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Abstract: Soil water content (SWC) performs an important role in many areas including agriculture, drought cases,
usage of water resources, hydrology, crop diseases and aerology. However, the measurement of the SWC over large
terrains with standard computational techniques is very hard. In order to overcome this situation, remote sensing tools
are preferred, which can produce much more successful results in less time than standard calculation techniques. Among
all remote sensing tools, synthetic aperture radar (SAR) has a significant impact on determining SWC over large terrains.
The main objective of this study is to predict SWC on a yearly basis over the vegetation-covered terrains with the aid
of different machine learning techniques and SAR based Radarsat-2 data, which obtained in 2015 and 2016 years.The
proposed system consists of several stages, respectively. In the feature extraction stage, the backscatter coefficients
of different polarizations and the parameters obtained from different models of decomposition (Freeman-Durden and
H/A/α) were combined and nine polarimetric features were formed for each sample point. In the next stage, support
vector regression (SVR), generalized regression neural network (GRNN) and adaptive neuro-fuzzy inference system
(ANFIS) were employed for the prediction of SWC. In the last stage, a machine learning based feature selection was
implemented to the obtained feature vectors for determining optimal feature sets. Finally, a feature set with 6 parameters
was determined as most optimal feature set over the SWC prediction and a slightly better performance was observed
thanks to this feature set compared to the other results.
Key words: Synthetic aperture radar, support vector regression, generalized regression neural network, adaptive neuro-
fuzzy inference system, feature selection, soil water content

1. Introduction
Soil water content (SWC) plays substantial role in many areas such as minimizing the destructive effects
of drought cases, avoiding saltiness caused by over watering, keeping from the harm agricultural areas and
utilization of the irrigation system efficiently. With the rapid and reliable prediction of the SWC level,
the damages on these areas can be diminished. The measurement of SWC over wide agricultural fields by
standard computational techniques, which consist of direct (gravimetric measurement) and indirect (time
domain reflectometry, neutron meter, tensiometer, conductive and thermal sensors, frequency-effect reflectance
meter) methods is quite expensive and difficult. Whereas, current information obtained from remote sensing
tools reach their target in a shorter time with less cost comparing to standard computational techniques [1]. Easy
update of remote sensing technology provides a great advantage over other standard methods. Moreover, the
ability to work even in difficult geographical regions can be listed as other important advantage of this technology
∗Correspondence: acar_emrullah@hotmail.com
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[2]. Among different types of remote sensing tools, SAR sensor has a great potential in SWC prediction over
large areas [3]. Thus, many remarkable studies that are related to SAR data, have been investigated to calculate
SWC parameters for 30 years. A SAR system can own diverse levels of polarization complexity which includes
single (hh or vh or hv or vv), dual (vv+vh, hh+hv or hh+vv) and polarimetric (hh, hv, vh and vh). Among those
polarizations, the polarimetric SAR can provide more detailed data by multiple polarizations and penetrate the
bare and vegetated surfaces. It can also generate appropriate high resolution images for soil monitoring and
agricultural mapping [4]. Prediction of SWC on vegetation-covered agricultural areas is very difficult since
it requires complex processing. The reason for this situation is that the backscattering originating from the
vegetation cover affects the scattering from the target point. Two main distinct scattering techniques have been
used in the literature to diminish the effect of vegetation scattering from the canopies and form feature vector
from SAR data. These are polarimetric decomposition models and multiple configuration SAR techniques [5].
Among these techniques; Touzi and Yamaguchi, Freeman-Durden, Krogager and H/A/α , are the most popular
for feature extraction stage and several literature studies have been made with the aid of them [6–9]. In our
study, H/A/α ; Freeman-Durden and standard intensity/phase techniques were employed for feature extraction.
Because these techniques help to diminish the backscattering caused by canopies on the grounds, where the
vegetation is dominant [10].

Following the stage of feature extraction, different inversion techniques have been improved for prediction
of the soil surface parameters in the literature. These inversion techniques are based on the empirical/semi-
empirical [11], theoretical [12] and machine learning approaches[13–18]. Among these approaches, machine
learning is the most effective inversion technique since the other techniques have limited application areas
as well as depend on area-specific surface parameters and experimental equations [13, 14]. Machine learning
methods include partial least squares regression, support vector machines, extreme learning machine, the cubist
regression, Bayes and neural networks, are the mostly employed inversion techniques for SWC prediction [19–26].
In our study, for prediction of SWC on a yearly basis, support vector regression (SVR), adaptive neuro-fuzzy
inference system (ANFIS) and generalized regression neural network (GRNN) are proposed because of their
fast learning ability and good predictive properties.

