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Abstract: In the paper, we present new theorems to show that a Hamiltonian path and circuit on an undirected graph
can be formulated in terms of bases of polymatroids or extended polymatroids associated with submodular functions
defined on subsets of the node-set of a given graph. In this way, we give a new formulation of the well-known traveling
salesman problem including constraints in these terms. The main result in the paper states that using a special base
of the polymatroid, a Hamiltonian path on an undirected graph can be solved effectively. Since the determination of a
Hamiltonian circuit can be reduced to finding a Hamiltonian path between some node and its adjacent nodes, an efficient
Hamiltonian path algorithm will lead to solving the Hamiltonian circuit problem. Finding some special base is the main
problem in solving these NP -hard problems.
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1. Introduction
The theory of polymatroids has many applications in finding an optimal solution to many combinatorial
optimization problems. This theory can also be used in designing approximation algorithms for some real-
life problems. A deep understanding of the theory enables us to solve optimization problems over polymatroids
structures. In this paper, we show that a Hamiltonian path and a circuit on an undirected graph can be
formulated in terms of bases of polymatroids. The Hamiltonian path problem is a particular case of the following
problem (as described below) as well as many other graph theoretical problems.

Let G = (V,E) be a given undirected simple graph with the node set V and the edge set E , where
|V | = n , |E| = m . Let dv denote the degree of a node v ∈ V and define d := (dv : v ∈ V ) . It is required to
define a spanning subgraph G0 = (V,E0) of G = (V,E) under the condition that bv ≤ dv − k, for all v ∈ V

where k ≥ 0 is an integer and bv is the degree of node v in G0 . Note that bv can be zero in the subgraph
G0 = (V,E0) for some nodes v , that is, G0 may contain some isolated nodes. As a matter of fact, in many
combinatorial problems on graphs we have bv = 0 . These combinatorial problems can be formulated in terms
of bases of polymatroids (or extended polymatriods) associated with certain submodular functions [1, 2] defined
on subsets of node sets of given graphs.

The well-known maximum weight spanning tree problem is reduced to finding a maximum weight spanning
subgraph G0 for which the sum of node degrees is 2(m−n+1) and bv ≥ 1 for all v ∈ V (see [3]). In [4], it was
shown that a bipartite graph has a perfect matching if and only if the node degree vector b = d − 1 is a base
of an extended polymatroid. Note that, a similar result has been shown in [5] for nonbipartite graphs. Based
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on this result an O(n3) algorithm was proposed for finding a perfectly matchable subgraph in a given bipartite
graph.

This paper aims to show that a Hamiltonian path and circuit on an undirected graph can be formulated
in terms of bases of polymatroids or extended polymatriods. This will allow us to reformulate the well-known
”traveling salesman problem”. It is known that related problems are NP -hard. Therefore, determining whether
a graph has a Hamiltonian path or a circuit has a high time complexity. The Hamiltonian circuit problem has
many applications such as time scheduling, the choice of travel routes and network topology [6, 7]. Thus, this
paper will address a very important problem in graph theory and computer science.

Due to their similarities, problems related to Hamiltonian cycles are usually compared with Euler’s
problem. However, the techniques of solutions for these problems are very different. There is a very elegant
(necessary and sufficient) condition for a graph to have Euler cycles. In the literature, there are many solutions
that generate efficient algorithms for finding Euler Cycles. Some theorems provide sufficient conditions for the
existence of a Hamiltonian circuit (see [8, 9]). However, the heavy conditions in those theorems make the results
not applicable and make them unrealistic for practical use.

The next section is devoted to definitions and notations that will be used throughout the paper.

