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Abstract: The performance of cross-correlation functions can decrease computational complexity under optimal
fingerprint feature selection. In this paper, a technique is proposed to perform alignment of fingerprints followed by
their matching in fewer computations. Minutiae points are extracted and alignment is performed on the basis of their
spatial locations and orientation fields. Unlike traditional cross-correlation based matching algorithms, ridges are not
included in the matching process to avoid redundant computations. However, optimal cross-correlation is chosen by
correlating feature vectors accompanying x-y locations of minutiae points and their aligned orientation fields. As a
result, matching time is significantly reduced with much improved accuracy.
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1. Introduction
Patterns of immutable friction ridges and valleys forming fingerprints that have been extensively used for
identification in numerous fields may be located on the exterior of one’s fingertip that have been extensively used
for identification in numerous fields. Due to increased cybercrimes and security frauds, uses of biometric-based
access control technology is growing vigorously [1]. There are different biometric traits such as gait, iris, face,
speech, etc. However, as far as authenticity, uniqueness, and reliability are concerned, the fingerprint is most
widely used biometric trait in almost all fields for instance institutions, banks, border security, smartphones,
laptops and cash machines [2].

To provide fingerprint-based biometric authentication, different algorithms have been proposed, mainly
minutiae-based, pattern-based, correlation-based, etc. However, all rely on feature extraction of different types
such as core point, delta, minutiae points, pores, and ridge valley structures [3].

Smartphones and related devices acquire very less area of finger for recognition through scanner. In this
regard, a secure algorithm is developed for fingerprint authentication using the cross correlation-based technique
as well as entropy is obtained for the associated region. The captured region is divided into blocks, different
weights are assigned to them to extract features and score is calculated [4]. Normalized cross-correlation is
performed between the input image and template image by first finding the region of interest near the core
point on the fingerprint image. A couple of translations are applied and correlation is calculated on the selected
region to reduce computations and finally score is generated [5]. A multilayer feed-forward (FF) artificial
neural network (backpropagation) is created. Superimposition of features undergo training and testing steps
to facilitate the matching. In this way, improved accuracy is found [6]. Authentication and identification for
∗Correspondence: mubeensabir@comsats.edu.pk
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fingerprints over the large datasets require larger memory. A flexible scoring technique is proposed through which
decomposition of matching and corresponding generation of score is performed to avoid larger size structures
for its accommodation [7]. Partial fingerprint matching is performed by acquiring features involving ridge-
shapes as well as minutiae points. Devices (such as mobile phones and laptops) require only minute scan
accompanying insufficient region that may not be enough for provision of authentication using traditional
matching techniques. Therefore, structures of the ridges’ shapes as convex or concave are obtained to ease
the matching steps [8]. Fingerprint-based unlocking of smartphones demand faster algorithms. Therefore,
matching using binary descriptors relying on phase correlations is carried out and required operation is achieved
comparatively in less time lag [9]. Orientation field is extracted from ridge valley patterns followed by features
(minutiae points). Relations among minutiae points are developed and decision of matching is obtained from
similarity function [10]. To introduce uniqueness in the matching process of fingerprints, two descriptors are
created for each minutia points followed by a seventeen-dimensional feature vector and then the greedy matching
algorithm is used for classification [11]. Matching of fingerprint images is performed based on minutiae points by
dividing into two blocks. First extract features and second execute matching on the basis of extracted features
and their angles from the reference point [12].

Reduction of computational cost and improvement in accuracy are key aspects of a system. In this paper, a
cross-correlation (CC ) technique is employed to achieve matching of fingerprints in a less time lag with improved
accuracy. Section II discusses the enhancement and feature extraction. Section III covers the traditional cross
correlation-based matching; whereas its drawbacks and proposed cross correlation-based matching is provided
in sections IV and V, respectively. Section VI provide the details of performance evaluation parameters. In
section VII, results and their discussion are provided followed by the conclusion in section VIII.