In the last phase, the most effective polarimetric features have been selected successfully with the aid of
feature selection methods. The duty of the feature selection is to obtain a subset of the most appropriate features
for a similar or better prediction instead of using all the features. Different procedures have been asserted for
feature selection, including the sequential forward selection [27–29], ReliefF and sequential backward selection
[30]. However, there are still several problems in the above methods such as the inadequacy of relations between
the features, the complexity of high computation, monotonicity of objective function [31]. Therefore, a new
approach using extreme learning based feature selection (ELM-FS) is preferred in this study since it has fast
learning speed and good generalization performance comparing to the other methods [32].

The main objective of this research is to predict SWC on a yearly basis approach over the vegetation-
covered terrains with the aid of polarimetric SAR features. Moreover, there are 2 main contribution of this
paper. One of them is that feature vector for each sample point was obtained by a novel approach as combining
polarimetric features acquired from standard intensity/phase technique and different polarimetric decomposition
models (Freeman-Durden and H/A/α). Another one is that the soil water content (SWC) values were predicted
in a new manner on a yearly basis with the aid of different machine learning based prediction and feature selection
techniques.
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2. Materials and methods
2.1. Working area

The working area includes 2 distinct terrains covering an average of 2 × 3 km2 and 4 × 4 km2 of frame within
Dicle University campus in the province of Diyarbakır, Turkey (40°04’-40°26’E, 37°46’-38°04’ N). The average
area slope is 3.05% and the average height is 650 m. The yearly average maximum temperature is 34.5 °C and
8.2 °C in the summer and winter, respectively. Moreover, the yearly average temperature is 23.8 °C and the
rainfall is 496.0 mm. The working area is covered by cultivated fields containing large quantities of wheat and
barley throughout the Radarsat-2 transition periods. The position of the working area is presented in Figure 1.

Figure 1. The geographic position of the working area. The red square shows the pilot areas.

2.2. Data collection
In this work, 4 fully polarimetric Radarsat-2 images were obtained in different times of cultivation period.
These Radarsat-2 products are in the single look complex (SLC) data format that hold amplitude, resolution
and phase information of Radarsat-2 data and have 5.83 m spatial resolution and 30 × 30 km2 coverage. The
general properties of the obtained SAR data are indicated in Table 1.
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Table 1. The general properties of the obtained Radarsat-2 data.

Dates Time Beam Pass
27/02/2015 03:17:42 FQ24 Descending
08/04/2015 15:07:11 FQ4 Ascending
10/06/2015 03:10:31 FQ29 Descending
03/03/2016 03:25:47 FQ13 Descending

After Radarsat-2 data acquisition, working area was divided into 100 × 100 meter grids and ground
soil samples were taken 3–5 cm deep from the surface of these grids. An average of 250–300 soil samples was
collected during the each satellite transition over the experimental area. These samples were then filled into
100 cm3 metallic containers and their locations were recorded with the aid of the GPS tools. SWC values
of obtained local soil samples were then calculated by gravimetric technique in the Science and Application
Research Center of Dicle University and presented in Table 2.

Table 2. Local measurement values of SWC (%) for each period.

Evaluation
period

Pilot area
# of measurement
points

Min SWC Max SWC Mean SWC SD SWC

27/02/2015 Sparsely vegetated 335 18. 7 43. 6 29. 7 4.7
08/04/2015 Densely vegetated 285 20. 2 41. 3 30. 3 3.9
10/06/2015 Bare 272 0.8 44.7 7.4 7.0
03/03/2016 Moderately vegetated 157 25.3 43.2 34.4 2.8

2.3. Calibration-filtering and geocoding of Radarsat-2 data
The calibration-filtering and geocoding step was fulfilled in the following stages. First, Radarsat-2 images were
read using the Sentinel-1 toolbox (S1TBX) and then calibrated for radiometric correction of these images. For
diminishing the amount of the blurring and speckle noise on the Radarsat-2 data, a single product refined
Lee filter was implemented. For terrain correction, SAR geometric distortions were corrected by employing
a SRTM-3 digital elevation model and the filtered data was geocoded [33]. After that, universal transverse
mercator (UTM) (WGS84) was preferred as output map projection. Lastly, the positions of the ground samples
were then converted to .shp file format and imported to the Radarsat-2 images. The resulted images belonging
to 4 different dates were indicated in the Figure 2 .

