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Abstract: A transmission line is the main commodity of power transmission network through which power is transmitted
to the utility. These lines are often swayed by accidental breakdowns owing to different random origins. Hence, researchers
try to detect and track down these failures at the earliest to avoid financial prejudice. This paper offers a new real-
time mathematical morphology based approach for fault feature extraction. The morphological open-close-median filter
is exploited to wrest unique fault features which are then fed as an input to support vector machine to detect and
classify the short circuit faults. The acquired graphical and numerical results of the extracted fault features affirm the
potency of the offered scheme. The proposed scheme has been verified for different fault cases simulated on high-voltage
transmission line modelled using ATP/EMTP with varying system constraints. The performance of the stated technique
is also validated for fault detection and classification in real-field transmission lines. The results state that the proposed
method is capable of detecting and classifying the faults with adequate precision and reduced computational complexity,
in less than quarter of a cycle.

Key words: Transmission line protection, fault detection and classification, fault feature extraction, support vector
machine, mathematical morphology

1. Introduction
The electric power transmission line is one of the most vital elements of the power system network since it
conveys the electricity from generation to distribution end. It goes without saying that the performance of
the transmission system plays a pivotal role for continuous power supply. One of the most significant aspects
that obstruct the continuous supply of electric power is a fault on power transmission line which is inevitable
and way beyond the control of manhood [1]. If a fault is not detected accurately and persists for a while, it
may lead to massive destruction or a power outage. Consequently, it is essential to own a more enhanced and
well-coordinated transmission line relaying scheme that detects and characterizes any kind of fault efficiently
within the destined time for assisting fleet repair and restoration of the power supply with least disruption
[2, 3]. As a consequence, plenty of scholarly research has been forced to develop a robust, precise and intelligent
scheme for fault detection and classification on transmission lines.

In literature, the fault detection and classification techniques are generally divided into two categories
as: 1) the conventional techniques and 2) machine-learning (ML)-based techniques. Owing to the tricky
mathematical calculations, the conventional techniques have a large computational complexity that depends
on the size of the power system. In terms of speed and accuracy, the ML-based techniques are found to be more
∗Correspondence: revagodse72@gmail.com
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Nomenclature:

RF : Fault resistance DF : Fault Location
ZS : Source Impedance X0 : DDC magnitude
X : Magnitude of sinusoidal component ω : Angular frequency
τ : DDC time constant fs : Sampling frequency
A1 : Magnitude of fundamental component ϕ1 : Phase angle of fundamental component
m : Harmonic order σ : Standard deviation
∆t : Sampling interval N : Number of samples per cycyle
∆D : Extracted fault feature vector Tt : Training time in (ms)
Tr : Response time in (ms) R0 : Zero sequence resistance of line in (ohm/km)
R1 : Positive sequence resistance of line in (ohm/km) R2 : Negative sequence resistance of line in (ohm/km)
L0 : Zero sequence inductance of line in (mH/km) L1 : Positive sequence inductane of line in (mH/km)
L2 : Negative sequence inductance of line in (mH/km) C0 : Zero sequence capacitance of line in (µF/km)
C1 : Positive sequence capacitance of line in (µF/km) C2 : Negative sequence capacitance of line in (µF/km)
∆Dx : Extracted fault feature vector for signal X ∆Dy : Extracted fault feature vector for signal Y
∆Di0 : Extracted fault feature vector for zero sequence current ∆Di1 : Extracted fault feature vector for phase A current
∆Di2 : Extracted fault feature vector for phase B current ∆Di3 : Extracted fault feature vector for phase C current
∆Dv0 : Extracted fault feature vector for zero sequence voltage ∆Dv1 : Extracted fault feature vector for phase A voltage
∆Dv2 : Extracted fault feature vector for phase B voltage ∆Dv3 : Extracted fault feature vector for phase C voltage

efficient for detecting and classifying transmission line faults [4, 5]. The first step of ML-based techniques is
the training of the classifier. The classifier needs to be trained by the extracted values for the particular fault
features, acquired from the simulations of several fault scenarios in reliable softwares like MATLAB, PSCAD,
ATP-EMTP, etc. Later, the new fault cases can be detected and classified easily with the help of this trained
classifier [6].