2. Enhancement of fingerprints
Before going into the matching stage, removal of noise and unwanted contents is compulsory. Therefore, to
carry out enhancement, first, normalization is required to be performed to get predefined mean and variance
over the fingerprint image. Mean and variance may be calculated as:

µ (I) =
1

R× C

R−1∑
i=0

C−1∑
j=0

I (i, j) , (1)

ν (I) =
1

R× C

R−1∑
i=0

C−1∑
j=0

(I (i, j)− µ (I))
2
, (2)

where I is the input image, (i, j) shows location of pixel at ith row and jth column on I , (R×C) shows size,
µ mean and ν variance of I , respectively. Now, normalization may be applied to reduce the abrupt changes
across the ridges as follows [13]:

G (i, j) =

 µo +
√

νo(I(i,j))−µ)2

ν , ifI (i, j) > µ

µo −
√

νo(I(i,j))−µ)2

ν , elsewhere
(3)

where G is the normalized image, µo and νo are desired mean and variance, respectively. Normalization does
not change the clarity of the image but it facilitates subsequent steps such as estimation of orientation, frequency
of ridges and filtering process.
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The orientation of friction-ridges lead toward the uniqueness of fingerprints and has a vital role in filtering
and eventually in the authentication of a human being. For this, G is required to be converted into blocks of
size (w = 16) and gradient is obtained as given in following.

Vx(i, j) =

i+w/2∑
u=i−w/2

j+w/2∑
v=j−w/2

2∂x(u, v)∂y(u, v), (4)

Vy(i, j) =

i+w/2∑
u=i−w/2

j+w/2∑
v=j−w/2

(∂x
2(u, v)− ∂xy

2(u, v)), (5)

θ (i, j) =
1

2
tan−1

(
Vy (i, j)

Vx (i, j)

)
, (6)

where θ is estimate of orientation field centered at pixel (i, j) . However, the presence of noise degrades I and
destroys ridge valley structures, the deviancy from estimated θ may be corrected by applying lowpass filtering.
To apply lowpass filtering, the estimated orientation field is first converted into continuous filed as given in
following.

Φx (i, j) = cos (2θ (i, j)) , (7)

Φy (i, j) = sin (2θ (i, j)) , (8)

where Φx and Φy are the components of the vector field in horizontal and vertical directions. Now, lowpass
filtering may be applied to get smoothened orientation field [13].

Φ′
x(i, j) =

wΦ/2∑
u=−wΦ/2

wΦ/2∑
v=−wΦ/2

W (u, v)Φx(i− uw, j − uw), (9)

Φ′
y(i, j) =

wΦ/2∑
u=−wΦ/2

wΦ/2∑
v=−wΦ/2

W (u, v)Φy(i− uw, j − uw), (10)

where W (.) is the lowpass filter with its size (wϕ = 5) , and smoothened orientation ϑ can be calculated as:

ϑ (i, j) =
1

2
tan−1

(
Φ′

y (i, j)

Φ′
x (i, j)

)
. (11)

Frequency of ridge valley patterns is another unique feature of fingerprint image that eases filtering
process. Varying patterns of ridges and valleys can be modeled as sinusoidal shaped-wave normal to the
orientation. For this, image is divided into blocks of size (w = 16) and oriented-window having size of (l × w)

is created with (l = 32) and x-signature (X) is calculated there. If singular points do not appear in oriented-
window, X produces discrete sinusoidal shaped-wave having the same frequency as that of the ridges and
furrows in the oriented-window [13].

X [k] =
1

w

w−1∑
d=0

G (u, v) , k = 0, 1, 2, . . . l − 1 (12)
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u = i+
(
d− w

2

)
cos (ϑ (i, j)) +

(
k − l

2

)
sin (ϑ (i, j)) , (13)

v = j +
(
d− w

2

)
sin (ϑ (i, j)) +

(
l

2
− w

)
cos (ϑ (i, j)) , (14)

Patterns of ridges and valleys accompanying unique information regarding orientation and frequency can be
benefited to remove noise from fingerprint. Since sinusoidal shaped-wave varies slowly with local orientation,
Gabor filter in bandpass mode tuned to corresponding frequency and orientation may be used to preserve actual
patterns.

h (x, y : ϕ, f) = exp

{
−1

2

[
(xcos(ϕ))

2

δx
2 +

(ysin(ϕ))
2

δy
2

]}
cos (2πfx cos (ϕ)) , (15)

where h is an impulse response of even symmetric Gabor filter, ϕ shows the corresponding orientation of the
Gabor filter, f shows the frequency of the sinusoidal wave, δx and δy denote the standard deviations of the
Gaussian envelop along horizontal and vertical, respectively [14]. The input image and its enhanced version are
shown in Figures 1a and 1b.

3. Matching using CC
After performing enhancement, images undergo matching stages, so that degree of similarity between template
and input images may be figured out. For this, most widely used method i.e. cross-correlation based matching
technique is employed [1].

Let, T be the template image and I be the input image, the degree of diversity between them may be
assessed from their squared difference (SD) .

SD (T, I) = ∥T∥2 + ∥I∥2 − 2TT I, (16)

where (.)T in superscript shows transpose. However, the third term in (16) corresponds to their cross correlation
(CC) or the degree of similarity as given in (17).

