
Turk J Elec Eng & Comp Sci
(2020) 28: 1841 – 1858
© TÜBİTAK
doi:10.3906/elk-1907-49

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Assessment of environmental factors affecting software reliability: a survey study

Alper ÖZCAN1, Çağatay ÇATAL2,∗, Cengiz TOGAY3, Bedir TEKİNERDOĞAN4,
Emrah DÖNMEZ5

1Research & Development Group, Softtech Research Center, İstanbul, Turkey
2Department of Computer Engineering, Bahçeşehir University, İstanbul, Turkey

3Department of Computer Engineering, Uludağ University, Bursa, Turkey
4Information Technology Group, Wageningen University & Research, Wageningen, Netherlands

5Department of Computer Engineering, İnönü University, Malatya, Turkey

Received: 08.07.2019 • Accepted/Published Online: 21.02.2020 • Final Version: 29.07.2020

Abstract: Currently, many systems depend on software, and software reliability as such has become one of the key
challenges. Several studies have been carried out that focus on the impact of external environmental factors that
impact software reliability. These studies, however, were all carried out in the same geographical context. Given the
rapid developments in software engineering, this study aims to identify and reinvestigate the environmental factors that
impact software reliability by also considering a different context. The environmental factors that have an impact on
software reliability as reported in earlier studies have been analyzed and synthesized. Subsequently, a survey study is
conducted to analyze the impact of 32 environmental factors from the perspective of multiple stakeholders. Several
statistical analysis methods were applied for the analysis. Data were collected from 24 organizations and 70 software
professionals. Most factors shown in top 10 lists of previous studies remain in the top 10 in our study, but their order
is different. Testing coverage is now the most significant factor and testing effort is considered as the second most
significant factor. The environmental factors defined previously retain their impact. The ordering of the importance of
the environmental factors has changed though.

Key words: Software reliability, survey, software engineering, environmental factors
1. Introduction
Software-intensive systems are getting more and more complex with the introduction of new technologies
(e.g., blockchain and edge computing), the higher expectations of end users, and the increasing number of
development teams and locations necessary for the development of a complex software product (i.e. global
software engineering). Codebases in many large-scale projects have now reached hundreds of millions of lines
of code with a human intractable number of states. Software systems are nowadays among the most complex
entities humankind has ever built [1]. Due to this increasing complexity, software reliability is now one of the
most important challenges of software development and hence building a reliable software system requires new
tools, methods, and techniques. Although software reliability modeling has been studied since the 1970s and
many models have been published so far [2], reliability in software engineering is still an active research area
[3–6].

Many different definitions of reliability have been provided, often including the probability of failure-
free operation in the hardware domain or continuity of proper service. One of the standard definitions is
∗Correspondence: cagataycatal@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.
1841

https://orcid.org/0000-0002-5999-1203
https://orcid.org/0000-0003-0959-2930
https://orcid.org/0000-0001-5739-1784
https://orcid.org/0000-0002-8538-7261
https://orcid.org/0000-0003-3345-8344


ÖZCAN et al./Turk J Elec Eng & Comp Sci

provided by ISO/IEC SQuaRE [7], which defines software product reliability as the degree to which a software
product performs its functions for a certain period under predetermined conditions. In the SQuaRE quality
model [7], reliability is a key quality factor that further includes the subcharacteristics of availability, maturity,
fault tolerance, and recoverability. Many studies have focused on providing techniques and tools for these
characteristics with the aim of building a reliable system.

Despite the broad interest in software reliability analysis, it appears that the majority of the current
studies focused on the internal quality of the system and did not explicitly consider the environmental factors
that impact the reliability of software systems during the development, testing, and operation [8]. Software
development is an inherently complex human activity that is performed in different contexts. A comprehensive
reliability assessment requires the consideration of both the internal and environmental factors. While there is
no general definition of environmental factors that affect the software reliability [9], there are several studies
that explain and investigate these environmental factors [10].

Initially, Zhang and Pham [10] presented 32 environmental factors (e.g., requirements analysis, testing
effort, domain knowledge, documentation, human nature, and processors) including each phase of the software
development process, teamwork, human nature, and interactions with hardware systems [8] and investigated
their rankings and correlations for the software reliability assessment by using a survey among many experts
from industry. Later, Zhang et al. [11] performed further analysis to reduce the number of factors with the
help of factor analysis and analyzed the relationships between several factors. Fifteen years later, Zhu et al.
[8] revisited these 32 factors and analyzed their impact on software reliability using a survey. They compared
their findings with those two papers previously published. Since these three studies focused on the software
development process of single-release software, later on, they performed another survey study to investigate the
impact of environmental factors for multi-release software [9].

All of the studies that we mentioned were performed with experts working in US companies but nowadays
globally distributed projects are very common in the software industry and hence we need to gather other
perspectives from software experts in other countries. Thus, the present study aims to reinvestigate the impact
level of environmental factors in a geographical context different than the US. For this, we chose Turkey, which
is one of the top 30 countries for offshore IT services according to Gartner reports [12]. The present study
further aims to compare the results with those of earlier studies and reports on the differences and the key
lessons learned.

This investigation is performed using a survey study with 70 software experts in the Turkish software
industry fulfilling different roles including software managers, software engineers, architects, project managers,
analysts, and test engineers. These software experts were asked to evaluate the effect of environmental factors
on the software reliability assessment. After the survey results were collected, they were processed with
several statistical techniques such as relative weighted method, principal component analysis (PCA), analysis of
variance (ANOVA), and correlation analysis and compared with those of previous studies. The survey protocol
representing the main steps of the survey study is presented in Section 3. The remaining sections are organized
as follows: Section 2 presents the background and related work. Section 3 describes the adopted research
methodology of the present study. Section 4 presents the results of the survey study. Section 5 presents
the discussion, including the lessons learned and the potential validity threats. Finally, section 6 shows the
conclusion and future work.