2.4. Producing Radarsat-2 data features
In this phase, for extracting feature vectors from the Radarsat-2 images, each pixel which corresponding to the
GPS value of soil samples was symbolized by a cell or pattern (2 × 2 pixels). The backscattering coefficient of
each pattern was then computed by mean of the coefficients in the cell. After that, the standard intensity/phase
polarimetric features were obtained to generate feature vectors from the Radarsat-2 images. This step was
followed by the polarimetric decomposition techniques (Freeman-Durden and H/A/α) and 5 more polarimetric
features (volumetric, surface and double scattering with entropy and anisotropy) were calculated. The techniques
used in the study for the feature extraction stage are described in detail by [34].
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Figure 2. Calibrated-filtered and geocoded Radarsat-2 data which covers the Diyarbakır Province with different
transitions: (a) Descending-27/02/2015; (b) Descending-10/06/2015, (c) Descending-03/03/2016 and (d) Ascendic-
08/04/2015.

2.5. The standard phase and intensity polarimetric features

SAR is a type of radar that transmits electromagnetic wave to the target with vertical and horizontal polarization
and measures the phase, polarization and intensity of backscattered waves from target. The polarimetric
SAR system, which is another type of SAR, consists of 4 channels (σhh , σhv , σvh and σvv ), in which
information between the outgoing and back-scattered waves can be used to obtain information about the target
object [35](Sakshaug et al., 2013). The main data format used to describe the backscattering is described in
Equation 1). The elements in this matrix shows the distributions of polarization from horizontal to horizontal
(hh), from vertical to horizontal (vh), from horizontal to vertical (hv), and from vertical to vertical (vv).

∣∣∣∣σhh σhv

σvh σvv

∣∣∣∣ (1)

2.6. Freeman-Durden polarimetric decomposition model

This model is based on 3 distinct scattering mechanisms with volume, double and surface scattering. In this
model, the components are expressed in a physical interpretation and it is a very important model since it does
not need for any ground measurements [36]. The volume scattering is modeled as reflection from the horizontally
very thin, randomly oriented, cylinder-shaped dipole (scatterer) cloud. Besides this, the model required for the
double bounce mechanism is based on the reflection from 2-plane corner reflectors. In this case, the 2 reflector
surfaces can consist of different dielectric materials. For example, a trunk of tree and the soil surface can be
used as 2-plane corner reflectors. Finally, surface scattering mechanism refers to scattering from a rough surface
[37].
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2.7. H/A/α decomposition model

Some of the polarimetric decomposition models are based on the eigenvector and eigenvalue separation of the
coherency T3 or covariance C3 matrix. The H/A/α decomposition is one of these models and based on the
eigenvector and eigenvalue analysis of the T3 coherent matrix, where the matrix T3 is expressed by Equation 2
[38].

1

2


〈
|σhh + σvv|

2
〉 〈

(σhh + σvv)× (σhh − σvv)
∗〉 ⟨2× σ∗

hv + (σhh + σvv)⟩〈
(σhh − σvv)× (σhh + σvv)

∗〉 〈
|σhh − σvv|

2
〉

⟨2× σ∗
hv + (σhh − σvv)⟩〈

2× σhv (σhh + σvv)
∗〉 〈

2× σhv (σhh − σvv)
∗〉 〈

4 |σhv|
2
〉

 (2)

2.8. Machine learning based regression models

In order to predict the SWC on a yearly basis over the bare and vegetated terrains, different machine based
regression models: support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS) and gener-
alized regression neural network (GRNN) were used in this study. Among these models, GRNN is a powerful
nonlinear machine learning technique proposed by Donald F. Specht and is included in the probabilistic neural
network category. It needs only a part of the training set required for a back-propagation neural network.
Thus, a probabilistic neural network can approach the basic function of the data even with only a few training
examples [39, 40]. SVM is a supervised learning model that points to observe a hyper plane in the feature
space and partition negative and positive samples with the lowest error rate [40]. SVM is generally employed
in pattern recognition, classification and regression analysis. ANFIS is a hybrid model of Sugeno fuzzy logic
inference systems and artificial neural networks. This model utilizes the neural network learning capability for
the fuzzy inference system in order to calculate fuzzy rules more effectively and apply 3 fuzzy control steps
(inference, fuzzification and defuzzification) [41].

