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Abstract: Visual and automatic analyses using synthetic aperture radar (SAR) images are challenging because of
inherently formed speckle noise. Thus, reducing speckle noise in SAR images is an important research area for SAR
image analysis. During speckle noise reduction, homogeneous regions should be smoothed while details such as edges
and point scatterers need to be preserved. General speckle noise model contains gamma distributed multiplicative part
which is dominant and Gaussian distributed additive part which is in low amount and mostly neglected in literature. In
this study, a novel sparsity-driven speckle reduction method is proposed that takes both multiplicative noise model and
additive noise model into consideration. The proposed speckle reduction method uses a cost function with multiplicative
and additive data terms besides the total variation smoothness term. Also, an efficient and stable numerical minimization
scheme is proposed for the proposed cost function that deals with multiplicative and additive noise. Speckle reduction
performance of the proposed method is shown on synthetically generated SAR images and real-world SAR images.

Key words: Synthetic aperture radar, despeckling, variational methods, general speckle model, multiplicative gamma
noise, additive Gaussian noise

1. Introduction

One of the most important features of life on our planet is its incredible diversity and constant change in this
diversity because of natural forces and human kind. Many areas such as oceans, lakes, rivers, lands, forests,
natural resources, urban areas and military areas are constantly changing. Evaluation of these changes is of
great importance in our future, but monitoring the changes that have mentioned inherently contains many
challenges. Many remote sensing methods and systems have been developed to overcome such challenges by
allowing us to observe the earth surface. Among various remote sensing systems, optical systems and radars
are the most important ones. Comparing SAR and optical remote sensing, SAR has some advantages, such as
getting data in all weather [1]. However, SAR images are degraded by granular pattern fused on the actual
SAR signal called speckle, which is a variation of pixel reflectivity [2]. The source of speckle pattern, which is
in a granular form, is the existence of multiple scatterers in a resolution cell inherent in SAR imaging systems.
One example of quality degradation is not having a constant radiometric level in homogeneous areas because of
speckle pattern, that is also called as speckle noise [3]. The performance of information extraction applications
using SAR images may diminish as speckle noise level increases [4].
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1.1. Overview of speckle noise
Speckle noise is formed due to the multiple scatters in a scene formed in an image cell and has the characteristics
of multiplicative noise. It has a granular form due to diffuse scattering’s result, which is difficult to remove
[1, 5]. Although the multiplicative component in speckle noise is dominant, SAR systems also contain a low
amount of additive noise [2]. The general form of speckle noise in SAR images is given in Equation 1:

g = fnmultiplicative + nadditive, (1)

where g is the noisy SAR image, f is the noise-free SAR image, nmultiplicative is the multiplicative noise due
to coherent interference, and nadditive is the additive noise due to sensor noise. The speckle noise model is most
appropriate and accurate noise model for SAR imaging that has been proven so far [2].

1.2. Speckle reduction approaches
In the SAR literature, various methods are proposed to reduce speckle noise while preserving the image details
such as edges, point scatterers, and textures. These despeckling methods can be divided into 6 major categories:
(a) traditional (sliding window based) approaches, (b) nonlocal means (self patch similarity) based approaches,
(c) transform domain (i.e. wavelet, shearlet) based approaches, (d) machine learning based (i.e. deep learning)
approaches, (e) physics (i.e. diffusion) based approaches, and (f) variational approaches.

In traditional approaches, the filtered reflectivity value is calculated for each pixel using neighbour pixels
in a sliding window. Mean filter, Gaussian filter, median filter, and Wiener filter [6] are among applied filters
to the SAR images that are not optimal for SAR images since they are designed for optical images. Therefore,
adaptive speckle reduction filters are designed which takes into account the properties of SAR images. The Frost
filter [7], Lee filter [8], Kuan filter [9], modified Frost filter [10], and modified Lee filter [11] are the best known
adaptive filters in that category. In 2008, the improved sigma filter [5] was proposed following the principles of
Lee sigma filters to improve the performance of it. These despeckling methods do not protect details such as
edges, point scatterers, and textures.