1842



ÖZCAN et al./Turk J Elec Eng & Comp Sci

2. Related work
Software reliability is one of the eight quality characteristics based on ISO/IEC SQuaRE standard [7], which is
affected by various different factors. The type and the number of these factors can vary depending on the number
of parameters in the analyzed environment. Several studies have been presented in the literature that aim to
define and analyze these factors. Their specific goal is first to define the factors affecting the reliability and then
analyze the correlation between these factors by using the data acquired from the software organizations.

Zhang and Pham [10] introduced 32 environmental factors to determine the effect of these factors affecting
the reliability of software during the software development process. These environmental factors were grouped
into five parts: general, analysis & design, coding, testing, and hardware systems. A survey was conducted
with software managers and developers in 13 companies such as Chrysler and AT&T that had software projects.
They emphasized the significance of factors in development phases and examined the factor correlation. They
identified the top five factors as follows: program complexity, programmer skills, testing coverage, testing effort,
and testing environment.

Zhang et al. [11] performed an exploratory analysis to investigate the relations between previously
determined environmental factors in their study [10]. They aimed to reduce the factor dimension space by
combining these factors, analyzed whether the development phases have similar impact on reliability assessment
or not, and investigated if there is a correlation between the background information of the participants, such
as experience, and their opinions. The top 11 environmental factors were applied for the factor analysis. Four
common categories were determined as follows: general factors that were represented under the overall factor,
testing efficiency, requirements & specification, and program & skill level. They reported that four software
development phases (testing, coding, general, and analysis & design) were equally important for software
reliability assessment.

Zhu et al. [8] aimed to reinvestigate the 32 environmental factors in 2015, which were introduced by
Zhang and Pham [10] in 2000 because software development has changed dramatically during the intervening
15 years. The survey was performed among software practitioners from 20 organizations. They compared their
results with those of the two studies by Zhang et al. [10, 11] and determined the most important factors based
on the principle component analysis and the factor ranking methods. Most of the factors in the top 10 list of
Zhang et al. [10, 11] were again in the top 10 list in their new study, but there were some changes in their
importance order. The top environmental factor was the frequency of program specification change in their
study, while it was program complexity in the previous study [10]. They compared the principle components
determined in their study with the common factors reported in Zhang and Pham’s study [11] and reported that
these components are slightly different compared to the previous findings. Zhang and Pham [11] had stated
that all phases of software development have equal importance for reliability assessment, but in this study
they showed that the testing phase has the highest impact on reliability and analysis & design ranked second.
Loganathan and Muthuraj [13] aimed to develop a methodology to decrease the data volume in reliability studies
of software. They focused on 34 potential environmental factors important for software reliability. A survey was
conducted among 25 software developers selected randomly. An agglomerative hierarchical clustering method
was implemented and seven clusters were obtained.

Zhu and Pham [9] recently analyzed the environmental factors on reliability for multirelease software and
compared the significant factors of single-release software with those of multirelease software. Since lean software
development and agile software methodologies have become dominant approaches for software development in
the last decade, multirelease software is more common compared to single-release software. They reported that

1843



ÖZCAN et al./Turk J Elec Eng & Comp Sci

60% of factors listed as top 10 factors in previous studies are still in the top 10 list, but the significance order
has changed dramatically.

Table 1 presents a summary of the previous studies based on several characteristics. The numbers of
participants vary between 23 and 45. There are mostly 32 environmental factors. Relative weighted and
analysis of variance methods are the preferred methods. A Likert scale was utilized to score each factor in these
studies. SNK and Tukey grouping methods were used to classify factors. Correlation analysis was applied to
determine the factor relationships and PCA was used to identify the new principles. The statistical methods
are mostly used in these studies. Furthermore, the environmental factors should be investigated with more
data to improve the external validity. In addition, there may be some factors that were not introduced so far.
These additional factors may be about the nature of the software development, cultural aspects, sector, location,
and organizational habits. Demographic data are also important in these studies. Our study is different than
the studies explained in the table because most of these surveys were performed among software developers in
the USA. Due to the increasing level of global software engineering practices, it is crucial to perform a survey
with software practitioners in other countries. Compared to the other studies, we gathered more data (70
participants) and analyzed them to investigate our findings in terms of those in the other studies. Our study
presents the perspectives of software practitioners in a country other than the USA for the first time in the
literature.

Table 1. Summary of the related work.

Zhang and Pham
(2000)

Zhang et al.
(2001)

Loganathan and
Muthuraj (2013)

Zhu et al. (2015) Zhu and Pham
(2017)

Data 23 surveys (13
different
organization)

35 surveys (13
different
companies)

25 different soft-
ware developers

35 surveys (20
different
organizations)

45 surveys
(different
organizations)

Factors 32 32 34 32 32
Method Relative

weighted method
and ANOVA

Factor analysis
with Varimax
rotation and
ANOVA

Clustering the
factors and
single linkage
nearest neighbor

Relative
weighted
method and
ANOVA

Relative
weighted
method,
lasso regression,
and stepwise
backward
elimination

Measurement
scale

Likert (1–7) Likert (1–7) Special (0–7) Special (0–7) Likert (1–7)

Factor
ranking

Normalized
priority results

Normalized data
with relative
weighted method

No Normalized data
with relative
weighted method

Normalized data
with relative
weighted method

Factor
classification

SNK grouping
method accord-
ing to average
values

SNK grouping
method and
regression
analysis

No factor
clustering and
dendrogram

Tukey grouping
method accord-
ing to average
values

Tukey method
and multiple
linear regression

Correlation
analysis

Yes (dependency
between factors)

No No Yes (dependency
between factors)

Yes (dependency
between factors)