Numerous signal processing techniques such as Fourier transform (FT), wavelet transform (WT), stock
well transform (ST), hilbert-huang transform (HHT), principal component analysis (PCA), empirical mode
decomposition (EMD), etc. have been stated in the literature for fault feature extraction. All these techniques
are computationally more complex and time-consuming as the tricky computations of transform coefficients,
related to the different aspects of fault signals and faulty conditions have to be performed within a sampling
interval. Because of these, most of these techniques face problems regarding speed, accuracy, reliability,
computational complexity, etc. Also, each of these techniques has pros and cons as listed in Table 1 [4–
7]. ML-based techniques i.e. artificial neural network (ANN), k-nearest neighbor (kNN), and support vector
machine (SVM) combined with the abovementioned feature extraction techniques are used for detecting and
classifying the faults [8–21].
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In [8–12], WT together with ANN is used for fault detection and classification on the transmission line.
In [13], a combination of ST and ANN is used for detecting and classifying faults on the overhead transmission
line. Even if the ANN-based techniques have been quite efficient in identifying the fault types, it suffers from
lots of drawbacks as follows:

• Accuracy depends on the number of extracted fault features.

• Parameter tuning is quite difficult as the large number of parameters needs to be optimized and the exact
procedure for doing so is not defined as a result ANN is still a black box which lacks the transparency.

• Time consuming learning process as the considerable amount of sampled data and training efforts are
needed for good performance particularly under wide variations of system parameters (fault resistance,
source impedance, etc.) leading to increase the computational complexity as well and hence limits the
applications of ANN-based schemes.

• In some cases, training may not converge due to random selection of starting point and hence gets stuck
on local minima which ultimately affects the overall performance.

Despite ANN, SVM-based schemes have more advantages as follows:

• Accuracy is independent of the number of extracted fault features and hence is more suitable for fault
analysis in transmission line where less parameters are available with the utilities.

• The optimal factors can be easily selected by the cross-validation method and hence has a good classifi-
cation ability and robustness.

• Owing to high training speed and better generalization properties, frequently used for the classification
problems and offers a global solution.

• Possibility of over-fitting is avoided since it minimizes the structural risk in place of empirical risk.

Hence, SVM combined with abovementioned feature extraction techniques have been widely used for
fault detection and classification on the transmission line. In [14–17], fault features extracted using WT are
used as input to SVM for classifying faults on the transmission line. In [18], efficient and reliable detection
of faults on the transmission line is achieved from the fault features extracted using ST analysis further SVM
is deployed for identifying a fault type. One more approach combining PCA with SVM for fault diagnosis in
the power transmission line is reported in [19]. A hybrid HHT-SVM and EMD-SVM based fault detection and
classification techniques are stated in [20] and [21], respectively.

However all these feature extraction techniques have been used for classifying the fault types with different
patterns, considerable preceding information of the particular system pattern is essential. The process of
obtaining these details require constant amendments and corrections which can turn out to be a time-taking
process and also lacks generalizability [22]. Also, the main drawback of most of the techniques used for fault
feature extraction is that it fails to extract the features precisely in presence of decaying DC component (DDC),
noise and severe harmonic conditions. This implies that the main issue in ML-based techniques is the extraction
of the fault features from the power system signals (i.e. voltage or current). If the technique used has high
computational complexity and significant time delay, it can affect the overall speed and accuracy of the fault
detection and classification technique [22]. Consequently, in order to achieve the highest accuracy, an effective
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technique is desirable for preprocessing and generating the most relevant features from the voltage or current
waveforms witnessed during the fault with minimum delay.