Nonlocal mean based approaches overcome these limitations using self similarities in the image [12].
These approaches provide very good performance, especially for the textured regions, since such regions contain
a redundant amount of self similarities. Initially, nonlocal mean based approaches are proposed for optical
images but lately nonlocal mean based SAR despeckling algorithms are also proposed such as probabilistic
patch-based (PPB) [13] method and SAR-BM3D [14] method.

Transform domain techniques are also applied by researchers where denoising is applied in the transformed
domain then inverse transform is applied to obtain the denoised image. Various wavelet transform (WT) based
despeckling methods are proposed in [14–16]. WT converts multiplicative speckle noise into additive noise
then it removes the speckle noise in the wavelet domain. Similarly, in [17] shearlet transform is used for
speckle reduction in SAR images. Wavelet and shearlet transform approaches uses known basis functions for
transformation, while dictionary approaches learns the basis from the image data itself. Therefore, dictionary
based approaches [18, 19] combine transform techniques with unsupervised learning.

Dictionary based approaches learn a basis in an unsupervised manner. But due to the success of machine
learning, supervised approaches are also proposed where noisy and noise-free image pairs are used for training
[20, 21]. However, it is very difficult to obtain noise-free versions of real-world SAR images. Thus, training data
are generally synthetically generated in these approaches which limits their despeckling performance.
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As another approach, diffusion-based methods that are inspired from physics are also proposed. In their
seminal work, Perona and Malik proposed an ansiotropic diffusion based denoising method with a spatially
varying diffusion coefficient where less smoothing is applied in pixels with high gradient values since they are
possible edges [22]. This development led to an extensive amount of research for various image processing tasks
using linear and nonlinear diffusion processes [23]. Later, these approaches, which are originally developed
for optical images, are also extended for SAR images. For example, the speckle-reducing anisotropic diffusion
(SRAD) method provides speckle reduction using a Lee filter based on a partial differential equation model for
anisotropic diffusion [24].

Rudin, Osher and Fatemi (ROF) [25] extend the diffusion-based approaches by introducing a data fidelity
term which is called as total variation (TV) regularizer. In the ROF model, a noise reduction approach that
preserves the edges by applying the ℓ1 -norm penalty to the derivatives of the reflectance values in the image
is developed. This ℓ1 -norm regularization term acts as a nonlinear diffusion process, which is also called as
TV diffusion. However, ROF model has an additional data fidelity term for additive Gaussian noise that
enforces a solution similar to given input noisy image. As an extension of ROF model, in [26] sparsity driven
despeckling (SDD) method is proposed that makes it possible to make the TV regularizer term as ℓ0 -norm,
fractional norm, and ℓ1 -norm. SDD method is improved with quadratic-linear (QL) approximation for ℓ1 -norm
TV regularization term which leads to better despeckling with lower execution times, namely SDD with QL
(SDD-QL) [27]. In [28] Fast SDD-QL method is proposed as an efficient and simple mechanism to increase the
speed of SDD-QL method up to an order of magnitude while obtaining the better despeckling result. However,
ROF, SDD, SDD-QL, and Fast SDD-QL all assumes additive Gaussian noise, which limits the performance
of the despeckling since speckle noise is multiplicative. Aubert et al. [29] are the first researchers who use a
variational approach to reduce multiplicative noise which is assumed to be gamma distributed, the AA model.
But AA model is not convex, so achieving global convergence for multiplicative noise is not guaranteed. Durand
et al. [30] have preferred to take the logarithm of the reflectivities in order to convert multiplicative noises to
additive noise. This approach was also used by Bioucas et al. [31]. However, as noted by Liu et al., despite this
approach to convert multiplicative noise to additive noise is facilitating the solution by producing a convex cost
function, the results obtained are not correct.

In this study, inspired from our earlier study in [32], the multiplicative-additive despeckling (MAD)
method is proposed as an enhancement to the AA method [29]. AA method models speckle noise in gamma
distributed multiplicative form where it uses an explicit numerical solver, which is not stable and lead to
dithering artifacts in a despeckled image. First, MAD method employs an efficient implicit solver which is
unconditionally stable so that the despeckled image is free of dithering artifacts. Second, AA method ignores
the additive noise component while the MAD method models both multiplicative and additive noise components,
gamma distributed and Gaussian distributed, respectively. Last, MAD method employs accurate and efficient
ℓ1 -norm numerical approximation for the TV regularization term. These 3 contributions ensure preservation of
the edges and point scatterers in the SAR image while smoothing homogeneous regions. Therefore, proposed
MAD method provides better speckle noise reduction and better computational efficiency compared to the
methods in the literature.