Dimensionality
reduction

No Regression
analysis

PCA PCA PCA

Development
phases
grouping

No Yes No Yes Yes

1844



ÖZCAN et al./Turk J Elec Eng & Comp Sci

3. Methodology

3.1. Survey protocol

In this section we first present the survey design that is used to answer the research question. Initially, the
survey design must be able to match the defined objectives and the extracted survey data and analysis must
be able to answer the posed research question. Surveys might be designed for different purposes and can be
carried out in different ways. The survey design protocol that we describe is based on the protocol as defined
by Kitchenham and Phleeger [14–16]. There are several advantages of survey research [17]. First, the empirical
data are produced based on real-world observations. Second, it can be generalized to a population and it is
more effective in terms of breadth of coverage. Last, the production of the survey data is relatively low cost
and can be prepared in a short time. In our case we focus on so-called descriptive survey design, in which it
is aimed to capture and describe the current state. In the context of the present study we thus aim to provide
a survey design to describe the impact of environmental factors on software reliability in different geographical
locations. Descriptive, observational survey designs can be further categorized into cross-sectional, cohort, and
case control [18]. Our study can be primarily characterized as a case control study in which the study is
retrospective, asking participants about their previous circumstances to help explain a current phenomenon. In
particular, we ask stakeholders in software projects about their experiences in the factors that had an impact
on software reliability. The survey protocol that we adopt is shown in Figure . Each of these steps in this figure
is essential in survey research.

Describe the objective and
research question(s)

Prepare sampling and data
analysis

Prepare questionnaire

Monitor and carry out the
survey

Implement the analysis 
of the data

Write the research report

Figure . Survey protocol.

The first step is the description of the objective and the research question(s). A good research study
should address a clear research question [17]. The next step is to select a sample of the population because it
is impractical to gather data from every individual in the population [19]. Random sampling and nonrandom
sampling are the two main categories of sampling. Subsequently, the questionnaire must be prepared and
presented clearly. There are several good practices while designing questions for the questionnaire. For instance,
the categorization of questions based on subject, numbering the questions, avoiding the use of capital letters
only, providing clear instructions, and avoiding the use of two questions in one question (a.k.a., double barreled

1845



ÖZCAN et al./Turk J Elec Eng & Comp Sci

question) and questions that have double negatives are some of the good practices that should be taken into
account during this step [17]. After the questionnaire is prepared, the survey is mostly performed with a pilot
sample of individuals in the population to make sure that the participants understand the questions, all the
possible response categories are defined, and no question is systematically missed [17].

In our survey protocol in Figure , this piloting step is considered a part of the Monitor and Carry Out
the Survey step and therefore it is not explicitly depicted. While carrying out the survey, a covering letter
must be provided to participants to explain the organizations involved in this study, the contact address of the
researchers, the purpose of the study, and details of why the participant was selected and how the information
will be processed [17]. For implementing the analysis of the data, a considerable amount of time should be
planned and spent [17]. Methods that are applied during the analysis depend on the survey design. In the
present study, we used relative weighted method (section 3.2.1), PCA (section 3.2.2), ANOVA (section 3.2.3),
and correlation analysis (section 3.2.4) as the main approaches for the analysis of the data. The last step of the
survey protocol is to write the research report based on the observed results.

3.2. Survey design, execution, and data collection
Replication studies in software engineering play a critical role in building scientific knowledge and, as such,
previous experiments and surveys are mostly replicated in different geographical contexts, at different times,
and with different kinds of stakeholders. In the present study, we replicated the survey study by Zhu et al. [8]
in a different geographical context. We used the same set of questions that were used in both Zhu et al.’s study
[8] and Zhang and Pham’s study [10] because we aimed to compare our results with recently reported results
in the literature. The questions that were used in our study can be accessed from Appendix A of the paper by
Zhang and Pham [10].

We designed the survey using online survey development software (onlineanketler.com). We hosted our
survey on this platform with the following address and made it available to participants for 1 month in January
2019: https://www.onlineanketler.com/s/99926a2. The results were recorded anonymously in the database of
the hosting company. Participation in this survey research was voluntary. For the survey invitation, we sent
e-mails to our network of professional contacts working in Turkish software organizations. We also shared our
survey on social media (i.e. LinkedIn).

We selected 24 organizations from diverse industries to conduct this survey. Seventy survey forms were
collected from 24 organizations, including the retail, energy, defense, aviation, financial technology (fintech), and
banking sectors. We chose several organizations from various industries to allow a wide-ranging investigation,
as discussed in Zhu et al.’s study [8]. This survey includes 32 environmental factors affecting reliability during
the software development life cycle [10] as in the research by Zhu et al. [8]. The participants used a Likert scale
(1–7) to score each factor. All the results were exported to an Excel file and processed using the techniques
discussed in the next section.

3.3. Environmental factor analysis methods
Several methods were utilized to investigate the collected data, including relative weighted method, PCA,
hypothesis testing (ANOVA), and correlation analysis. Before the investigation process started, all the data
was normalized. Normalization was performed because some of the participants might give very high scores for
many factors and we can get rid of this bias by normalizing the original ranking scores as discussed in Zhang
and Pham’s study [10].

1846



ÖZCAN et al./Turk J Elec Eng & Comp Sci

Relative weighted method is used to rank the normalized data and determine the relative weights of factors
based on only the participants’ opinions. PCA is used to reduce the dimensions of a data set by providing key
principal components. ANOVA is used to rank and determine the relative weights of factors depending on the
information in the survey forms. Correlation analysis is applied to determine the strength of the relationship
between variables, while the Pearson product-moment correlation coefficient (aka Pearson’s r) is used to observe
the relation between variables.