Mathematical morphology (MM) is a time-domain signal processing method that precisely extracts apart
from any distortions with reduced size of data window in real-time [23–25]. In the literature, MM-based methods
are not intended for the purpose of fault feature extraction. Hence, to tackle the hassle of computational
complexity and time-delay in fault-feature extraction, a new, simple, fast and powerful real-time fault feature
extraction technique based on MM is proposed in this paper. Moreover, SVM is a robust ML technique that
determines an optimal hyper-plane using the statistical learning theory and optimization theory to exploit the
generalization ability of the classifier. It has a relatively good classification ability and is independent of the
number of features used for the dataset generation [26–28]. Hence, the proposed method is combined with SVM
to have the speedy and precise fault detection and classification in power transmission lines.

The proposed approach works in three steps. First of all, the sampled 3-phase current signals along with
zero sequence current acquired from the sending-end of transmission line are preprocessed using morphological
open-close-median filter (OCMF) to obtain the relevant fault features. In the second step, these extracted
features are used to train multiclass SVM (MCSVM). Afterwards, this trained classifier is used to detect and
classify the different fault types. Unlike the other techniques, the proposed methodology of combining OCMF
with MCSVM for fast, robust and reliable fault detection and classification is nowhere reported in the literature.
As far as our knowledge, this is the first attempt of combining the MM-based OCMF with MCSVM. This work
exhibits the following contributions:

• OCMF-based new, easy, fast and robust real-time fault feature extraction technique with reduced time
delay, computational complexity and data window size which works effectively in presence of DDC, noise
and severe harmonic conditions as well.

• Comparison of the proposed feature extraction technique with other existing techniques.

• Combined OCMF and MCSVM-based intelligent recognition technique geared towards both the fault
detection and classification in power transmission line.

• Validation of the proposed OCMF-based feature extraction technique to accomplish the speedy and precise
fault diagnosis by combining it with other two techniques such as ANN and kNN.

• Validation of the performance of the proposed OCMF-MCSVM-based fault detection and classification
technique by using both simulated and real-field data.

Numerous simulation studies for all types of shunt faults (SLG, LL, LLG, LLL and LLLG) have been
performed using a system built in ATP/EMTP for dataset generation. Several training and test cases are
simulated with altered combinations of fault types and varying system constraints such as fault inception angle
(FIA), RF , DF , ZS etc. Since the proposed method needs only four features for detecting and classifying
the faults, the memory requirement and computational time will substantially reduce. Also, the proposed
feature extraction technique involves only addition and subtraction, henceforth has a reduced computational
intricacy compared to others and hence offers the promising results without sacrificing the speed. The obtained
results reveal that the proposed technique offers a straightforward and effective means to detect and classify
the transmission line faults effectively.
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The subsequent topics addressed in remainder of this paper are: Section 2 deals with brief outlines of the
MM and SVM fundamentals. In Section 3, the mathematical framework of the proposed OCMF-MCSVM-based
fault detection and classification technique along with the flowchart is further elaborated. The validation of the
proposed approach using both simulated and real-field data is discussed and compared with existing methods
in Section 4. At last, Section 5 puts forward some concluding remarks.

2. Preliminaries
2.1. Basics of mathematical morphology (MM)

MM is a deep-rooted nonlinear waveform analysis technique offered by Matheron and Serra to facilitate the
extraction of vital and most relevant features of the signals using a suitable function called the structuring
element (SE) [26]. SE glides through the signal like a moving window and extricates the peculiar features in
the neighborhood of each sample in the signal. The shape and size of SE contribute significantly in such type
of analysis thus should be selected as per the requirement and aim of the particular application. Owing to the
availability of mostly one-dimensional signals, flat SE is suitable for several power system applications. MM is
completely different from the integral transform-based approaches in basic principles, mathematical operations
and also have lots of advantages as follows:

• Rapid and easy-peasy computations i.e. subtraction, addition, minimum and maximum.

• High speed and lucid processing with much-reduced data window size, henceforth suitable for real-time
applications.

• Applicable to nonperiodic transient signals.

• Time-domain signal processing technique which extracts the most relevant features accurately despite any
deformity.