2. Basic notions and preliminary results

Let G = (V,E) be a graph. For a vector a ∈ RV (or a ∈ RE ) and a subset S ⊆ V (or S ⊆ E ), define
a(S) =

∑
v∈S av . Denote by S = V \ S , the complement of S in V . Let γ(S) and κ(S) denote the subsets

of edges having at least one of endpoints in S ⊆ V and both endpoints in S ⊆ V , respectively. Consider the
functions f(S) = |(γ(S)| and g(S) = |(κ(S)| , defined on subsets of V . Obviously, both f(S) and g(S) are
monotone functions. Moreover, it is well known that f is submodular and g is supermodular [1]. Hence, the
function f(S) − g(S) is submodular as well. The cut determined by a subset S ⊂ V is denoted by δ(S) . An
edge with endpoints v and u is denoted by (v, u) and uv denotes the arc with the u and the tail v . We call
the vector d = (dv : v ∈ V ) as the degree vector of the graph G . We write v ≺L u if v precedes u in the linear
ordering L of the nodes. From the definitions of the sets γ(S) and κ(S) , it follows that

f(S) + g(S) = d(S),

and
f(S)− g(S) = |δ(S)|

for the cut δ(S) determined by any S ⊂ V . The following sets in RV associated with the functions f and g

are called polymatroid and superpolymatroid [1, 2], respectively.

P (f) = {x ∈ RV : x ≥ 0, x(S) ≤ f(S), S ⊆ V },

Q(g) = {y ∈ RV : y ≥ 0, y(S) ≥ g(S), S ⊆ V }.

The following polytope associated with the functions f − g is called extended polymatroid

EP (f − g) = {w ∈ RV ; w(S) ≤ f(S)− g(S), S ⊆ V }.

The vectors x ∈ P (f) and y ∈ Q(g) are called bases of the polymatroid and the superpolymatroid if
x(V ) = f(V ) and y(V ) = g(V ) , respectively. For any bases x ∈ P (f) and y ∈ Q(g) , since γ(V ) = E = κ(V ),
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(by the definition of the sets γ(S) and κ(S)), we have

x(V )− y(V ) = f(V )− g(V ) = 0.

A vector w ∈ EP (f − g) is a base of EP (f − g) if w(V ) = 0 .
Let xL ∈ P (f) and yL ∈ Q(g) be the bases computed by the greedy algorithm with respect to any linear

ordering L of the nodes. Our first observation is that, the difference wL = xL − yL of the bases xL and yL is
a base of EP (f − g) which can be also found by the greedy algorithm with respect to the linear ordering L of
the nodes. From now on, we will write x, y and w for xL , yL and wL , respectively when there is no ambiguity.
Note that the following zero-sum equality ∑

wv>0

wv = −
∑
wu≤0

wu

holds for the base w = x− y .
According to the linear ordering of L nodes, one can orient the edges of the graph G = (V,E) in such a

way that the resulting digraph is an acyclic oriented graph. This requires each edge (v, u) to be replaced by an
arc vu if v ≺L u or by an arc uv if u ≺L v . The converse is also true: Each acyclic orientation of the edges
of the graph G = (V,E) defines a linear ordering L of its nodes. In an acyclic oriented graph G = (V,E) with
weights cvw on arcs, let δ+(v) be the set of arcs entering to node v and let δ−(v) be the set of arcs leaving
from node v .
We observe that the bases x ∈ P (f) and y ∈ Q(g) satisfy the equalities

|δ+(v)| = xv, v ∈ V, (1)

|δ−(v)| = yv, v ∈ V. (2)

In other words, xv is the number of arcs leaving the node v and yv is the number arcs entering the node v . In
[1], it was shown that the equalities above are satisfied by any bases of x ∈ P (f) and y ∈ Q(g) , where x and
y are computed with respect to any linear ordering of the nodes in any graph. In [1], it was also proved that:

Claim 1 If x ∈ P (f) and y ∈ Q(g) are any bases computed by the greedy algorithm with respect to any linear
ordering L of the nodes, then

x+ y = d

and the difference x− y = w is a base of E(f − g) , for which∑
wv>0

wv = −
∑
wv≤0

wv.

Claim 2 . For a given linear ordering L = {v1, ...vn} of the nodes in V , the bases x(L) ∈ P (f) , y(L) ∈ Q(g)

and w(L) ∈ EP (f − g) can be found in O(m) time, where n = |V | and m = |E| .

Let L = {v1, v2, ..., vn} and I = {vn, ..., v2, v1} be two linear orderings of nodes.

Claim 3 If the greedy algorithm defines the bases x1 ∈ P (f) and x2 ∈ P (f) with respect to the L and I ,
respectively, then x2 = y1 = d− x1 ∈ Q(g) and x1 = y2 = d− x2 ∈ Q(g) .