3.3.1. Relative weighted method
Relative weighted analysis is used to investigate the relative significance of each correlated component in the
data. The main idea of relative weights analysis is that the correlated components are converted into new
variants that are uncorrelated with one another but correlated with the respective original component (or
predictor) variant, maximally [20]. The relative weighted method is implemented to unveil the ranking between
the environmental factors in the present study. Let rij be the score of the ith factor in the jth survey. Firstly,
we normalize rij for each survey by utilizing equation 1:

wij =
rij∑n
i=1 rij

. (1)

The parameter N is the number of factors that are answered by the jth participant in the jth survey.
Then equation 2 is used to acquire the final weight of the ith factor depending on average wij. l is the number
of completed survey forms.

wi =

∑l
j=1 wij

l
(2)

3.3.2. Principle component analysis

PCA is a mathematical method of explaining the information in a multivariate data set with fewer variables and
minimal information loss. In other words, it is a transformation technique that reduces the size of the data set
containing a number of correlated variables to smaller size components. PCA mainly reduces the dimensionality
of data size. It is used to analyze the environmental factors.

3.3.3. Hypothesis testing
Hypothesis testing is implemented as a statistical hypothesis. It is a method of statistical interference that
is testable depending on observation of a process modeled through a set of random variables. ANOVA is a
statistical hypothesis testing method. It determines whether the population means of groups are equal or not in
hypothesis testing and it explains the observations. In other words, it is utilized to simply analyze the differences
among means of groups in a data set. We used the ANOVA with Tukey grouping to create the final grouping
among the factors according to the means.

3.3.4. Correlation analysis

Correlation analysis aims to find out the correlation among the factors. The variables (factors) are correlated
when the movement of one variable is accompanied by the movement of another variable. With the help of this
approach, the dependent and independent variables can be determined.

1847



ÖZCAN et al./Turk J Elec Eng & Comp Sci

4. Experimental results
During our survey, the participants stated that they had distinct positions such as software engineer, test
engineer, architect, manager, and business analyst in their organizations as shown in Table 2. The category
‘Others’ covers the following positions: researchers, system administrators, product owners, and other positions
in a software organization. According to our analysis, we noted that the number of experienced practitioners
was larger than the number of nonexperienced ones who contributed to this survey. Based on this table, we
see that most of the participants are software engineers and software architects. As the second characteristic,
experience is represented in this table. Most of them have over 10 years of experience and therefore our results
reflect the experience of the participants and only 17.1% of participants have less than 5 years of experience.
The third characteristic is the company size and most of the participants work in organizations that have over
300 participants. The fourth and the last characteristics are about the reuse of software modules and the
percentage of time spent in several phases of the software development life cycle.

Table 2. Characteristics of the participants in the survey.

Characteristic Position Mean
score

Sample
size

1. Current job positions Software engineer 32.9% 23
Software architect 24.3% 17
Manager 12.9% 9
Project manager 11.4% 8
Others 8.6% 6
Test engineer 5.7% 4
Business analyst 4.3% 3

2. Experience 16+ years 31.4% 22
15–11 years 28.6% 20
6–10 years 22.9% 16
0–5 years 17.1% 12

3. Company size 300–1000+ 60.0% 42
100–300 17.1% 12
1–100 22.9% 16

4. Reuse of modules 300–1000+ 54.8% 42
100–300 50.9% 12
1–100 50.0% 16

5. Time spent Analysis 18.36% 88
Design 16.5% 88
Coding 43.2% 88
Testing 18.4% 88

The outcome of the relative weighted method is presented in Table 3. Depending on the relative weights,
the final weight for each factor can be obtained from Table 3. The environmental factor, which has a higher
normalized weight value, impacts software reliability more than the factor having a lower normalized weight
value. According to our analysis and Table 3, the top three important environmental factors are testing coverage,
testing effort, and testing environment. All of these factors address the testing phase of software development.

1848



ÖZCAN et al./Turk J Elec Eng & Comp Sci

Zhu et al. [8] reported that the top three factors are frequency of program specification change, testing effort, and
testing environment. The only difference is the rank of frequency of program specification change. According
to our analysis, it was at rank 7 among the 32 environmental factors.

A reason for this difference between our findings and other researchers’ findings might be related to the
software application domains covered by the participants, and also software development approaches followed
within the organization. Zhu et al. [8] stated that software developers in their survey mainly focus on safety-
critical applications. For safety-critical applications, defining the correct specifications is a critical component
of the software development life cycle (SDLC), and sometimes this requires the use of formal specification
languages. As such, those participants might have considered that the frequency of program specification
change has a higher impact on software reliability. In contrast, developers from other domains in our survey
might have regarded that the evolution of specifications can be tolerated with the help of best practices in agile
software development approaches. Although SDLCs followed by the participants are not specified in Zhu et
al.’s study [8], it is highly possible that traditional SDLCs (i.e. waterfall) might have been used because this
type of SDLC is widely used for safety-critical system development. For this reason, those participants might
have considered that the frequency of program specification change is one of the top environmental factors for
software reliability.

The environmental factors that belong to the hardware category have lower normalized weights in our
study and in Zhu et al.’s study [8]. The weakest factors in our study are shown as processors, storage devices,
input/output devices, programming language, and telecommunication devices. In Zhu et al.’s study [8], we
see similar factors, namely processors, telecommunication devices, system software, input/output devices, and
storage devices. Based on Table 3, we clearly see that especially software testing and the other aspects of
software development impact software reliability.

After this analysis, we wished to analyze whether there are correlated factors or not because the dimension
of the factors can be reduced if there is a correlation among factors [8]. We utilized IBM SPSS to perform the
PCA.

PCA can identify the critical principle components from a larger data set and therefore these critical
factors can be checked by the software developers. Zhu et al. [8] selected the top 10 most important factors
based on the relative weighted method for the PCA. We preferred the top 15 factors not to eliminate the other
important factors for our PCA. Therefore, we selected the top 15 most important environmental factors (EFs)
(i.e. f25, f22, f21, f1, f19, f18, f8, f15, f23, f5, f20, f24, f11, f27, and f6) depending on the relative weights listed
in Table 3.