CC (T, I) = TT I, (17)

If T and I are samples of each other then CC would be maximum. However, on the other hand, SD would
be minimized. Since fingers vary in placement during their acquisition and thereby patterns of ridges and
valleys arise differently hence information changes [15]. Therefore, the calculation of a simple correlation does
not provide the maximum degree of similarity. It may be increased optimally, under suitable translations and
rotations followed by correlation on each step.

SM (T, I) =
max

∆x,∆y,∆θ
CC(T, (I)∆x,∆y,∆θ), (18)

where ∆x and ∆y are translations in horizontal and vertical directions whereas, ∆θ shows rotations in clockwise
or anticlockwise around the origin of the fingerprint image.
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4. Limitations of CC

Implementation of (18) leads poorly toward perfect matching of fingerprints because neither translations nor
rotations are well determined. It does not provide any estimation of ∆x , ∆y and ∆θ . It executes redundant
translations and rotations. Insufficient translations cause mismatched overlapping that brings dissimilarity and
decreases SM . Then execution of rotations upon them produce misalignment of ridges, ridge endings as well as
ridge bifurcations. Thereby, it becomes computationally heavy, redundant and compromise the accuracy.

5. Proposed matching algorithm

To avoid useless translations, rotations and to decrease computations, features (minutiae points) may be acquired
followed by their orientation fields to estimate their proper locations; so that purpose of alignment may be
handled, accordingly. The enhanced image may be binarized to perform thinning so that ridges may be squeezed
to a single pixel and minutiae extraction stage could be eased as shown in Figure 1c.

For the extraction of minutiae points, thinned image (Td) is divided into blocks of size (3× 3) and zero
to one crossings are noted in eight adjacent neighbors [16].

Zc = (
1

2
)

8∑
i=1

|Bi −Bi+1| , (19)

where Zc shows the numbers of zero to one crossings on Bi pixels over thinned image as illustrated in Figure
2.

(a) (b) (c)

Figure 1: (a): Input image, (b): Enhanced input image, (c): Thinned image.

(a) (b) (c)

Figure 2: Three by three scan of Td for the extraction of minutiae points (a): Ridge ending, (b): Ridge
bifurcation, (c): Continued ridge.
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If Zc comes out to be “1” then it would be considered as ridge ending, for Zc equal to “2” it would be
neither ridge ending nor ridge bifurcation and if its value is “3” then that would be the ridge bifurcation. The
extracted minutiae points are shown in Figure 3a with small circles.

Zc =

 1, ridge ending
2, continued ridge
3, ridge bifurcation

(20)

After the extraction of minutiae points, the images may be aligned based on their minutiae locations and
orientation fields. Let triplet Mi , accompanying x-y and orientation ϑi related information of all minutiae
points corresponding to T and triplet Mj having same information regarding I as given in following.

For template image:
Mi = xi, yi, ϑi and i = 1, 2, 3, ,m

For input image:
Mj = xj , yj , ϑj and j = 1, 2, 3, , n

where m and n are numbers of minutiae points in T and I, respectively [17]. For alignment, let minutiae points
from Mj undergo a translation and rotation according to minutiae points of Mi .

map
∆x,∆y,∆θ

(Mj = {xj , yj , ϑj}) = M
′

j =
{
x

′

j , y
′

j ,∆ϑ
}

(21)

[
x′
j

y′j

]
=

[
cos (ϑ) − sin (ϑ)
sin (ϑ) cos (ϑ)

] [
xj

yj

]
+

[
∆x
∆y

]
, (22)

where ∆x is the difference between particular minutia from Mi and Mj in x direction, ∆y is the difference

between particular minutia from Mi and Mj in y direction; similarly, ∆ϑ is their directional difference. M
′

j

shows the resultant transformed triplet by means of translations and rotations according to Mi .

∆x = xi − xj

∆y = yi − yj

∆ϑ =

{
ϑi − ϑj if (ϑi − ϑj) ≥ 0
(ϑi − ϑj) + 180 if (ϑi − ϑj) < 0

(23)

In order to maximize the similarity between T and I optimally, the CC may be obtained for their extracted
triplets.

SO (T, I) = max{CC
(
Mio (xio , yio , ϑio) ,M

′

jo

(
x

′

jo , y
′

jo ,∆ϑ
))

}, (24)

where

io = 1, 2, 3, ,min(m,n)

jo = 1, 2, 3, ,min(m,n)

In this way optimal similarity SO may be obtained in less number of computations as well as in less duration.
Overall methodology is shown in flow chart as given in Figure 3b.
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Figure 3: (a): Minutiae points, (b): Flow chart.