2.9. ELM based feature selection (ELM-FS) method

The feature selection method is one of the significant issues in the areas of machine learning and it is generally
used in the pattern detection and recognition applications [32]. The ELM, which has a high-speed training
phase and good generalization capacity, is considered a fine approach for the feature selection method [42–44].
Although ELM is generally used as a machine learning method, it has been developed by [32] as a consistent,
fast and independent feature selection algorithm with better accuracy [32]. In this method, biases and weights
of the hidden layer are allocated indiscriminately, and the output layer’s weights are computed with the aid of
the Moore-Penrose approach [45, 46].The output of ELM, which has one single neuron, can be determined in
Equation 3.

ym =
∑
i=1

βi,mg(

k∑
j=1

wj,ixj + bi) (3)

Here, xj and ym indicates the input and m’th system output while k, l and m denotes neuron numbers
of the input, hidden and output layers, respectively. Moreover, wj,i and βi,m indicate the assigned weights of
the neurons which belong to the input and output layers, respectively. Additionally,bi shows bias values which
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implemented to the neurons in the hidden layer as well as g(.) denotes the activation function applied for each
neuron.

However, in ELM based feature selection approach, linear separable property of a function, g(ax+ b) =

ag(x) + g(b) , might be implemented to a transfer function g(.) in the hidden layer. Thus situated, Equation 3
can be rearranged as:

ym =
∑
i=1

βi,mg(

k∑
j=1

wj,ig(xj) + g(bi)). (4)

At the end, the system equation turns into,

ym = [α(1,m), α(2,m), ..., α(j,m), ...α(k,m)]
(
x1 x2 . . .xk

)T (5)

Here, the obtained coefficient α(k,m) is the parameter that ranks the input elements of the system.The
Equation 6 can be represented for a multi input and output system as

ym = Ag([XT ]) + ϵ (6)

where, A, [X] and ϵ indicate coefficient matrix, input vectors and a scalar derived by β , respectively.
The variation coefficient, CV = σ/µ , has been then implemented to minimize the risk of obtained coefficients
α(k,m) and computed for j’th input element of the system which denoted by CV (xj) . Dividing the coefficients
by CV (xj) revealed that if CV (xj) has low value, then the rank of xj must be higher than compared to xj

which has high CV (xj) value. With the aid of this information, ranking of features (Fr) for ym in a feature
selection stage can be represented as

Frxj =

[∣∣∣∣ α1,m

CV (x1)

∣∣∣∣ , ∣∣∣∣ α2,m

CV (x2)

∣∣∣∣ , ... ∣∣∣∣ αj,m

CV (xj)

∣∣∣∣ , ... ∣∣∣∣ αk,m

CV (xk)

∣∣∣∣] (7)

To summarize, feature selection procedure in the ELM-FS method depends on the number of elements
used in the input and output of the system (k and m), the ranking coefficient α(k,m) and coefficient of variation
CV (xk) , respectively. In this work, we contemplate a multiple input for single output system, thus m is equal
to 1 (m = 1). The number of elements at the input (xj) is equal to the observation numbers in the obtained
data sets (j = 9) by considering the ELM training stage.

3. Results and discussion
In this section, prediction of SWC on a yearly basis was carried out on large terrains with the help of SAR
datasets. Moreover, ELM-FS method was applied to determine optimal features of the proposed system. Two
approaches have been considered in this system for SWC prediction. In the first approach, all obtained features
were employed as inputs of machine learning model whereas in the second approach, only the selected feature
sets were employed. The architecture of the recommended system was indicated in Figure 3.

3.1. SWC prediction with all features
In this stage, the datasets, which belong to 2015, and 2016 years were constituted from Radarsat-2 data.
The feature vector for each pattern was obtained using standard intensity and phase as well as polarimetric

2322



ACAR and ÖZERDEM/Turk J Elec Eng & Comp Sci

Figure 3. The architecture of the recommended system.

decomposition techniques. Then, totally 9 features which correspond to the pixels of ground measurements
were computed and shown in Table 3.

Consequently, 4 datasets that belong to the different periods of 2015 and 2016 were formed as shown in
Table 4.

Table 3. The obtained features for each pattern.