The remainder of the paper is organized as follows. First, Section 2 briefly explains the proposed
method. Then, Section 3 presents the performance of the proposed MAD method with various experiments and
comparison studies. Finally, conclusion with some remarks are given in Section 4.
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2. Proposed method
Speckle reduction in a SAR image can be cast as an optimization problem where despeckled image is the
solution obtained by minimizing a cost function for a given noisy image. Among the family of the cost
functions, variational cost functions have desirable characteristics for preserving the details while filtering the
noise. Variational cost functions contain a data fidelity term and a regularization (smoothness) term besides
problem specific terms. Data fidelity term tries to enforce a solution (despeckled image) close to the given noisy
image while regularization term tries to enforce smoothness on the solution so that image details such as edges
and point scatterers are preserved. Proposed MAD method is expressed as a minimization of a variational cost
function given in Equation 2, as an optimization problem.

F̂ = argmin JMAD(F ) (2)

The above optimization model aims to determine the best choice of a vector that represents the speckle reduced
SAR image. The variable F represents the choice made and the objective value JMAD(F ) represents the cost
of choosing F for utility. At last, cost function JMAD(F ) is minimized with respect to F which leads to the
F̂ as a despeckled image.

2.1. Proposed cost function

The cost function JMAD(F ) is defined as given in Equation 2, which is minimized with respect to F . This cost
function can be modeled for multiplicative noise as proposed in the AA model [29] or can be modeled for the
additive noise as proposed in ROF model [25]. However, general speckle noise model assumes that SAR images
contain both multiplicative and additive noise where additive noise has a minor contribution. Therefore, in
this study, AA model and ROF model are combined to deal with general speckle model as given in Equation 1
which contains a multiplicative noise term in addition to an additive noise term.

Proposed MAD method suggests a variational cost function with a multiplicative and an additive data
fidelity terms and a TV regularization term to reduce speckle noise as given in Equation 3.

JMAD(F ) =
∑
p

(logFp +
Gp

Fp
) + λa(Fp −Gp)

2 + λs|(∇F )p| (3)

where F is speckle noise reduced image, G is an image with speckle noise, the first term is a data fidelity term
dictated by multiplicative noise with gamma distribution, the second term is a data fidelity term dictated by
additive noise with Gaussian distribution, λa is a small positive constant weighting the contribution of additive
noise, the third term is TV regularization term to enforce smoothness, ∇ is the gradient operator, and λs is a
positive value, which determines the smoothing level.

2.2. Minimization of the proposed cost function
In Equation 3, the first data fidelity term, that models the multiplicative noise, is nonconvex. However, as
shown in [29], in certain conditions data fidelity term for the multiplicative noise becomes convex. In addition,
the absolute operator in the TV regularization term is nondifferentiable. Thus, efficient optimization of MAD
cost function, especially finding the global optimum, is challenging. In this study, convex relaxation methods
are used for multiplicative data fidelity term and the absolute value operator is approximated to obtain a convex
and differentiable cost function which leads to an effective numerical minimization scheme.
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Multiplicative data fidelity term is expanded using the first-order Taylor expansion which leads to a
convex term as in Equation 4 where F̂p represents a delegate constant having the same value as Fp .

log(Fp) +
Gp

Fp
≈ mpFp + cp (4)

where

mp =
1

F̂p

− Gp

F̂ 2
p

and cp = logF̂p +
2Gp

F̂p

− 1 (5)

