0.20 0.28 1.00 12.3
RF + LDA 1.39 0.17 0.21 0.18 0.75 1.44 72.2
k-means PCF 54.7 1.26 2.34 11.8 183 8.78 484
k-means PCF + PCA 43.8 1.22 1.36 1.54 42.9 22.7 43.0
k-means PCF + LDA 99.8 0.48 1.00 0.29 2.07 35.0 131
single PCF 23.7 1.88 3.19 7.36 110 5.48 384
single PCF + PCA 14.5 1.25 1.07 0.87 35.6 7.61 1093
single PCF + LDA 26.8 0.42 0.60 0.29 1.33 9.08 92.8
ELM 3.91 0.17 0.49 0.15 0.52 0.91 16.6
ELM + PCA 0.64 0.09 0.18 0.15 0.68 0.84 197
ELM + LDA 0.67 0.11 0.21 0.17 2.04 4.02 5069
AdaBoost 0.40 0.13 0.19 1.63 18.7 0.56 43.0
AdaBoost + PCA 0.11 0.04 1.40 0.39 1.31 4.54 222
AdaBoost + LDA 0.42 0.37 0.23 0.06 0.71 1.97 81.1
Proposed (RS-CF) 476 2.91 9.44 2.85 38.3 112 22526

Table 5. Test times.

Statlog SCADI Arrhythmia LSTV PD CNAE-9 TTC-3600
SVM 0.50 0.01 0.05 0.01 0.31 0.39 50.0
SVM + PCA 0.27 0.01 0.01 0.01 0.03 0.15 25.5
SVM + LDA 0.27 0.01 0.01 0.01 0.02 0.04 0.35
RF 0.04 0.01 0.02 0.01 0.02 0.03 0.19
RF + PCA 0.03 0.01 0.01 0.02 0.01 0.03 0.06
RF + LDA 0.05 0.02 0.01 0.02 0.04 0.04 0.25
k-means PCF 14.7 0.07 0.23 0.04 0.37 1.89 73.5
k-means PCF + PCA 18.5 0.05 0.15 0.01 0.27 3.00 2.48
k-means PCF + LDA 2.46 0.02 0.07 0.02 0.12 0.66 1.71
single PCF 1.74 0.08 0.11 0.02 0.21 0.82 26.5
single PCF + PCA 4.56 0.06 0.06 0.01 0.05 0.54 1.68
single PCF + LDA 0.61 0.01 0.04 0.01 0.05 0.18 0.70
ELM 0.17 0.01 0.06 0.01 0.06 0.05 1.15
ELM + PCA 0.03 0.01 0.02 0.01 0.01 0.02 0.56
ELM + LDA 0.04 0.01 0.01 0.01 0.01 0.04 0.05
AdaBoost 0.02 0.02 0.02 0.08 0.15 0.05 2.48
AdaBoost + PCA 0.01 0.01 0.08 0.04 0.05 0.05 0.87
AdaBoost + LDA 0.02 0.04 0.01 0.01 0.01 0.06 0.45
Proposed (RS-CF) 43.0 0.19 0.59 0.16 1.01 18.1 84.9
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Table 6. Training accuracies.