Feature name Decomposition method
Double bounce Freeman-Durden
Volume scattering Freeman-Durden
Surface scattering Freeman-Durden
Polarimetric entropy H/A/α
Polarimetric anisotropy H/A/α
σhh Standard intensity and phase
σhv Standard intensity and phase
σvh Standard intensity and phase
σvv Standard intensity and phase

Table 4. The details of formed datasets.

Datasets Acquisition date Dataset size
Dataset 1 27/02/2015 335*9
Dataset 2 08/04/2015 285*9
Dataset 3 10/06/2015 272*9
Dataset 4 03/03/2016 157*9

After that, different machine learning based regression techniques (SVR, ANFIS and GRNN) were
employed for prediction of SWC on a yearly basis with aid of obtained features. Moreover, the leave-one-
out cross validation was applied for validating system performance. The statistical error metrics: root mean
square error (RMSE), mean absolute error (MAE) and correlation coefficient (R) were used as an index of the
performance analysis. The results of different regression models were tabulated in Table 5.
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Table 5. The performance of different regression models.

Model Correlation (R) RMSE MAE
GRNN 0.86 3.53 2.54
SVM 0.81 4.06 3.00
ANFIS 0.76 4.63 3.20

The best performance was observed by GRNN model. Thus, we only considered the results of the GRNN
based SWC prediction for the remaining applications in this work. For calculating the performance of the whole
system, 2 approaches have been considered. In the first approach, training and testing sets were obtained from
the datasets 1-2-3-4. Finally, the results of regression analysis between predicted and measured SWC values by
utilizing GRNN and datasets 1-2-3-4 were indicated in Figure 4. The error of the whole system was computed
as 8.36 vol. % RMSE, 5.97 vol. % MAE while the Pearson correlation coefficient (R) was 0.69.
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Figure 4. The regression between predicted and measured SWC values with all features and data sets 1-2-3-4.

In the second approach, the datasets were rearranged and the effect of no-vegetation period (June 2015)
was neglected. Therefore, training and testing sets were acquired from the datasets 1-2-4 for prediction of SWC
on a yearly basis. The obtained results for this case are shown in Figure 5.The error of entire system was
computed as 3.89 vol. % RMSE, 2.98 vol. % MAE while the Pearson correlation coefficient (R) was 0.52.

3.2. SWC prediction with optimal features using ELM-FS method
In this scenario, the impact values of all features in 2 approaches as mentioned above were computed and ranked
by ELM-FS method. The feature ranks were set on by the trained ELM’s the output weights and multiplied
with the reverse of the CV (coefficient of variation) of obtained parameters.

As seen in Table 6 (1st Approach), the most relevant features were selected with the aid of this rank and
the overall performance of the prediction system was tabulated in Table 7.

Here, it can be seen that when the all features were employed, the obtained R was moderate high and
RMSE value was low. On the other hand, when the selected features (especially, 8 features) were used, the
obtained R and RMSE values were at the same level. Thus, we can say that the ELM-FS method does not only
provide a reduction in the computational cost, but also represents less memory necessity and the appropriate
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Figure 5. The regression between predicted and measured SWC by using all features and data sets 1-2-4 (without June
2015 data).

Table 6. Impact values and rank of all features for 1st Approach with ELM-FS method.

Rank of features Feature name Impact values
1 σhv 0.271
2 σvh 0.245
3 Volume scattering 0.238
4 Double scattering 0.133
5 σhh 0.046
6 Polarimetric entropy 0.017
7 σvv 0.013
8 Surface scattering 0.009
9 Polarimetric anisotropy 0.005

Table 7. Overall performance of the proposed model for Approach 1 using different feature set combinations.

Number of
features

Number of
selected
features

Selected
feature set

Feature reduction
ratio (%)

RMSE Correlation (R)

9 1 1 88.88 11.4078 0.1563
9 2 1, 2 77.77 11.4142 0.1516
9 3 1, 2, 3 66.66 11.2877 0.2127
9 4 1, 2, 3, 4 55.55 10.3676 0.4415
9 5 1, 2, 3,4,5 44.44 9.4222 0.5782
9 6 1, 2, 3,4,5,6 33.33 9.0545 0.6214
9 7 1, 2, 3,4,5,6,7 22.22 8.6153 0.6666
9 8 1, 2, 3,4,5,6,7,8 11.11 8.3636 0.6900

rank of the features. After that, the same procedure was employed to 2nd approach as well as the impact values
of all features were computed and ranked by ELM-FS method as shown in Table 8.