We will use the preceding claims in the theorems we will prove in the next section.
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3. Hamiltonian path and bases of polymatroid

Let us consider an undirected graph G = (V,E) with node set V , edge set E and unit weights on edges. Without
loss of generality, we can assume that dv > 2 for any node v ∈ V . Now consider the problem of defining a
subgraph G0 = (V,E0) of G such that bv = dv−2 for all nodes in V , where the vector b = (bv; v ∈ V ) denotes
the degree of nodes in G0 . It is easy to see that after deleting edges in any set of all edge-disjoint cycles in
the graph G = (V,E) , the resulting subgraph G0 has the nodes with degree bv . Hence, obtaining of G0 is
equivalent to finding a set of edge-disjoint cycles (EDCS) in the graph G . A solution to the latter problem can
be found by solving the system of the linear equations similar to assignment constraints on the bipartite graph
which is usually used in the formulation of the well known traveling salesman problem (see [10]).

Now, consider EDCS with the additional requirement that G0 which is obtained by deleting edges of any
Hamiltonian circuit in G is a spanning subgraph of G . Since f(S) − g(S) = |δ(S)| by Claim 2, this problem
can be reduced to finding a 0 or 1 solution to the following system of linear equations and inequalities:

z(δ(w)) = bv, v ∈ V, (3)

z(δ(S)) ≤ f(S)− g(S)− 2 for all ∅ ̸= S ⊂ V. (4)

where z = (ze : e ∈ E) .
In fact, for u = 1−z , the conditions (3) and (4) are transformed into the constraints of many classic formulations
of the Hamiltonian circuit problems used in various models of the traveling salesman problem. Restrictions
ze = 0 or 1 for each e ∈ E allow us to use different algorithms based on the branch and bound methods in
the solution of the latter problem. Since the separation problem for (4) and vector z ∈ RE are reduced to
finding at most n minimum cut problems [11], testing the validity of (4) can be checked in polynomial-time
in all iterations of the branch and cut type methods. Below, we show that the equations (3) and (4) can be
formulated using the variables for each node of the graph G .

Let G0 = (V,E0) be a spanning subgraph obtained after removing the edges of a Hamiltonian circuit in
some graph G . One can formally define the functions f0(S) and g0(S) with respect to the subgraph G0 for
any subset S of V . Let us define P0 = P (f0) , Q0 = Q(g0) and EP0 = EP (f0 − g0) . Using the claims in
section 2, the degree bv of nodes v in G0 , the equality

bv = x0
v + y0v

must hold for all x0 ∈ P0 and y0 = b − x0 ∈ Q0 , where x0 is a base defined by the greedy algorithm with
respect to any linear ordering L of the nodes. In addition to the bases x0 and y0 , consider the bases x ∈ P (f)

and y ∈ Q(g) computed by the greedy algorithm with respect to L . Since f and g are monotone functions,
xv ≥ 0 and yv ≥ 0 for any node v ∈ V . Now using the bases x0 and y0 , we can define the spanning subgraph
G0 = (V,E0) , where the edges in δ+(v) are arcs leaving from node v and edges in δ−(v) are arcs entering
to node v in V . The condition bv = dv − 2 , and the equalities (1) and (2) imply that one of the following
equalities

xv − x0
v = 2, yv − y0v = 0, (5)

xv − x0
v = 0, yv − y0v = 2, (6)
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xv − x0
v = 1, yv − y0v = 1 (7)

holds for each node v ∈ V .
Since G0 itself is a graph, the zero sum equality holds for the base z0 = x0 − y0 in EP0 . Thus, the

base x0 ∈ P0 and y0 ∈ Q0 can be defined by using (5)-(7) to construct the required spanning subgraph G0 .
In order to construct G0 , we need to consider acyclic or-graph G(L) obtained by orienting the edges in E in
accordance with L . Then, it is necessary to use xv and yv (the components of the bases x and y ) in such
a way that the conditions x0

v = |δ+(v)| and y0v = |δ−(v)| hold in G0 = (V,E0) (see (1) and (2)). Since the
determination of a Hamiltonian circuit can be reduced to finding a Hamiltonian path between nodes v1 and
w for all adjacent nodes w with v1 , we first show that some bases of P (f) can be used for this purpose. Let
the degree dv1