We selected the first five components based on the eigenvalues listed in Table 4. The eigenvalues of these
five components are larger than 1.0 (values: 3.866, 1.859, 1.551, 1.348, and 1.158) and they cover 65.219% of
the selected EFs. This means that about 65% of the variation can be explained by the first five components.
Zhu et al. [8] determined the first three components and stated that 69% of the variation is explained by these
three components. In their study, they referred to these new principles as overall, specification & knowledge,
and program complexity & skill level. We had to select five components because only 48% of the variation can
be explained by three components based on Table 4 and therefore we added two more components to reach the
same level that was reported by Zhu et al. [8].

The correlated EFs with principle components for our analysis are listed in Table 5. Here we can identify
the EFs regarding the new principles, namely overall, program workload & specification, reuse of software
modules, requirement analysis & experience, and program complexity. This observation indicates that we

1849



ÖZCAN et al./Turk J Elec Eng & Comp Sci

Table 3. Environmental factors ranking based on the relative weighted method.

Rank EF Description Normalized
weight

Type

1 f25 Testing coverage 0.038697968 Testing
2 f22 Testing effort 0.038199173 Testing
3 f21 Testing environment 0.037951869 Testing
4 f1 Program complexity 0.03645937 General
5 f19 Domain knowledge 0.035963725 Coding
6 f18 Program workload (stress) 0.035628719 Coding
7 f8 Frequency of program specification change 0.035111115 Analysis
8 f15 Average number of years in software development 0.034935078 Coding
9 f23 Testing resource allocation 0.034762455 Testing
10 f5 Level of programming technologies 0.034368275 General
11 f20 Human nature 0.034351975 Coding
12 f24 Testing methodologies 0.033557545 Testing
13 f11 Requirement analysis 0.033079452 Analysis
14 f27 Documentation 0.032980154 Testing
15 f6 Percentage of reused modules 0.031783889 General
16 f26 Testing tools 0.031746861 Testing
17 f32 System software 0.031466189 Hardware
18 f14 Development management 0.031336825 Analysis
19 f3 Difficulty of programming 0.031278877 General
20 f16 Number of years of software development more than 6 0.030977747 Coding
21 f13 Work standards 0.030668416 Analysis
22 f4 Amount of programming effort 0.030403282 General
23 f12 Relationship of detailed design and requirement 0.030376534 Analysis
24 f2 Program categories 0.029467065 General
25 f10 Design methodology 0.028837481 Analysis
26 f9 Volume of program design documents 0.028513439 Analysis
27 f17 Development team size 0.028218933 Coding
28 f31 Telecommunication devices 0.025018979 Hardware
29 f7 Programming language 0.024901915 General
30 f30 Input/output devices 0.024353444 Hardware
31 f29 Storage devices 0.023794677 Hardware
32 f28 Processors 0.023307416 Hardware

retain five principle components (PC1, PC2, PC3, PC4, and PC5). The loading coefficient shown in this table
indicates that the corresponding factor has little impact if it is very small. For example, testing methodologies
has the highest correlation with the first principle component and the requirement analysis has the highest
correlation with the fourth principle component.

The reason for having two additional principles (i.e. reuse of software modules and requirement analysis)
in our survey study might be related to the software application domains covered by the participants in

1850



ÖZCAN et al./Turk J Elec Eng & Comp Sci

each survey study. While software reuse is inevitable in business application domains, the reuse of software
modules in safety-critical applications might be limited due to the complexity of requirements and projects. As
explained above, the previous survey study stated that developers mainly focus on safety-critical applications,
and therefore those participants might not have considered the reuse of software modules as a critical issue for
software reliability. In our survey, developers might have focused on business applications, and, as such, the
reuse of software modules might be more visible for them. In our study, the new principle was requirement
analysis because its importance is nowadays highly appreciated by software developers. For the previous survey,
the specification & knowledge was considered as a principle. From the safety-critical application developer
perspective, program specification might have been viewed as more important than the requirement analysis.

Table 4. Eigenvalue of the correlation matrix.

PCA
Initial eigenvalues Rotation sums of squared loadings
Total % of variance Cumulative % Total % of variance Cumulative %

1 3.866 25.777 25.777 3.866 25.777 25.777
2 1.859 12.393 38.169 1.859 12.393 38.169
3 1.551 10.339 48,508 1.551 10.339 48.508
4 1.348 8.989 57.497 1.348 8.989 57.497
5 1.158 7.723 65.219 1.158 7.723 65.219
6 0.903 6.022 71.241
7 0.716 4.772 76.013
8 0.646 4.310 80.323
9 0.628 4.187 84.510
10 0.575 3.833 88.342
11 0.471 3.139 91.481
12 0.436 2.909 94.390
13 0.379 2.525 96.915
14 0.260 1.733 98.648
15 0.203 1.352 100.000

After the PCA, we aimed to analyze whether these environmental factors have the same effect on software
reliability or not by using ANOVA. The environmental factors were investigated to compare their significance
levels for software reliability. The results of this method are shown in Table 6. Based on the ANOVA (Tukey)
method, 16 groups were identified. In Zhu et al.’s study [8], 9 groups were identified. In Table 6, we show
the environmental factors from the greatest to the least significance on software reliability and, based on this
table, the most significant factor is the testing coverage and then comes the testing effort. Testing environment
is the third most important factor. In Zhu et al.’s study [8], the most significant factor was the testing effort
factor and then came the frequency of program specification change. The third most significant factor was the
testing environment. Except for the frequency of program specification change factor, the top three significant
factors are the same in these two studies. According to our analysis, factors between average number of years
in software development and testing tools belong to the same significant level.

The basis for this different finding in the top three significant factors might be related to the software
application domains addressed by the participants in the two studies. In Zhu et al.’s study [8], it was reported

1851



ÖZCAN et al./Turk J Elec Eng & Comp Sci

Table 5. New principles for each principle component.