Despite the success of detail preservation of ℓ1 -norm TV regularization, its efficient minimization is challenging
since absolute function is not differentiable. Therefore, the absolute operator is approximated using the
quadratic-linear (QL) approximation approach that is suggested in [27] as below:

|z| ≈ (1− α)(|ẑ|+ ε)−1z2 + αsgn(ẑ)z (6)

where the first term is a quadratic approximation, the second term is a linear approximation, α is weighting
function (0 ⩽ α < 1) for determining the balance between quadratic and linear term, ẑ is a surrogate constant
for the value of z , and ε is a small constant value with ε > 0 . To improve approximation accuracy, ε should be
decreased as much as to 0 . As seen in Figure 1, Equation 6 is accurate around 0 and the approximation point
ẑ . As z decreases and converges to 0 , contribution of the linear term becomes smaller and quadratic term
becomes more dominant. As approximation becomes more quadratic, not only absolute function is smoothed
but also staircase artifacts are also eliminated which is a common problem of ℓ1 -norm TV smoothing.
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Figure 1. QL approximations for different α values (ε = 10−3 , ẑ = 2).

Since F̂p is momentarily fixed and assumed to be constant, |(∇F )p| can be defined as below:

|(∇F )p| = |(∂Fx)p|+ |(∂Fy)p|

≈ (1− α)((Wx)p(∂xF )2p + (Wy)p(∂yF )2p)

+ α((Sx)p(∂xF )p + (Sy)p(∂yF )p)

(7)

where
(Wx)p = (|(∂xF̂ )p|+ ε)−1 and (Wy)p = (|(∂yF̂ )p|+ ε)−1 (8)

and
(Sx)p ≈ sgn((∂xF̂ )p) and (Sy)p ≈ sgn((∂yF̂ )p). (9)
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Cost function given in Equation 3 is rewritten as in Equation 10 using the approximations in Equation 4
and Equation 7. Because of the applied approximations, Equation 10 is only accurate around F̂ and is solved
iteratively where superscript n in J (n)(f) represents the iteration index. A new regularization term (Fp− F̂p)

2 ,

slow-step regularization (SSR), is added to force Fp being close to F̂p since employed approximations are only

accurate around F̂p .

Ĵ
(n)
MAD(F ) =

∑
p

(mpFp + cp) + λa(Fp −Gp)
2

+ λs[(1− α)((Wx)p(∂xF )2p + (Wy)p(∂yF )2p)

+ α((Sx)p(∂xF )p + (Sy)p(∂yF )p)]

+ λp(Fp − F̂p)
2,

(10)

where λp is a positive weight for the SSR term. As λp increases numerical minimization will less deviate from
the approximation point and accuracy will increase but convergence will be slower. In this study, λp is chosen
as 1 as a good trade-off between approximation accuracy and computational efficiency.

Finally, the cost function in Equation 10 can be transformed into a matrix-vector form as below:

Ĵ(Vf ) = (V ⊤
m Vf + 1⃗⊤Vc) + λa(Vf − Vg)

⊤(Vf − Vg)

+ λs[(1− α)(V ⊤
f Cx

⊤WxCxVf + V ⊤
f Cy

⊤WyCyVf )

+ α(S⊤
x CxVf + S⊤

y CyVf )]

+ λP (Vf − Vf̂ )
⊤(Vf − Vf̂ ),

(11)

where Vf , Vf̂ , Vg , Vm , Vc , Sx , and Sy symbols are vector forms of F , F̂ , G , mp , cp , (Sx)p , and (Sy)p . As

a constant vector, 1⃗ is formed with all ones. Cx and Cy are discrete gradient operators, and Wx and Wy

are diagonal matrices for representing the (Wx)p and (Wy)p . Note that vectors have the size of k × 1 and
matrices have the size of k×k where k represents the pixel count in the SAR image. Although, k×k is a huge
matrix size even for a moderate size image (i.e. k = 106 for an image with the size of 1000 × 1000), all the
matrices are sparse so memory and computational requirements for doing operations on these matrices become
tractable. Note that, Cx is discrete gradient operator in x-direction and Cy is discrete gradient operator in
y-direction where derivatives at the image boundary are zero as boundary conditions.

Minimization of Equation 11 leads to a unique global minimum since it is strictly convex. Therefore,
to minimize the cost function in Equation 11, derivative of the Equation 11 is taken with respect to Vf and
equalized to zero as shown in Equation 12.