of a node v1 be minimum. Clearly, a Hamiltonian path between nodes v1 and w and the
edge (v1, w) together is a Hamiltonian circuit. Suppose that G contains the edge (v1, vn) and we are seeking
a Hamiltonian path Γ between the nodes v1 and vn . If a Hamiltonian path Γ visits nodes according to the
order in L = {v1, v2, ..., vn} , then using the greedy formulas for computing the bases x ∈ P (f) and y ∈ Q(g)

with respect to L , we have x1 = d1 , y1 = 0 and xn = 0 , yn = dn . Obviously, if G0 is a spanning subgraph
obtained after deleting all edges of Γ in G , then xv − x0

v = 1 , yv − y0v = 0 when v = v1 and xv − x0
v = 0 ,

yv − y0v = 1 when v = vn , for the bases x0 ∈ P0 and y0 ∈ Q0 computed with respect to L . Let b be a vector,
where bv = dv − 1 for v = v1, vn and bv = dv − 2 for each v ∈ V \ {v1, vn} .

Theorem 1 Let L = {v1, v2, ..., vn} be a linear ordering of nodes and let x be a base of P(f) and y = d − x .
The graph G = (V,E) has a Hamiltonian path between nodes v1 and vn if and only if the vectors x0 and y0

defined by using the equalities (5)-(7) satisfy the following conditions:

• x0
v = dv − 1 , y0v = 0 when v = v1 ,

• x0
v = 0 , y0v = dv − 1 when v = vn ,

• bv = x0
v + y0v for each v ∈ V \ {v1, vn} .

Proof (⇒) Let us assume that the graph G = (V,E) has a Hamiltonian path between nodes v1 and vn that
visits nodes according to an order L = {v1, v2, ..., vn} . Let G1n = (V,E1n) denote the graph obtained deleting
the edge (v1, vn) in G . Since the graph G1n = (V,E1n) has a Hamiltonian path, it implies that there are arcs
wv and uv in the G1n(L) for any v ̸= v1, vn . Let x be a base defined by the greedy algorithm with respect to
L . Since G has a Hamiltonian path and f(S) is a monotone function, 0 < xv < dv for any v ̸= v1, vn in V .
Defining x0

v and y0v using the equality (7) requires that the edges in the Hamiltonian path are to be deleted in
G1n . Hence, we can set x0

v = d1−1 , yv = y0v for v = v1 and xv = x0
v , y0v = dn−1 for v = vn and bv = x0

v+y0v

for v ∈ V \ {v1, vn} .
(⇐) Since we seek a Hamiltonian path between nodes v1 and vn , without loss of generality, we assume that
v1 ≺L v and v ≺L vn for any node v ∈ V \ {v1, vn} in any linear ordering L of nodes. Let x be a base of the
polymatroid P (f) defined with respect to some linear ordering L of the nodes in V and y = d− x . Then we
can set xv − x0

v = 1 for v = v1 and yv − y0v = 1 for v = vn since the graph G is a connected graph. Let x0
v

and y0v be defined using the equalities (5)-(7) for nodes v = v2, ..., vn−1 such that the condition bv = x0
v + y0v
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holds for v ∈ V . Suppose that graph G has not a Hamiltonian path between nodes v1 and vn . Then, in G ,
there is no a spanning tree T having nodes with degree <= 2 (see [10]). That is, in T , at least 1 node vk has
degree > 2 . To obtain a subgraph G0 = (V,E1n) to determine x0

v and y0v with respect to any linear ordering
L = {v1, v2, ..., vn} by using the equalities (5)-(7), one must delete at least 3 edges incident to the node vk .
Hence,the last condition does not hold for x0

v and y0v defined by (5)-(7) when v = vk , which contradicts with
the theorem. 2

We are going to use this theorem to give a new formulation for TSP as follows. First, note that a
Hamiltonian circuit cannot be defined in the same way as a Hamiltonian path, since the subgraph G0 with
degree bv can be obtained by deleting edges in any set of subcycles in G , even if

x0
v + y0v = bv = dv − 2, v ∈ V

for x0
v and y0v (defined by the equalities (5)-(7)) used for the construction of G0 . Consequently, in order to