Component New principle Environmental factor Loading
coefficient

PC1 Overall f24-Testing methodologies 0.722
f22-Testing effort 0.665
f25-Testing coverage 0.665
f19-Domain knowledge 0.615
f5-Level of programming technologies 0.604
f27-Documentation 0.584
f21-Testing environment 0.561
f20-Human nature 0.493
f23-Testing resource allocation 0.475

PC2 Program workload &
specification

f18-Program workload (stress) 0.759

f8-Frequency of program specification
change

0.662

PC3 Reuse of modules f6-Percentage of reused modules 0.470
PC4 Requirement analysis

& experience
f11-Requirement analysis 0.460

f15-Average number of years in software
development

0.456

PC5 Program complexity f1-Program complexity 0.634

that participants mainly focus on safety-critical applications. Therefore, the frequency of program specification
change might have been considered one of the top significant factors for software reliability. However, partic-
ipants who focused on business applications in our survey study might have regarded that testing coverage is
more crucial than program specification because formal program specification is more common in safety-critical
application domains.

After the ANOVA, we aimed to analyze the relation between variables and determine the strength of
this relationship. Therefore, we performed correlation analysis and calculated the Pearson product-moment
correlation coefficient (aka Pearson’s r). This coefficient is between –1 and 1. While 1 indicates a positive
correlation, 0 means no relationship exists and –1 shows that there is a total negative correlation. Correlations
of EFs are provided in the Supplementary Material due to the page limit for the article. Correlation is significant
at 0.01 level (2-tailed).

After we completed the environmental factor analysis, we started to work on the development life cycle
phase analysis as in the study by Zhu et al. [8]. Zhang and Pham [10] categorized the environmental factors
into the following five groups: general, analysis & design, coding, testing, and hardware systems. In the present
study, we aimed to analyze whether the first four groups of factors have the same significant levels on software
reliability or not. We applied ANOVA to investigate the impact level of development phases and the results are
shown in Table 7. In this table, the mean score is from 4.9385 to 5.6263. To group development phases based
on the mean score, the Tukey grouping method was applied. Three final groups were identified as in the study
by Zhu et al. [8].

1852



ÖZCAN et al./Turk J Elec Eng & Comp Sci

Table 6. Final grouping based on the ANOVA (Tukey) method.

Factor N Mean Final
group

Grouping

f25-Testing coverage 70 6.114 1 A
f22-Testing effort 70 6.057 1 A
f21-Testing environment 70 5.986 2 A B
f19-Domain knowledge 70 5.729 3 A B C
f 1-Program complexity 70 5.714 3 A B C
f18-Program workload (stress) 69 5.638 4 A B C D
f 8-Frequency of program specification change 68 5.544 5 A B C D E
f15-Average number of years in software
development

70 5.5 6 A B C D E F

f 5-Level of programming technologies 70 5.471 6 A B C D E F
f23-Testing resource allocation 70 5.471 6 A B C D E F
f20-Human nature 70 5.429 6 A B C D E F
f24-Testing methodologies 69 5.348 6 A B C D E F
f11-Requirement analysis 67 5.313 6 A B C D E F
f27-Documentation 70 5.271 6 A B C D E F
f26-Testing tools 68 5.118 6 A B C D E F
f32-System software 69 5.029 7 B C D E F G
f 6-Percentage of reused modules 70 5 8 B C D E F G H
f14-Development management 69 5 8 B C D E F G H
f 3-Difficulty of programming 70 4.914 9 C D E F G H
f13-Work standards 69 4.913 9 C D E F G H
f16-Number of years of software development
more than 6

70 4.9 9 C D E F G H

f12-Relationship of detailed design and
requirement

69 4.87 9 C D E F G H

f 4-Amount of programming effort 70 4.786 10 C D E F G H I
f 2-Program categories 69 4.681 11 D E F G H I
f10-Design methodology 67 4.597 12 E F G H I
f 9-Volume of program design documents 67 4.537 12 E F G H I
f17-Development team size 70 4.5 13 F G H I
f31-Telecommunication devices 65 4.077 14 G H I
f 7-Programming language 69 3.986 15 H I
f30-Input/output devices 66 3.985 15 H I
f29-Storage devices 70 3.843 16 I
f28-Processors 70 3.814 16 I

The testing phase is in group 1, the coding phase is in group 2, and the analysis & design and general
phases are in group 3. This result is slightly different than the grouping reported by Zhue et al. [8], because in
their study only the general phase is in group 3 and in group 2 there are the analysis & design and coding phases.

1853



ÖZCAN et al./Turk J Elec Eng & Comp Sci

This shows that the analysis & design phase had one level higher importance in their survey study. This small
difference might be related to the application domains, which are focused on by participants, and safety-critical
software developers might have considered analysis & design to be of greater importance compared to the other
developers in our survey. The final grouping table shows that the testing phase has the highest mean value,
which means that the testing phase is the most significant phase in software reliability.

As shown in Table 3, only four environmental factors in the top 10 most important environmental factors
belong to the testing phase, which indicates that those four environmental factors are in the top 10 list. This
observation is consistent with the study by Zhu et al. [8], because they also reported that the testing phase
covers 40% of the factors in the top 10 list. Based on this analysis, we can state that software testing is still
the most crucial phase of the software development process.

We were also interested in checking whether the opinion of people depends on the level of experience and
the organizational size (i.e. number of people in the organization). A similar analysis was performed by Zhang
et al. [11] and they reported that participants who have different levels of experience had different opinions while
ranking the factors. As such, we divided participants into four experience categories (0–5 years, 6–10 years,
11–15 years, and 16+ years) based on our participants and checked their opinions regarding the importance
of development phases. Table 8 presents the analysis between the experience categories and the development
phase.

As shown in Table 8, these participants have a similar perspective on the required time that must be
spent for each development phase. However, experienced participants place slightly more emphasis on the coding
phase. For the organizational size effect analysis, we divided the organizations into three categories based on
the number of people (1–100 people, 100–300 people, and 300+ people) in the organization. Table 9 shows the
analysis between the company size and the required time that must be allocated per development phase. As
shown in Table 9, participants who work in large companies prefer spending more time on the testing phase.