0 =
∂Ĵn(Vf )

∂Vf
= Vm + 2λa(Vf − Vg)

+ 2λs[(1− α)(Cx
⊤WxCxVf +Cy

⊤WyCyVf )

+ α(Cx
⊤Sx +Cy

⊤Sy)]

+ 2λP (Vf − Vf̂ )

(12)
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After solving the Equation 12 below linear system is obtained.

AV
(n+1)
f = b

A = (λa + λp)I+ λs(1− α)(Cx
⊤WxCx +Cy

⊤WyCy)

b = λaVg + λpVf̂ − 0.5Vm − λs(α/2)(Cx
⊤Sx +Cy

⊤Sy)

(13)

where I is the identity matrix. In case the iteration index is not explicitly stated, n is the iteration index for
the A , Wx , Wy , b , Vf , Vf̂ , Sx , and Sy . Here, A is a positive definite (PD) and a 5-point Laplacian matrix,
which is also sparse.

In [28], the use of adaptive ε is suggested and its computational efficiency is presented. In this approach,
ε is adaptively changed where ε is 1 in the first iteration and converges to the desired value as iteration
proceeds. This approach is easy to implement and requires no extra computation, since it does only simple
scalar computations to calculate adaptive ε (lines 3, 4, and 6 in Algorithm 1). Finally, obtained minimization
approach can be implemented easily in any programming language based on the pseudo-code in Algorithm 1.

Algorithm 1 MultiplicativeAdditiveDespeckling

1: Inputs: g , λa , λs , λp , α , εdesired , nmax ▷ λa, λs, λp > 0 , 0 ≤ α < 1 , 0 < εdesired ≤ 0.1 , nmax > 3

2: Vf ← Vg ← g ▷ assign image data g to vector Vg and vector Vf as initial solution
3: εstart = 1 ▷ Initial ε will be 1
4: εdecrement =

εstart−εdesired
nmax

▷ preparation for the adaptive ε

5: for n = 1 : nmax do
6: ε = εstart − nεdecrement ▷ assignment for the adaptive ε

7: Vf̂ ← Vf ▷ assign Vf to proxy constant Vf̂

8: Wx ← [diag(|CxVf̂ |+ ε)]−1 ▷ CxVf is x-derivative of Vf̂

9: Wy ← [diag(|CyVf̂ |+ ε)]−1 ▷ CyVf is y-derivative of Vf̂

10: Sx ← sgn(CxVf̂ ) ▷ signum of x-derivative of Vf̂

11: Sy ← sgn(CyVf̂ ) ▷ signum of y-derivative of Vf̂

12: A← (λp + λa)I+ λs(1− α)(Cx
⊤WxCx +Cy

⊤WyCy) ▷ construct matrix A
13: b← λaVg + λpVf̂ − 0.5Vm − λs(α/2)(Cx

⊤Sx +Cy
⊤Sy) ▷ construct vector b

14: solve AVf = b ▷ calculate Vf for the next iteration
15: end for
16: f ← Vf ▷ converts vector Vf to an image f

17: Return f

In Algorithm 1, the computational part is solving the linear system AV
(n+1)
f = b . Since A is PD and

sparse, this linear system is efficiently solved using the preconditioned conjugate gradient (PCG) method with
incomplete Cholesky preconditioner (ICP). For the PCG method, convergence tolerance and maximum iteration
are set to 10−2 and 102 , respectively. Note that, Wx , Wy are diagonal matrices that can be kept in k × 1

sized arrays, Cx , Cy are discrete gradient operators that can be kept in k × 2 sized arrays, and since A is
5-point Laplacian matrix that is symmetric it can be kept in k × 3 sized array. As explained in [28], vicinity
of the 0.5 is good value for α as it provides a well balanced trade-off for the accuracy, numerical stability, and
computational efficiency. Thus, α = 0.5 is used as a default value in this study.
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2.3. Computational complexity analysis

For the MAD method, the computational complexity of each pseudo-code line inside the for-loop of Algorithm 1
is shown in the below Table.

Table . Computational complexity of the loop in MAD method.