define a Hamiltonian circuit in the spirit of Theorem 1, some additional subcycle deletion constraints must be
held for x0

v and y0v defined by (5)-(7).
Theorem 1 states that: The vectors x0 = (x0

v; v ∈ V ) and y0 = (y0v ; v ∈ V ) , defined by removing some
incident arcs with each node v , are bases of P0 and Q0 defined by the greedy algorithm with respect to L as
well. That is, y0 = b− x0 . Therefore, in order to a spanning subgraph G0 = (V,E0) obtained after deleting a
Hamiltonian path between some pair of nodes v1 and vn , we must first define some linear ordering L of the
nodes.

However, when xv ≥ 2 and yv ≥ 2 for some nodes v ∈ V , there are some uncertainties in the
determination of the values x0

v and y0v for node v , since the choice of equality in (5)-(7) is not clear for
computing x0

v and y0v . The reason is that each equality in (5)-(7) is suitable for this case. But, we can choose
the equality (5) when xv = 0 and (6) when yv = 0 to define x0

v and y0v for v . In order to reduce ambiguity, it
is necessary to compute a base x ∈ P (f) such that either xv = 0 or yv = 0 for the maximum number of nodes
v in V , where y = d− x . Such a base can be defined after finding a maximum independent set Π of nodes in
G , since either xv = 0 or yv = 0 for v ∈ Π , by the formulas of the greedy algorithm when x ∈ P (f) is defined
with respect to the linear ordering L = (Π, V \ Π) of nodes. Since the maximum independent set problem is
NP -hard [12], it is impractical to use this way directly to define x0 and y0 .
Now, we consider which base of P (f) is more suitable for finding a Hamiltonian path Γ . Let Γ visit nodes
according to its order in L = {v1, v2, ..., vn} .

Definition 1 A linear ordering L = {v1, v2, ..., vn} of nodes is called tracing if the inequality 0 < xv < dv

holds for any node v ̸= v1, vn and the base x = (xv : v ∈ V ) ∈ P (f) defined by the greedy algorithm with respect
to L .

For convenience, let us denote by L(1, n) a tracing linear ordering L such that v1 ≺L v and v ≺L vn

for any v ̸= v1, vn . Let us define tvi = ti for t = x, y, z, x0, y0, z0 . It is easy to show that the visiting order
of nodes in a Hamiltonian path is a tracing linear order of nodes, but the inverse is not true. Suppose that
L = {v1, v2, ..., vn} is a tracing linear ordering. Let G(L) be the acyclic graph obtained after orienting the
edges in E according to the tracing linear ordering L of nodes. Now, using equality (7), we can remove 2 arcs
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vw (leaving the node v ) and uv (entering the node uv ) in G . Set xv − x0
v = 1 , yv − y0v = 1 for any node

v ̸= v1, vn and x1 − x0
1 = 1 , y1 = y01 , xn = x0

n , yn − y0n = 1 . However, since vw is an arc entering w and uv

is an arc leaving u , deleting these arcs may result in bt ̸= x0
t + y0t for node t = u or t = w .

In order to get a tracing linear ordering of nodes, we may assume that the graph G does not have a node
v with dv ≤ 2 , using a well known theorem in [3], which states that: A sequence of integers b1, b2, ..., bn are
the degrees of nodes of a simple k -edge connected graph with n nodes if and only if bi ≥ k for all i = 1, ..., n .
Recall that the number of edge connectivity of a graph is the number of edges in a minimum cut in G . The
proof of this theorem in [13] can be viewed as the algorithm required to construct the required graph.

Let k be the edge connectivity of a graph G = (V,E) . Thus, the edge connectivity of a subgraph
G0 = (V,E0) cannot be more than k − 1 . Clearly, for the case k = 2 , either bv = 1 or bv = 0 . Therefore, a
node v can be removed from G if dv ≤ 2 . This is because the edges (u, v) and (v, w) can be replaced by the edge
(u,w) to determine the values of x0

v and y0v . However, we need to keep the inequality bv ≥ k − 1 when edges
incident to v are deleted for nodes v = v1, v2, ..., vn according to tracing linear ordering L = {v1, v2, ..., vn} .