For signal processing, MM employs two basic operations i.e. dilation and erosion, defined as follows:
Let X(i) and S(j) be input signal to be processed and the SE, defined in the domains, Dx =

{m0,m1, ....,mi} and Ds = {n0, n1, ...., nj} , respectively with i > j where i and j are integers. The di-
lation of X(i) by S(j) denoted by X ⊕ S is given by:

DI = (X ⊕ S)(i) = max{X(i− j) + S(j)}, (i− j) ∈ X, j ∈ S (1)

In the same way, the erosion of X(i) by S(j) denoted by X ⊖ S is given by:

ER = (X ⊖ S)(i) = min{X(i+ j)− S(j)}, (i+ j) ∈ X, j ∈ S (2)

Based on these two basic operators, opening and closing operators are defined as:

Open = (X ◦ S)(i) = ((X ⊖ S)⊕ S)(i). (3)

In the same way, the closing of by denoted by is given by:

Close = (X • S)(i) = ((X ⊕ S)⊖ S)(i). (4)

Though MM operations have been mainly offered and implemented for image processing, they have been applied
for power system applications as well [27]. Proper utilization of these operations can easily wrench out the most
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relevant and meaningful features from the power system signal captured during a fault. Hence for the purpose
of fault feature extraction, based on these two operations, a morphological open-close-median filter (OCMF) is
defined as:

OCMF =
(X ◦ S)(i) + (X • S)(i)

2
. (5)

2.2. Basics of support vector machine (SVM)

SVM is a robust, powerful and handy technique, firstly introduced by Vapnik and Cortes to resolve the
classification challenges in statistical learning theory and structural risk minimization [23]. The prime objective
of this technique is to figure out an optimal hyper-plane that splits dataset into two classes [24] as shown in
Figure 1. In the absence of optimal hyper-plane, the aim of SVM is to maximize the margin and to minimize
the number of errors. This hyper-plane is obtained by solving the optimization problem [25] as:

f(ω, ξ) =

 min
ω

1

2
|ω|2 + C

(
l∑

i=1

ξi

)
s.t. yi (ω · xi + b) ≥ 1− ξi, ξi ≥ 0∀i

(6)

where xi and yi are the case and the class label ±1 . The solution of (6) is obtained from the following dual
as: 

maxLd =
∑
i

αi −
1

2

∑
i,j

αiαjyiyjk (xi, xj)

s.t. 0 ≤ αi ≤ C∀i,
∑

i αiyi = 0

(7)

where k (xi, xj) is a nonlinear kernel function. The four different types of kernel functions i.e. linear, polynomial,
sigmoid, and radial basis function (RBF) are stated in the literature [16]. The aforementioned mathematical
analysis states that SVM is basically developed for binary classification. Hence, SVM is further modified to
address the multiclassification problems. For this, two types of tactics are defined as: 1) to amend the designed
SVM model to include the multiclass learning in the quadratic solving algorithm and 2) to blend numerous binary
classifiers [25]. The later one involves the techniques like one-versus-all (OVA) and one-versus-one (OVO). In
this paper, owing to the high accuracy and less training time, OVO approach with RBF kernel is applied for
classification of different types of shunt faults occurring on power transmission line.

3. Proposed approach

The step-by-step basis of the proposed methodology developed to extract the fault features and identify the
fault types is outlined in this section. The schematic drawing and flowchart are portrayed in Figure 2. It works
in three phases i.e. feature extraction, feature selection and fault classification. In the first phase, once the
entire system is simulated considering the several fault conditions by varying the system parameters, the fault
features are extracted using a proposed OCMF-based feature extraction technique. Phase two consists of feature
selection, and is named attribute selection. It entails the hunt for all probable blends of the extracted features
to ascertain a particular feature subset having a fine prediction or classifying aptitudes. Later, the selected set
of extracted features with known relevant classes is given as an input to MCSVM built using numerous binary
SVM to classify the new test cases.
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Figure 1. Optimal hyper-plane for SVM classification.