Line Code in Algorithm 1 Complexity
6 ε← εstart − nεdecrement o(1)

7 Vf̂ ← Vf o(k)

8 Wx ← [diag(|CxVf̂ |+ ε)]−1 o(k)

9 Wy ← [diag(|CyVf̂ |+ ε)]−1 o(k)

10 Sx ← sgn(CxVf̂ ) o(k)

11 Sy ← sgn(CyVf̂ ) o(k)

12 A← (λp + λa)I+ λs(1− α)(Cx
⊤WxCx +Cy

⊤WyCy) o(k)

13 b← λaVg + λpVf̂ − 0.5Vm − λs(α/2)(Cx
⊤Sx +Cy

⊤Sy) o(k)

14 solve AVf = b O(npcgmax
k)

In Algorithm 1, Cx , Cy , Wx , Wy , and A are k × k sized sparse matrices with regular structures.
Sparsity with regular structures enables reducing the computational complexity significantly. Thus, computa-
tional complexity of the lines 7-13 are reduced to O(k) . For line 14, PCG with ICP is used to solve AVf = b

where computational complexity is npcgmax
k . The dominant term in lines 6-14 is npcgmax

k that are within
a for-loop with nmax iterations. Thus, computational complexity of the for-loop becomes o(nmaxnpcgmaxk) .
In Algorithm 1, pseudo-code lines outside of the for-loop have computational complexity of O(1) or O(k) .
Consequently, computational complexity of the MAD method given in Algorithm 1 becomes O(nmaxnpcgmaxk) .
Here, nmax and npcgmax are generally fixed values and determined based on the SAR image characteristics that
MAD method will be executed on. Thus, it can be said that nmax and npcgmax

are almost a constant factor in
the computational complexity. So, computational complexity analysis of the Algorithm 1 shows that proposed
method has intrinsically linear execution time with respect to image size (k ). As seen in Figure 2, execution
time experiment is in alignment with theoretical computational complexity analysis.
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Figure 2. MAD execution time with respect to image size (k ).
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2.4. Convexity analysis

In this section, the convergence properties of the MAD method is analyzed theoretically and experimentally.
To do so, the convexity of the cost function in Equation 11 is shown using the optimality conditions.

To satisfy the first order optimality condition, the derivative of Equation 11 is equalized to zero and a
closed-form solution is obtained as seen in Equation 13. For satisfying the second order optimality condition,
the second derivative is taken where we define H (Hessian) as the second derivative of the cost function Ĵ(Vf )

in the Equation 11. If H ∈ Rk×k is PD then corresponding cost function Ĵ(Vf ) is strictly convex. For PD
check, H ≻ 0 should be satisfied where H ≻ 0 means x⊺Hx > 0 for every x ∈ R with x ̸= 0 [33].

Let’s take the second derivative of the cost function Ĵ(Vf ) in Equation 11:

∂2Ĵn(Vf )

∂Vf
2 = 2λa + 2λP + 2λs(1− α)(Cx

⊤WxCx +Cy
⊤WyCy) = H (14)

Here, x is a nonzero vector and λa , λp , λs , and (1 − α) are all positive scalars; so, one should only
show that x⊺(Cx

⊤WxCx + Cy
⊤WyCy)x > 0 to guarantee that x⊺Hx > 0 for all nonzero x vectors. This

inequality, x⊺(Cx
⊤WxCx +Cy

⊤WyCy)x > 0 , can be expanded as below into two inequalities after x⊺ and
x are distributed from left and right:

x⊺(Cx
⊤WxCx)x > 0, x⊺(Cy

⊤WyCy)x > 0

V ⊤
x WxVx > 0, V ⊤

y WyVy > 0
(15)

where Vx = Cxx and Vy = Cyx . Here, Vx and Vy are nonzero vectors since x is a nonzero vector and Cx and
Cy are Toeplitz matrices with nonzero diagonal elements. Subsequently, both inequalities in Equation 15 are
satisfied since Wx and Wy are all diagonal matrices with positive entries. So, it is shown that cost function
J (n)(Vf ) given in Equation 11 is strictly convex by the first order and second order optimality tests.