6. Performance evaluation
In order to evaluate the performance of CC and proposed method triplet based cross correlation (TBCC),
different parameters such as false nonmatch rate (FNMR), false match rate (FMR), sensitivity (S) , specificity
(P ) and accuracy (A) are used for evaluation [18].

FNMR and FMR both give information about an error while performing genuine and imposter matching,
respectively. The point where they meet is called equal error rate (EER). Mathematically they can be described
as follows:

FNMR (t) =
card{Gs|Gs < t}

Ga
, (25)

FMR (t) =
card{Is|Is > t}

Ia
, (26)

where card{.} gives the cardinality, Gs is genuine matching score under genuine matching attempts (Ga) , t is
threshold and Is is imposter score under imposter matching attempts Ia . The statistical parameters depend
upon true positive (TP ) , true negative (TN) , false positive (FP ) and false negative (FN) as given in following
[19].

S =
TP

TP + FN , (27)

P =
TN

TN + FP , (28)
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A =
TP + TN

TP + FP + FN + TN . (29)

7. Results and discussion
7.1. Data bases

For experiments different databases such as FVC2000DB1A1, FVC2002DB1A2, FVC2006DB1A3 [20] and
LivDet20094 [21] fingerprint databases are used. All these databases exhibit different image qualities vary-
ing in size depending on acquisition sensors, as reported in Table 1. Fingerprints are captured at different
instances and some good quality images were deliberately removed to create challenges for algorithms. While
capturing the fingerprints, sensors were neither cleaned nor moistness was considered to be removed [15]. Some
distorted and poor quality fingerprints are shown in Figures 4a–4c.

Table 1: Description of data bases.

Sr. no. Data base Sensor type Resolution (dpi) Image size
1 FVC2000DB1A Optical sensor 500 300 by 300
2 FVC2002DB1A Identix TouchView II 500 388 by 374
3 FVC2006DB1A Electric Field sensor 250 96 by 96
4 LivDet2009 Crossmatch 500 480 by 640

(a) (b) (c)

Figure 4: (a), (b) and (c) Poor quality images from the used databases.

7.2. FNMR and FMR
FNMR and FMR are two important parameters to interpret the error of a biometric system. For genuine
matching, a particular finger is compared and matched with all samples and the same procedure is used for
all fingers. On the contrary, for the execution of imposter matching, only the first sample of each finger is
compared and FMR is observed. The point where FNMR and FMR become equal is called EER that depicts
the overall error of the system as shown in Figures 5a–5d, where FNMR(t) and FMR(t) are plotted and value
of t is provided in legend of each case.

1FVC2000 Database [online]. Website http://bias.csr.unibo.it/fvc2000/download.asp [accessed 15 03 2016]
2FVC2002 Database [online]. Website http://bias.csr.unibo.it/fvc2002/download.asp [accessed 21 07 2016]
3FVC2006 Database [online]. Website http://bias.csr.unibo.it/fvc2006/databases.asp [accessed 19 12 2016]
4LivDet2009 Database [online]. Website http://livdet.org/reports.php [accessed 26 11 2019]
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Figure 5: (a): FNMR(t) and FMR(t) curves for FVC2000DB1A, (b) FNMR(t) and FMR(t) curves for
FVC2002DB1A, (c): FNMR(t) and FMR(t) curves for FVC2006DB1A, (d): Ferrlive(t) and Ferrfake(t) curves
for LivDet2009 fingerprint databases.

7.3. Parameters

Based on outcomes of matching-scores of algorithms, different statistical parameters are employed to depict the
comparison of performance in terms of A as given in Table 2.
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7.4. TBCC based implementation

While performing matching with TBCC, features such as minutiae points (ridge endings and ridge bifurcations)
are obtained, unlike CC . Alignment is carried out as discussed in section 5 and correlation is performed for
the extracted features instead of whole finger’s ridges that reduce matching time as well as computations for
ongoing images, as illustrated in Table 2 and Table 3, respectively.

Table 2: Computational time and accuracies.