Statlog SCADI Arrhythmia LSTV PD CNAE-9 TTC-3600
SVM 99.76 98.45 100.0 100.0 100.0 99.70 99.88
SVM + PCA 97.92 96.87 100.0 100.0 100.0 99.93 99.97
SVM + LDA 91.03 100.0 95.52 100.0 100.0 99.81 99.98
RF 99.96 99.19 100.0 99.80 99.90 100.0 99.98
RF + PCA 99.88 100.0 99.88 100.0 99.76 100.0 99.76
RF + LDA 99.93 100.0 99.34 100.0 100.0 100.0 99.98
k-means PCF 90.97 100.0 98.06 100.0 100.0 98.96 99.27
k-means PCF + PCA 89.70 100.0 80.70 100.0 100.0 99.91 76.49
k-means PCF + LDA 85.90 100.0 95.08 100.0 100.0 100.0 99.98
single PCF 83.64 100.0 90.43 100.0 100.0 98.77 99.38
single PCF + PCA 85.00 100.0 83.96 98.81 100.0 94.35 97.65
single PCF + LDA 85.53 100.0 95.47 100.0 100.0 99.98 99.94
ELM 90.74 100.0 77.87 99.80 76.82 78.94 32.71
ELM + PCA 86.28 100.0 78.43 99.80 84.95 78.22 32.52
ELM + LDA 85.96 92.19 55.81 72.23 74.60 12.31 95.15
AdaBoost 74.42 77.72 83.35 100.0 100.0 38.54 76.49
AdaBoost + PCA 78.61 74.56 100.0 100.0 94.74 55.69 83.68
AdaBoost + LDA 79.48 100.0 95.90 100.0 100.0 48.89 69.97
Proposed (RS-CF) 75.52 95.71 87.00 98.01 91.50 97.50 99.62

Table 7. Test accuracies.

Statlog SCADI Arrhythmia LSTV PD CNAE-9 TTC-3600
SVM 92.24 88.69 54.20 66.69 74.60 94.07 85.28
SVM + PCA 92.26 88.85 54.20 66.67 74.60 94.17 75.92
SVM + LDA 88.32 63.71 60.40 72.95 72.10 76.95 22.14
RF 90.66 91.94 74.79 85.72 82.27 91.76 84.92
RF + PCA 90.57 84.23 72.14 76.18 77.27 89.35 81.36
RF + LDA 88.46 66.41 58.64 72.95 63.50 85.19 33.95
k-means PCF 89.11 71.79 71.68 76.09 72.89 85.28 65.03
k-means PCF + PCA 88.29 81.14 74.77 67.40 73.90 80.00 72.36
k-means PCF + LDA 85.65 66.92 61.51 75.29 68.26 82.31 31.70
single PCF 83.51 78.21 73.89 73.04 74.70 85.65 71.22
single PCF + PCA 84.76 79.24 77.19 73.75 75.13 82.59 77.50
single PCF + LDA 84.29 68.59 61.51 72.95 63.50 76.20 29.80
ELM 86.20 90.60 60.17 62.71 72.88 52.96 24.53
ELM + PCA 92.26 88.85 54.20 66.67 74.60 94.17 75.92
ELM + LDA 83.50 48.83 55.31 69.82 74.60 11.57 29.69
Adaboost 74.06 73.46 76.57 84.92 84.66 37.41 72.36
Adaboost + PCA 78.29 67.18 71.47 68.22 78.44 53.42 76.42
Adaboost + LDA 79.19 66.80 61.51 72.95 63.49 42.41 29.64
Proposed (RS-CF) 75.10 93.94 78.76 84.18 83.86 92.22 90.86
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Figure 2. Training accuracies.
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classification methods struggle with the overfitting problem. Feature selection/extraction algorithms represent
data with lower dimensions to overcome this problem. Another approach is ensemble learning, which trains
multiple classifiers. In this method, a projection of input feature space into a random subspace is used to train
each classifier.

PCF based classifier methods have shown to be successful classifiers in the literature with applications.
However, current versions of PCF based classifiers have the overfitting problem when the feature size is close
or higher than the number of data points. In this study, a random subspace ensemble classifier based on conic
functions (RS-CF) is introduced. We aimed to bring a novel solution to the overfitting problem of conic function
based classifiers. We evaluated the performance of the proposed method in comparison with the wide range of
other methods presented in the literature. SVM, RF, AdaBoost, ELM, k -Means PCF, single PCF classifiers
are used for the benchmark. We applied PCA and LDA for dimensionality reduction and used reduced versions
of data sets with benchmark classifiers. We show that the proposed method has achieved the best results more
than other methods, and it can compete with the other methods. Moreover, the proposed method overperforms
k -Means PCF and single PCF, which are the previous implementation of conic functions based classifiers. In
future research, we plan to apply the proposed method to real-life applications in medicine and psychology.
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