In [29], Aubert and Aujol showed that if 0 < f < 2g condition is satisfied then the multiplicative data
fidelity term becomes strictly convex. This condition may be violated if off the chart level of smoothing (i.e.
large λs ) is used. However, as suggested in [28] and shown in Figure 3, MAD method employs an iterative
approach where images become smoother as iteration proceeds so that deviation of f and g will be minimal
in earlier iterations. Therefore, strict convexity conditions will not be violated in earlier iterations, and MAD
will get closer to a global minimum before a possible violation of the strict convexity condition. Consequently,
global minimum or a minimum in close vicinity of the global minimum is guaranteed.

(a) SAR Image (b) Iteration 1 (c) Iteration 2 (d) Iteration 3 (e) Iteration 4 (f) Iteration 5

Figure 3. Generated scale space using the MAD method due to employed iterative minimization approach.
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Finally, as an experimental convergence analysis, convergence properties of the original cost function
and approximated cost function are analyzed. As seen in Figure 4, the difference between the MAD cost
function (Equation 3) and MAD approximated cost function (Equation 11) are decreasing steadily and becomes
negligible in the final iteration. This shows that as iteration proceeds, they converge to the same solution within
a small error bound which indicates that employed convex relaxation and ℓ1 -norm approximation approaches are
successful. Thereby, it can be concluded that original cost function and approximated cost function converges
to the same minimum where there may be minimal numerical difference which can be ignored.
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Figure 4. Comparison of original cost function (Equation 3) and its smooth approximation (Equation 11).

3. Experiments and results

In this section, experiments and comparison studies will be presented using synthetically generated SAR images
and real-world SAR images. Synthetically generated SAR images are obtained by imposing a different levels of
speckle noise onto a test image having geometric shapes with various level of reflectivities. To test despeckling
methods with more variety, 10 SAR images with different geographic location, acquisition mode, polarization,
resolution, and incidence angle are all downloaded from TerraSAR-X sample imagery as real-world SAR image
data set. During tests, parameters of each method are tuned to obtain the best performance. Note that all the
experiments are executed using a computer having an Intel i5-3210M 2.5 GHz CPU.

3.1. Performance on synthetic data

Signal-to-noise ratio (SNR) in Equation 16 is used to measure the performance of the proposed method compared
to AA, Fast SDD-QL, SRAD, and SAR-BM3D methods.

SNRdb = 10 log10(Psignal/Pnoise) = 10 log10(Asignal/Anoise)
2 (16)

where P is average power, and Asignal and Anoise operates on signal amplitude and noise amplitude.
Using general speckle model, we synthetically fused speckle noise onto an optical image (Figure 5, a).

Then, on that synthetic data, best results of 6 despeckling methods are obtained for each noise level (Figure 5,b).
This experiment shows that (a) MAD, SRAD, AA, and Fast SDD-QL methods are successful in general, (b)
SAR-BM3D performs best for high noise levels while fails at moderate and low noise levels, (c) Lee performs
worse, and (d) proposed MAD method performs satisfactory if all the noise levels are considered. Additionally,
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real-world experiments in Section 3.2 shows that SAR-BM3D method fails at high-resolution real-world SAR
images although it performs superior in low-noise regime for the synthetically generated data.

10 15 20 40 45 50Input: SNR

15

20

25

30

35

40

45

50

O
u

tp
u

t:
 S

N
R

 (
lo

g
-s

ca
le

)

MAD

SAR-BM3D

SRAD

AA

Fast SDD-QL

Lee

Figure 5. Synthetic image with various speckle noise levels (a) and comparison of the methods (b). Higher SNR value
indicates lower noise levels.

3.2. Performance on real-world data
In this section, visual results and execution time comparison will be shown to compare MAD method with
other methods (AA, Fast SDD-QL, SRAD, and SAR-BM3D) using real-world TerraSAR-X images which are
downloaded from TerraSAR-X Sample Data.

As seen in Figure 6, regions become smoother and more flattened as λs increases while point scatterers
and edges are preserved for the proposed MAD method. For MAD method, ε controls the approximation
accuracy of the TV smoothing term, λs controls the smoothing level, and small value for λa is chosen for the
contribution of additive noise term (i.e. λa = 10−2 ). Therefore, one should choose values of λs , λa and ϵ

based on the image noise level and desired flatness level in a smoothed image using a training data set as we
did so. Note that, execution time of the MAD method increases as ε decreases or λs increases.