In order to determine a tracing linear ordering L(1, n) of nodes, we can use the idea of the well-known
depth-first search traversal of nodes as follows: First, we set L(1, n) := {v1} and mark all edges if one of the
end nodes is v1 . In each step, we choose an adjacent node v ̸= vn with one of the nodes in L(1, n) so that
there is at least 1 unmarked edge with one of the end nodes v in the graph G = (V,E) . Then, we mark all the
unmarked edges with one of end nodes v in G and set L(1, n) = {L(1, n), v} .
This process is repeated until either all edges with one of the end nodes vn are marked or some node s /∈ L(1, n)

whose all incident edges are marked is chosen. In the first case, L = (v1, v2, ..., vn) is a tracing linear ordering of
nodes, since there is at least one unmarked edge at each step that implies 0 < xv < dv for any v ̸= v1, vn . In the
second case, if a node s ̸= vn with at least 1 unmarked edge cannot be chosen. Then all edges (s, w) are marked
and w ∈ L(1, n) . Hence, all paths connecting the node s and every node v /∈ L(1, n) contains marked edges.
Let v /∈ L(1, n) be a node so that there is at least 1 marked edge (w, v) with end node w ∈ L(1, n) . Consider
a shortest path between s and v passing through nodes s = s1 ,s2 ,...,sp+1 = v . Hence, s2, ..., sp ∈ L(1, n) and
sk ≺ s for k = 2, ..., p . Then, in L(1, n) , the order of nodes s = s1, s2 ,...,sp can be changed as follows:

s ≺ s2, ...,≺ sp ≺ v

, and we set L(1, n) := (L(1, n), v) . By repeating this process, all edges incident to the node vn can be either
marked or not marked. In the latter case, the graph does not have the required Hamiltonian path, in the former
case L(1, n) is a tracing linear ordering.

The definition of tracing L(1, n) follows that it can be defined in polynomial-time, since for going out
from node s , enumerating shortest paths can be defined by one of the well-known polynomial-time algorithms
when all edges have unit weight. Therefore, using a tracing linear ordering can lead to new simple Hamiltonian
path algorithms by carefully choosing deleting edges for conforming that bv = x0

v + y0v in G0 = (V,E0) .
The computational testing of such an algorithm is the topic of a future project. To clarify some difficulty

arising in the work of this type algorithm, the reader can try to find L(1, 6) with respect to the graph in Figure
1, if L(1, 6) = {v1, v4} at the second step.

In the next section, we give a new formulation for the traveling salesman problem based on the above
results.
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Figure 1. Non-Hamiltonian graph G = (V,E) .

4. Traveling salesman problem formulation

The purpose of this section is to obtain a new formulation for the traveling salesman problem in variables for
nodes. In order to achieve this purpose, we first consider a system of linear inequalities that can be used in
describing an unknown spanning subgraph G0 = (V,E0) obtained by deleting the edges of a Hamiltonian circuit
in the graph G . We denote the polymatroid and the superpolymatroid with respect to the spanning subgraph
G0 = (V,E0) by P0 and Q0 , respectively. Let x ∈ P (f) be a base defined by the greedy algorithm with respect
to some linear ordering L of nodes and y = d − x . Let h ∈ P0 be an unknown base which is also defined by
the greedy algorithm with respect to L . Then, the equalities (5)-(7) can be rewritten as

0 ≤ xv − hv ≤ 2, for all v ∈ V, (8)

0 ≤ yv − tv ≤ 2, for all v ∈ V. (9)

In addition to these constraints, the bases h ∈ P0 and t ∈ Q0 must satisfy condition

hv + tv = dv − 2, for all v ∈ V, (10)

h(V )− t(V ) = 0, (11)

as G0 = (V,E0) is itself a graph.

Definition 2 We say that numbers hv and tv realize the acyclic copy G(L) of a spanning subgraph G0 = (V,E0)

obtained by orienting its edges according to the linear ordering L (the greedy algorithm defines a base x ∈ P (f))
if hv = |δ+(v)| and tv = |δ−(v)| , where hv is the number of the leaving edges from a node v and tv is the
number of entering edges to v in G(L) .