Sr. no. Algorithm Data Base ATFE(sec) ATFM(sec) A(%)
1 CC FVC2000DB1A 3.1584 57.2959 92.42
2 HHT FVC2000DB1A 10.3754 7.5673 96.82
3 MSFR FVC2000DB1A 1.5583 0.5166 95.79
4 MDANN FVC2000DB1A 4.1134 0.7881 93.71
5 TBCC FVC2000DB1A 3.7475 0.0047 97.34
6 CC FVC2002DB1A 3.7025 130.1576 91.5
7 HHT FVC2002DB1A 15.5378 11.0394 96.99
8 MSFR FVC2002DB1A 2.5126 0.8331 96.83
9 MDANN FVC2002DB1A 5.4622 1.2528 91.96
10 TBCC FVC2002DB1A 4.2388 0.0079 96.97
11 CC FVC2006DB1A 0.3259 5.8699 95.03
12 HHT FVC2006DB1A 1.0924 0.7991 96.22
13 MSFR FVC2006DB1A 0.1595 0.0529 95.11
14 MDANN FVC2006DB1A 0.4042 0.0789 93.15
15 TBCC FVC2006DB1A 1.2683 0.0023 97.22
16 CC LivDet2009 9.7106 194.41 94.2
17 HHT LivDet2009 33.198 23.6397 95
18 MSFR LivDet2009 5.3191 1.7636 93.19
19 MDANN LivDet2009 12.0234 2.6784 92.85
20 TBCC LivDet2009 5.1065 0.0095 96.49

Table 3: Computations.

Sr. no. Data base Algorithm Multiplications Additions
1 FVC2000DB1A CC 90000 89999
2 FVC2002DB1A CC 145112 145111
3 FVC2006DB1A CC 9216 9215
4 LivDet2009 CC 307200 307199
5 FVC2000DB1A TBCC 315 314
6 FVC2002DB1A TBCC 381 380
7 FVC2006DB1A TBCC 114 113
8 LivDet2009 TBCC 459 458

Blind rotations in CC bring error at those points where ridge and valley overlap while performing
correlations that increases the computational cost as well as matching time. However, TBCC is independent of
this constraint and relies on prior alignment according to features of the template image followed by correlation
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avoiding redundant correlations. Hence, it decreases computations and executes matching in a lesser amount of
time. Since, computations of TBCC-based correlations depend on min(m,n) , therefore, it decreases numbers of
correlations accordingly. Similarly, TBCC performs correlations among aligned minutiae points, therefore, the
likelihood of redundant correlations decreases causing reduction in error and that’s why FNMR and FMR
decrease and A is increased as shown in receiver operating characteristic curve (ROC) in Figures 6a–6d,
respectively. Moreover, for comparison different algorithms such as hierarchical hough transform (HHT) [22],
multilevel structural technique for fingerprint recognition (MSFR) [23] and multi-dimensional artificial neural
network (MDANN) [24] based algorithms are implemented and their results are illustrated in Figures 6a–6d,
respectively.
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Figure 6: (a): ROC curve for FVC2000DB1A, (b) ROC curve for FVC2002DB1A, (c): ROC curve for
FVC2006DB1A, (d): ROC curve for LivDet2009 fingerprint databases.
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7.5. Enrolment time
Average time for features extraction (ATFE) and average time for features matching (ATFM) is reported in
Table 2. This time is noted using a corei5 computer with 4 GB RAM and 2.7 GHz processor.

7.6. Computations
The computations for a single cross-correlation and its corresponding additions are exemplarily reported in
Table 3 explicitly for the databases used in this paper. The number of reduced computations by TBCC can be
observed.

7.7. Improvement in accuracy

The improvement in accuracy (IIA) is reported in Table 4 and comparison with recent methods is provided in
Table 5.

Table 4: Improvement in accuracy.

Sr. no. Data base Algorithm IIA (%)
1 FVC2000DB1A TBCC 4.9162
2 FVC2002DB1A TBCC 5.4697
3 FVC2006DB1A TBCC 2.1878
4 LivDet2009 TBCC 2.289

Table 5: Comparison with recent methods.

Sr. no. Method EER (%)
1 J De Boer et al. [25] 1.34
2 Gao et al. [26] 3.5
3 Guangming et al. [27] 3.05
4 W. Chen et al. [9] 8
5 J. Feng et al. [28] 1.8
6 M. Kaur et al. [29] 2
7 R. P. Sharma et al. [30] 0.56
8 Proposed method (TBCC) 1.29

8. Conclusions
This paper presents a cross-correlation based technique to overcome computations of a computationally ex-
pensive matching method. The fingerprint image first undergoes through the enhancement process and then
thinning is performed to extract features (minutiae points such as ridge-endings and ridge-bifurcations). The
remaining parts of the ridges are discarded to avoid misalignment errors as well as to reduce computations.
Orientation and x-y locations of extracted features are obtained to ease alignment and then cross-correlation
is performed among features of ongoing images to produce the score using different fingerprint databases. A
significant amount of computations, as well as error, are reduced. The proposed technique outperforms the
existing algorithms by producing better accuracy in less time.
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