Proposed OCMF-MCSVM-based Fault Detection and 

Classification Approach

Collection of 

sampled data from 

system under 

deliberation

Pre-processing of 

acquired data 

using OCMF for 

feature extraction

Feature selection 

using FSM for 

dataset generation

Training and 

testing of 

MCSVM using 

generated dataset

Fault Detection

 and 

Fault Classification

(a)

START

Input i1(n), i2(n), 

i3(n) and i0(n)

While true
NO

YES

MCSVM

Output 

fault type

END

Fault 

Detection

Fault 

Classification

Fault Detected

Dataset generation using 

extracted fault feature vector

Set the threshold M and

Calculate 

YESSSSS

(b)

Figure 2. Proposed OCMF-SVM-based fault detection and classification technique (a) general block diagram, (b)
flowchart.

3.1. Feature extraction
The basis of the majority of the detection and classification techniques lies in a fine dataset of fault features.
The set of relevant features should be small-sized, and has a low computational complexity. Generally, in real-
world applications, the relevant features are suppressed in redundancy and noise, hence it is desirable to excerpt
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this info in cost-effective ways without losing the valuable data. Morphological filters can precisely extract the
features characterized by the SE and obtain a signal with merely part of concern through distinct MM operators
[27]. A flat linear SE and an averaging filter named OCMF designed using two basic MM operators, i.e. dilation
and erosion, are used for feature extraction. The detailed mathematical analysis is explained in this subsection
as follows:

Whenever fault arises in the power system, the fault signal can be expressed as a combination of steady-
state sinusoidal component and an exponentially decaying DC (DDC) component. Hence, mathematically it
can be stated as:

xf (t) = X0e
−t/τ +Xcos (ωt+ ϕ) . (8)

Now, after sampling the signal xf (t) at fs , the kth sample of xf (t) can be expressed as:

Xf (k) = X0e
kλ∆t +Xcos (δk + ϕ) , (9)

where λ = −1/τ , δ = ω∆t and t = n∆t .
According to first-order Taylor series expansion, equation (9) can be expressed as:

Xf (k) = X0 + λk∆t+Xcos (δk + ϕ) . (10)

If this expansion occurs at a centre point Xf (k) , then its left and right side samples can be expressed
as:

Xf (k − n) = X0 + λ(k − n)∆t+Xcos ((k − n) · δ + ϕ) , (11)

Xf (k + n) = X0 + λ(k + n)∆t+Xcos ((k + n) · δ + ϕ) . (12)

Adding equations (11) and (12),

Xf (k − n) +Xf (k + n) = 2Xf (k) cos (nδ) + 2 (X0 + λk∆t) · (1− cos (nδ)) . (13)

If n is a small integer, then for high fs , cos (ω · n∆t) = cos (nδ) ≈ 1 . Hence, equation (13) can be
approximated as:

Xf (k − n) +Xf (k + n) ≈ 2Xf (k) , (14)

Xf (k) ≈
Xf (k − n) +Xf (k + n)

2
. (15)

Fault events on transmission lines create transient disturbances to current and voltage signals. As
mentioned in Section 2.1, the most relevant and meaningful features of these disturbances can be easily wrenched
out by proper utilization of morphological operators. For this, an averaging filter named OCMF with a flat
linear SE defined as S (n) = [sn] = [s1, s2, s3, ..., sn] = [0.01, 0.01, ..., 0.01] is utilized.