Table 7. Final grouping based on the ANOVA (Tukey) method for the development phase.

Factor N Mean Final group Grouping
Testing 487 5.6263 1 A
Coding 419 5.2816 2 B
Analysis & design 476 4.9685 3 C
General 488 4.9385 3 C

Table 8. Analysis of the personnel experience for ranking the development phases.

Experience Analysis Design Coding Testing
16+ years 16.6 20.2 43.6 19.5
11–15 years 16.4 20.5 43.3 19.8
6–10 years 16.8 21.0 42.5 19.8
0–5 years 16.8 21.0 42.5 19.8

1854



ÖZCAN et al./Turk J Elec Eng & Comp Sci

Table 9. Analysis of the organizational size for ranking the development phases.

Size (# of people) Analysis Design Coding Testing
300+ 18.4 17.3 43.5 20.7
100–300 14.1 18.2 50.0 17.7
1–100 21.4 18.9 55.9 18.1

5. Discussion
In this section, we discuss whether we observed any change in the significance rankings of environmental factors
or not and compare our findings with those of other studies reported in the literature. This kind of comparison
is quite useful for organizations and developers because up-to-date factors help to improve software reliability
and increase efficiency. It is also possible to integrate these up-to-date factors into software reliability models for
better software reliability analysis [8]. In Table 10 we show that we included a sufficient number of participants,
used similar environmental factors, and applied similar techniques.

Table 10. Summary of our study.

Study Our study
Data 70 surveys (24 organizations)
Factors 32
Method Relative weighted method and ANOVA
Measurement scale Likert (1–7)
Factor ranking Normalized data with relative weighted method
Factor classification Yes (Tukey method)
Correlation analysis Yes (dependency between factors)
Dimensionality reduction PCA
Dev. phases grouping Yes

The populations in our study and the study by Zhu et al. [3] are from two different countries and the
survey times are also different. Therefore, the results of these two studies with respect to rankings are not the
same. We observed that most of the environmental factors in the top 10 list reported by Zhu et al. [8] are still
in the 10 top list except for three, namely percentage of reused modules (f6), relationship of detailed design
to requirement (f12), and testing methodologies (f24). The new factors that are now in the top 10 list are
the program workload (f18), testing resource allocation (f23), and the level of programming technologies (f5).
Testing coverage (f25) is the most important factor based on our survey study and this factor was at rank 4 in
Zhu et al.’s study [8].

While Zhu et al. [8] selected the top 10 important factors for PCA and Zhang and Pham [11] preferred the
top 11 factors, we selected the top 15 factors for factor analysis. Zhu et al. [8] presented three new principles,
Zhang and Pham [11] showed four principles, and we reached five principles. The principle components in our
study (overall, program workload & specification, reuse of software modules, requirement analysis & experience,
and program complexity) can be considered as the consolidation of the two studies because Zhu et al. [8] reported
the overall, specification & knowledge, and program complexity & skill level principles and Zhang and Pham [11]
determined the overall, testing efficiency, requirements & specifications, and program & skill level principles.

1855



ÖZCAN et al./Turk J Elec Eng & Comp Sci

Based on the Tukey method, our result and the result reported by Zhu et al. [8] show that there are
three final groups. As in Zhu et al.’s study, the testing phase and general phase are in two different groups.
Testing is still the most important phase. Analysis & design in our study is in group number 3, but it was in
group 2 in Zhu et al.’s study [8]. This result shows that the participants in our study put more emphasis on the
coding phase compared to the analysis & design phase. This is an important observation for global software
engineering projects because participants in the study by Zhu et al. [8] put higher emphasis on analysis &
design than the emphasis in our study. While the two populations appreciate the importance of the testing
phase and agree that it is the most important phase of the software development process, there is a change in
the order of the other phases.

The time allocation for each phase in Zhu et al.’s study [8] was reported as follows: 22% analysis phase,
20% design phase, 34% coding phase, and 24% testing phase. As shown in Table 8, the percentage of the time
allocation for the coding phase is higher (42%-43%) than that for the coding phase (34%) of Zhu et al.’s study
[8]. The percentage of the time spent on design is quite similar. The times spent on the analysis and testing
phases are not as high as in Zhu et al.’s study [8] (approx. 5% less).

We discuss the following four potential threats to validity [21–23]: external validity, conclusion validity,
construct validity, and internal validity. Conclusion validity threats are those affecting the ability to conclude
appropriately. Construct validity threats are those impacting the fused data validation. External validity threats
are those limiting the study’s generalization. The relationship between the outcome and treatment must be
causal, but if it is related to a factor that cannot be controlled by the researchers, it is said that the internal
validity is low. Regarding the external validity, we worked with 70 volunteer software professionals from 24
organizations in Turkey and they represent different software organizations focusing on different application
domains. If we had worked with other groups of software experts, our results would have been different than
those reported in the present study. Therefore, observations might be different on a data set including different
sets of volunteer participants. However, since we do not work only with professionals from a single organization,
our results should be generalized outside of this context. Regarding the conclusion validity, we applied several
state-of-the-art statistical analysis techniques such as PCA and ANOVA to evaluate the collected data from
several perspectives and reported our observations based on the results of these techniques. Since we also followed
the same protocol and analysis techniques discussed in Zhu et al.’s study [8], our results can be compared with
those reported by Zhu et al. [8]. Regarding the construct validity, there might be threats related to the
misunderstandings between participants and researchers in the present study. However, we explained the goal
of our study at the beginning of the survey form and responded to participants who had questions via e-mail.
Regarding the internal validity, we must address criterion validity as this research included questionnaires and,
in the context of questionnaires, criterion validity is used to check if the items in the questionnaire actually
measure real-world events. We applied the same set of items used by Zhu et al. and Zhang et al. [8, 10, 11],
and so we do not see any threat regarding internal validity. All the items in the questionnaire measure the
real-world states.