It can be easily proved that if there are integers hv and tv satisfying (8)-(11) (with respect to given
bases x ∈ P (f) and y ∈ Q(g) ], then these numbers realize G0 = (V,E0) obtained after deleting some set C of
edge-disjoint cycles in the graph G . For example, after deleting the bold lines in the graph shown in Figure 2,
the subgraph G0 contains 3 isolated nodes for which

hv = tv = f({v}) = g({v}) = 0.
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Thus, it needs to have some constraints to remove edge-disjoint cycles. Clearly, if S ⊂ V is a node set of
some cycle in C , then h(S)− t(S) = f(S)− g(S) . Therefore, the following condition is an edge-disjoint cycles
deleting constraints.

h(S)− t(S) ≤ f(S)− g(S)− 2, for all ∅ ̸= S ⊂ V. (12)

Figure 2. Edge-disjoint cycles in G .

Theorem 2 For the base x ∈ P (f) defined by the greedy algorithm with respect to a linear ordering L of
nodes, finding an integer solution h = (hv : v ∈ V ) and t = (tv : v ∈ V ) to the system of linear equations
and inequalities (8)-(12) realizes G0(L) [the or-graph copy of a spanning subgraph G0 = (V,E0) ] obtained after
deleting all edges of a Hamiltonian circuit (if exists) in the graph G .

Proof Suppose that the system of linear equations and inequalities (8)-(12) have integer solutions hv and
tv for some fixed base x ∈ P (f) defined by the greedy algorithm with respect to some linear ordering L . Let
y = d− x . It follows from the equalities (8)-(10) that one of the equalities (5)-(7) holds for some hv = xv and
tv = yv . This implies that one of the equalities (5)-(7) is used in the determination of hv and tv with respect
to the base x and y = d − x . Thus, the condition hv + tv = dv − 2 = bv holds for each node v ∈ V and
t(V ) = b(V )− h(V ) and 2t(V ) = 2h(V ) = b(V ) by (11). So, we can set hv = |δ+(v)| and tv = |δ−(v)| for each
node v ∈ V . Now, we can claim that numbers hv and tv realize the acyclic copy of a subgraph G0 with degree
bv of nodes v . Otherwise, one of the 2 conditions (10) or (11) is not satisfied. Using (12), we see that these
numbers cannot realize some set of edge-disjoint cycles C in the graph G , because h(S)− t(S) = f(S)− g(S)

for some node set S of edge-disjoint subcycle. 2

Now, let us consider a graph G = (V,E) and a nonnegative cost ce for each edge in E . Let the base
x ∈ P (f) be defined by the greedy algorithm with respect to some linear ordering L of nodes and let y = d−x .
By Theorem 2, the problem of spanning subgraph obtained after removing all the in a Hamiltonian circuit, can
be formulated as follows on the or-graph G(L) :

max
∑
e∈E

ceze

subject to (8)-(12) and
z(δ−(v)) = hv, z(δ+(w)) = tw, for e = (v, w) ∈ E

ze = 0 or 1, e ∈ E.

Clearly, this can be regarded as a new model of the traveling salesman problem.
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5. Concluding remarks

It is well known that the topological properties of graphs play an essential role in solving combinatorial problems
over polymatroids. The properties that the greedy algorithm defines polymatroid bases with respect to a given
linear ordering of nodes in a given graph and models of combinatorial problems in terms of polymatroid bases,
together may be used for some investigations of these problems. The result in the paper is to show that TSP
can be formulated in term of bases of polymatroids. Since we do not know the unambiguous connections
between NP and P , it is difficult to come up with a polynomial-time algorithm for solving TSP by using only
the above described specifics. As a future investigation, based on constraints (8)-(12), one can propose a fast
approximation algorithm to solve TSP, since polymatroid approaches are an effective means of solving many
combinatorial problems on graphs. Furthermore, designing a polynomial-time algorithm for solving the following
question is also a future investigation: What tracing linear ordering L can be defined in polynomial-time so
that bw = x0

w + y0w for base x ∈ P (f) defined with respect to L?
Based on a positive answer to this question, a polynomial-time algorithm can be developed for finding

an optimal solution to TSP and as a result, we could get that NP = P .
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