In Figure 7 despeckling results for Barcelona SAR image is shown. Figure shows that AA method contains
dithering artifact due to its unstable explicit solver, SAR-BM3D method blurs the edges, Fast SDD-QL method
degrades the image details while MAD and SRAD methods perform better comparing to other methods.

In Figure 8 despeckling results for Dessau SAR image is shown. Figure shows that SAR-BM3D method
over-smooths the image, AA and SRAD methods round the edges while MAD and Fast SDD-QL methods
perform better comparing to other methods.

In Figure 9 despeckling results for Toronto SAR image is shown. Figure shows that SAR-BM3D method
under-smooths the image, AA method degrades the image details, SRAD method over-smooths low-reflectivity
regions and also contains dithering artifacts while MAD and Fast SDD-QL methods perform better comparing
to other methods.

Figure 7, 8, 9 show that (a) SAR-BM3D method does not perform well in real-world images even though
it performs well in synthetic images, especially for high noise levels, (b) SRAD method performs well in some
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Top le� is original SAR image at time t
1
 where bottom le� is optic image of same location at time t

2

MAD parameters: For top right λ
s
 = 50 and for bottom right λ

s
 = 100 where ε = 10λ−5 and λ

a
 = 10λ−2

Figure 6. MAD results for Lillestroem (Norway, SpotLight, HH, 0.38 meter).

(a) SAR Image (b) AA (c) Fast SDD-QL

(d) SAR-BM3D (e) MAD (f) SRAD

Figure 7. Despeckling results for Barcelona Image (Spain, StripMap, HH, 3 meter).

images but fails in other images and also may contain dithering artifacts, (c) AA method creates dithering
artifacts or degrades image details, (d) performance of Fast SDD-QL method is close to performance of the
MAD method, and (e) MAD method performs well for all cases and provides superior despeckling performance
(better or at least equivalent) comparing to other methods.

Figure 10 shows that SRAD is the fastest despeckling method, while the MAD method is the second fastest
one where time difference is marginal. Since SRAD does not provide sufficiently good despeckling performance,
MAD is the preferential despeckling method over other methods due to its speed and superior despeckling
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(a) SAR Image (b) AA (c) Fast SDD-QL

(d) SAR-BM3D (e) MAD (f) SRAD

Figure 8. Despeckling results for Dessau Image (Germany, StripMap, HH, 3 meter).

(a) SAR Image (b) AA (c) Fast SDD-QL

(d) SAR-BM3D (e) MAD (f) SRAD

Figure 9. Despeckling results for Toronto Image (Canada, SpotLight, HH, 1 meter).

performance. Although MAD is built on AA method and Fast SDD-QL method, it is faster than both of them.
Also, execution time of the MAD and SRAD methods have low variance, which is a nice characteristic.

4. Conclusions
In this study, a novel variational despeckling method, namely multiplicative-additive despeckling (MAD), for
SAR images is proposed. Proposed speckle reduction method is constructed as an optimization problem and
aims to reduce both multiplicative noise and additive noise simultaneously while preserving image details such
as edges and point scatterers. Because of its success in denoising literature, a variational cost function with
proper data fidelity terms and a total variation smoothness term is developed. However, proposed variational
cost function contains both a nonconvex term and a nondifferentiable term. Therefore, convex relaxation and
numerical approximation methods are utilized to obtain a convex and differentiable cost function that is solved
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Figure 10. Execution time comparison of all the methods.

in an iterative manner. Consequently, an efficient and stable implicit numerical minimization scheme is obtained.
Analyzes of the proposed cost function, its approximation, and the implemented algorithm are presented with its
computational and convergence aspects, both theoretically and empirically. Using both synthetically generated
SAR images and real-world SAR images, speckle noise reduction performance of the proposed MAD method
is compared to the state of the art SAR despeckling methods. Obtained results and comparison studies show
that the proposed method provides generally better or at least equivalent despeckling performance compared
to existing methods in a stable and computationally efficient manner.
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