6. Conclusion and future work
We conducted a survey study to investigate the impact level of environmental factors among software profession-
als in Turkey and compared the results with those of previously published studies. Most of the environmental
factors shown in the top 10 list in Zhu et al.’s study [8] are still in the top 10. However, there are some changes
for some factors. Program workload (f18), testing resource allocation (f23), and level of programming technolo-

1856



ÖZCAN et al./Turk J Elec Eng & Comp Sci

gies (f5) are new factors that are added to the top 10 list. This shows that we have more testing factors in the
top 10 list and programming technologies impact software reliability. Five principle components, PC1, PC2,
PC3, PC4, and PC5, as shown in Table 5, can represent 65.219% of variation in all the factors. These five com-
ponents are different from the three principle components reported in Zhu et al.’s study [8]. We demonstrated
that software testing is still the most important factor for software reliability. The coding phase ranked second
in our study, but it was listed after the analysis & design phase in Zhu et al.’s study [8]. The time allocation
regarding each phase in the software development process is different compared to that in the study by Zhu et
al. [8]. To the best of our knowledge, ours is the first study to compare the impact of environmental factors of
software reliability in a country different from that in the initial studies. It is highly interesting to examine the
different interpretations of software experts from different cultures on software reliability.

References

[1] Friedman MA, Voas JM. Software Assessment: Reliability, Safety, Testability. New York, NY, USA: John Wiley &
Sons, 1995.

[2] Febrero F, Calero C, Moraga M. A systematic mapping study of software reliability modeling. Information and
Software Technology 2014; 56 (8): 839-849.

[3] Zhu M, Pham H. A two-phase software reliability modeling involving with software fault dependency and imperfect
fault removal. Computer Languages, Systems & Structure 2018; 53: 27-42.

[4] Utkin V, Coolen FPA. A robust weighted SVR-based software reliability growth model. Reliability Engineering &
System Safety 2018; 176: 93-101.

[5] Yazdanbakhsh O, Dick S, Reay I, Mace E. On deterministic chaos in software reliability growth models. Applied
Soft Computing 2016; 49: 1256-1269.

[6] Wang H, Fei H, Yu Q, Zhao W, Yan J et al. A motifs-based maximum entropy Markov model for realtime reliability
prediction in system of systems. Journal of Systems and Software 2019; 151: 180-193.

[7] Organizaci O. ISO-IEC 25010: 2011 Systems and Software Engineering-Systems and Software Quality Requirements
and Evaluation (SQuaRE)-System and Software Quality Models. 2011.

[8] Zhu M, Zhang X, Pham H. A comparison analysis of environmental factors affecting software reliability. Journal of
Systems and Software 2015; 109: 150-160.

[9] Zhu M, Pham H. Environmental factors analysis and comparison affecting software reliability in development of
multi-release software. Journal of Systems and Software 2017; 132: 72-84.

[10] Zhang X, Pham H. An analysis of factors affecting software reliability. Journal of Systems and Software 2000; 50
(1): 43-56.

[11] Zhang X, Shin MY, Pham H. Exploratory analysis of environmental factors for enhancing the software reliability
assessment. Journal of Systems and Software 2001; 57 (1): 73-78.

[12] Mishra A, Yazici A, Cetin S. Software evolution in Turkey. Tehnicki Vjesnik 2016; 23 (3): 929-935.

[13] Loganathan A, Muthuraj RJ. A new methodology for data reduction in software reliability studies. Communications
in Statistics: Case Studies, Data Analysis and Applications 2016; 2 (3-4): 101-105.

[14] Pfleeger SL, Kitchenham BA. Principles of survey research: part 1: turning lemons into lemonade. ACM SIGSOFT
Software Engineering Notes 2001; 26 (6): 16-18.

[15] Kitchenham BA, Pfleeger SL. Principles of survey research part 2: designing a survey. ACM SIGSOFT Software
Engineering Notes 2002; 27 (1): 18-20.

1857



ÖZCAN et al./Turk J Elec Eng & Comp Sci

[16] Kitchenham BA, Pfleeger SL. Principles of survey research part 6: data analysis. ACM SIGSOFT Software
Engineering Notes 2003; 28 (2): 24-27.

[17] Kelley K, Clark B, Brown V, Sitzia J. Good practice in the conduct and reporting of survey research. International
Journal for Quality in Health Care 2003; 15 (3): 261-266.

[18] Aday LA, Cornelius LJ. Designing and conducting health surveys: a comprehensive guide.San Francisco, CA, USA:
Jossey-Bass, 2006.

[19] Bowling A. Research Methods in Health: Investigating Health and Health Services. Maidenhead, UK: McGraw-Hill
Education; Open University Press, 2014.

[20] Johnson JW. A heuristic method for estimating the relative weight of predictor variables in multiple regression.
Multivariate Behavioral Research 2000; 35 (1): 1-19.

[21] Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslen A. Experimentation in Software Engineering: an
Introduction. Norwell, MA, USA: Kluwer, 2000.

[22] Easterbrook S, Singer J, Storey MA, Damian D. Selecting empirical methods for software engineering research.
In: Shull F, Singer J, Sjøberg DIK (editors). Guide to Advanced Empirical Software Engineering. London, UK:
Springer, 2008, pp. 285-311.

[23] Zhou X, Jin Y, Zhang H, Li S, Huang X. A map of threats to validity of systematic literature reviews in software
engineering. In: 2016 23rd Asia-Pacific Software Engineering Conference (APSEC); New York, NY, USA; 2016. pp.
153-160.

1858


	Introduction
	Related work
	Methodology
	Survey protocol
	Survey design, execution, and data collection
	Environmental factor analysis methods
	Relative weighted method
	Principle component analysis
	Hypothesis testing
	Correlation analysis


	Experimental results
	Discussion
	Conclusion and future work