For signal Xf (k) , the dilation and erosion operations can be described as:

DI = Xf ⊕ S = max
n

{xf (k − n) + sn} ,∀n = 1, 2, ...,m (16)

ER = Xf ⊖ S = min
n

{xf (k + n)− sn} ,∀n = 1, 2, ...,m (17)
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From (16) and (17), the OCMF can be expressed as:

OCMFn (k) = Dn (k) =
open+ close

2
=

(((Xf ⊖ S)⊕ S) + ((Xf ⊕ S)⊖ S))

2
. (18)

For n = 1 , equation (18) can be stated as:

D1 (k) ≈ Xf (k) . (19)

Now, the difference between Xf (k) and Dn (k) where n = 1, 2, ...,m can be calculated as:

∆Xf (k) = Xf (k)−
D1 (k) +D2 (k) + .............+Dm (k)

m
. (20)

Based on (20), the OCMF output is constructed as:

∆Dn (k) = |∆Xf (k + 1)−∆Xf (k)| . (21)

A fault onset is perceived if ∆Dn (k) outstrips the threshold value M . The value of M is preset with
consideration of system operating conditions and relies on the flow of fault signals through the transmission
line. It is reliant on the noise amplitude rather than that of the current. Depending on the system operation
condition, the fault current magnitude may significantly rise or fall accordingly, which causes a significant change
in noise amplitude. Hence, for such cases, the preset threshold M is calculated based on the root mean square
(RMS) value of the fault currents measured by the relay [23].

3.2. Attribute selection
The data features used to train the ML classifiers have a huge impact on model performance. Unrelated or
partly relevant features can adversely affect the model performance. Hence, attribute selection is one of the
most important steps to be performed. It is a way of opting a subset of pertinent features to build a precise
predictive model. Best feature selection helps in enhancing the learning accuracy. If the relevant feature subset
is elected, it detracts the training time, computational intricacy as well as over-fitting.

In accordance with (21), the fault features are extracted for all the phase and zero sequence voltages and
currents and expressed as ∆Dip (k) and ∆Dvp (k) respectively where p ∈ P = {0, 1, 2, 3} corresponds to the
values of phase A, B, C and zero sequence current and voltage signals. Here, the classifying strength of the
extracted features is determined with the help of basic feature selection measures (FSM) i.e. (i) information
gain, (ii) univariate feature selection and (iii) recursive feature elimination.

3.2.1. Information gain (IG)

IG quantifies how much knowledge a feature offers regarding the class, hence helps to decide which variable in
the available set of training attribute is the most significant for the classification by evaluating the gain of each
variable in the context of the target variable. The set of attributes which maximizes the IG is elected [22].

3.2.2. Univariate feature selection (UFS)

This is a robust approach to enhance the classifier performance and to ease the intricacy as well as computing
cost. Each attribute is verified singly and compared with the target variable to see if there is any statistically
significant relationship among them. Univariate statistical tests are performed to cull those input variables that
have a firm relationship with the output variables. The set of features with the highest scores is chosen.
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3.2.3. Recursive feature elimination (RFE)

This is a self-indulgent technique that intends to identify the most effective attribute subset. It iteratively builds
a model and identifies the best or worst acting features at each repetition. The importance of each feature is
obtained either through a coef_ attribute or through a feature_importances_ attribute and the features with
least importance are eliminated from the initial feature set. Later, it ranks the attributes according to the
sequence of their removal. The features marked with rank one are elected.

As mentioned earlier, the effectiveness of the extracted features is examined with the help of four basic
FSM and the results are given in Table 2. From Table 2, it is clarified that the set ∆Dip (k) has the best
classifying strength over ∆Dvp (k) . Hence ∆Dip (k) is used for composing the fault feature vector Fi .

Table 2. Ranking of the extracted features.

Feature IG UFS RFE
∆Di0 0.71 920.857 1
∆Di1 0.35 861.015 1
∆Di2 0.39 825.287 1
∆Di3 0.42 841.652 1
∆Dv0 0.29 735.205 2
∆Dv1 0.33 631.615 5
∆Dv2 0.27 677.263 4
∆Dv3 0.28 659.250 3

3.3. Fault classification
Later, the hand-picked set of extracted attributes with known relevant classes is given as an input to the
MCSVM to classify the new test cases. Extracted features are also assayed using other ML classifiers as ANN
and kNN. For this, classification accuracy (CA) is computed as:

CA =
Accurate fault clasification

Number of samples tested
× 100. (22)

4. Performance evaluation
In this section, with an eye to affirm the potency of the proposed technique for feature extraction as well as fault
detection and classification, varied analytical and simulation test are performed. The performance is assessed
from the perspectives of feature extraction time, group delay, computational complexity, classifier performance,
and classification time. The feasibility of the proposed technique is validated using real-field data as well to
prove its aptness for real-time applications.