2325



ACAR and ÖZERDEM/Turk J Elec Eng & Comp Sci

By selecting the appropriate features according to the rank in Table 8, the performance of the whole
system was tabulated in Table 9. It is obvious that the most dominant parameters in the 1st approach (σvh ,
σhv and volume scattering) are as same as in the 2nd approach.

As seen in Table 9, we observed that when the all features were used, the obtained R was moderate and
RMSE value was so low. However, when the selected features were utilized, the computed R and RMSE values
exhibited the higher performance with 33.33 % feature reduction ratio (only 6 features).

Taking everything into account, the main contribution of this study is to obtain feature vectors with a
new approach and to predict SWC on a yearly basis over the bare and vegetation-covered fields by employing
different machine learning techniques and ELM based feature selection method.

Looking at the literature studies, some studies for the prediction of soil surface parameters using satellite
data and machine learning techniques are presented in Table 10. The overall performance of the proposed
system is in the acceptable range compared to the other approaches as seen in Table 10.

Table 8. Impact values and ranking of all features for 2nd Approach with ELM-FS method.

Rank of features Feature name Impact values
1 σvh 0.255
2 σhv 0.238
3 Volume scattering 0.234
4 Double scattering 0.156
5 σhh 0.063
6 Surface scattering 0.027
7 σvv 0.014
8 Polarimetric entropy 0.012
9 Polarimetric anisotropy 0.008

Table 9. Overall performance of the proposed model for Approach 2 using different feature set combinations.

Number of
features

Number of
selected
features

Selected
feature set

Feature reduction
ratio (%)

RMSE Correlation (R)

9 1 1 88.88 4.4134 0.2020
9 2 1,2 77.77 4.4058 0.2101
9 3 1,2,3 66.66 4.4010 0.2161
9 4 1,2,3,4 55.55 4.0517 0.4376
9 5 1,2,3,4,5 44.44 4.0286 0.4522
9 6 1,2,3,4,5,6 33.33 3.8731 0.5145
9 7 1,2,3,4,5,6,7 22.22 3.8969 0.5110
9 8 1,2,3,4,5,6,7,8 11.11 3.8894 0.5241

4. Conclusion
In this study, different machine learning based inversion techniques with a feature selection method was
recommended for prediction of the SWC on a yearly basis over the croplands with the help of fully polarimetric
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Table 10. The comparison of some literature studies which are related with the prediction of soil surface parameters by
using satellite data and machine learning techniques.

Satellite data RMSE (%) Approach Reference

Radarsat-2 3.80

Polarimetric decomposition
GRNN
SVR
ANFIS
ELM-FS

Proposed
approach

Advanced
Microwave scanning
Radiometer-2

3.83 Deep
learning

[47]

Radarsat-2
Cosmo-SkyMed

2.0- 4.0 SVR
ANN

[48]

Sentinel-1 3.0 Random
forest

[49]

Radarsat-2 7.12 Adaptive two component [50]

Radarsat-1 4.0–6.5 ANN
Fuzzy logic

[51]

SAR features. In the feature extraction stage, the feature vector for each pattern was obtained by employing the
standard intensity/phase and polarimetric decomposition models. Then, totally 9 features, which correspond
to the pixels of each ground measurement point were constituted. By merging the feature vectors, 4 datasets,
which belong to the different periods of 2015 and 2016, were created. After that, ELM-FS based a new feature
selection algorithm was implemented for determining the optimal features of the recommended system. Two
scenarios of SM prediction were considered for this system. In the first scenario, all features were utilized as
inputs of machine learning based prediction techniques (SVR, ANFIS and GRNN) and in the second scenario,
the most suitable features were determined with the aid of the ELM-FS method. At the end, a feature set
with 6 parameters was determined as most optimal feature set over the SWC prediction and a slightly better
performance was observed thanks to this feature set compared to the first scenario results. In addition, low
operational cost and memory demand have been achieved thanks to the ELM-FS.

In the future, it is planned to use different spectral band features and local measurement data for
improving the accuracy of the proposed system. Furthermore, the various feature extraction methods and
machine learning techniques will be analyzed for surface parameter predictions. It is thought that improving
this system will assist that the water resources will be utilized more effectively and the amount of those resources
will be automatically controlled for irrigation.
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