4.1. Application to deviation finding of a sine wave

In this subsection, to assay the discriminating aptness of the proposed OCMF-based feature extraction technique,
two speculative sinusoidal signals are considered as portrayed in Figures 3a and 3b, respectively. The signal
signifies a fault waveform and is composed of a fundamental component, harmonics, and DDC; conversely, the
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signal is relatively pure. Mathematically, both the signals can be expressed as:

X (t) = |A1| cos (ω1t+ ϕ1) , (23)

Y (t) = A0e
−t/τ︸ ︷︷ ︸

DDCComponent

+

M∑
m=1

|Am| cos (mω1t+ ϕ1)︸ ︷︷ ︸
Fundamental+Harmonics

+ ξ (t)︸︷︷︸
Noise

. (24)

After discretization, equation (23) and (24) can be expressed as:

x (n) = |A1| cos
(
2π

N
n+ ϕ1

)
, (25)

y (n) = A0e
−n∆t/τ +

(N/2)−1∑
m=1

|Am| cos
(
2πm

N
n+ ϕm

)
+ ξ (n∆t) , (26)

where t = n∆t , in a discrete domain. Higher order harmonics (higher than (N/2) − 1) are supposed to be
screened out with a low pass filter to avoid aliasing.

The proposed OCMF-based technique is applied to both the signals. The extracted features of both the
waveforms ∆Dx (n) and ∆Dy (n) are depicted in Figure 3c. It has been found that the time for the sudden
switch in the magnitude is perceived through the spike. By virtue of noise immunity of OCMF [28], even though
∆Dy (n) have some low ripples owing to the presence of noise in Y , it can still be applied for sensing a sudden
switch in the magnitude of the signals.
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Figure 3. Deviation finding of sinusoidal waveform (a) pure sinusoidal signal, (b) simulated fault signal, (c) extracted
features using OCMF.

4.2. Application to EMTP-generated signals
In this subsection, a typical 400 kV, 50 Hz, 150 km long overhead transmission line with the parameters described
in Table 3 is modelled using ATP/EMTP. The single line diagram (SLD) of the system under deliberation is
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shown in Figure 4. All the data is amassed from the sending end. The fault current signals acquired from the
relaying point at a sampling rate of 1200 kHz are fed to OCMF for feature extraction. The set of extracted
features is used for creating the fault feature vector/dataset which is further exploited for training and testing of
the proposed OCMF-MCSVM-based fault detection and classification technique. For this, simulations of both
symmetrical and unsymmetrical faults are carried out by deviating the system parameters (FIA, RF , ZS and
DF ) as shown in Table 4.

Table 3. Parameters of 400 kV, 50 Hz, 150 km long overhead transmission line.

Sequence Parameters Value Unit

Positive and negative sequence
R1, R2 0.0205 ohm/km
L1, L2 0.9595 mH/km
C1, C2 0.0127 µF/km

Zero sequence
R0 0.1627 ohm/km
L0 3.3868 mH/km
C0 0.0099 µF/km

VS

400 kV, 150 km long Transmission line

Fault VR

R
el

ay

IS IR

ZS1 ZS2

Figure 4. Single line diagram of the system under deliberation.

Table 4. Fault cases simulated for training and testing of MCSVM.

System constraints Training Testing
Fault location (DF ) 1 km–150 km in steps of 20 km 1 km–150 km
Fault inception angle
(FIA− ϕ◦)

0◦, 30◦, 45◦, 60◦,90◦ 0◦-90◦

Fault resistance (RF ) 0 Ω− 20 Ω in steps of 5 Ω 0 Ω− 20 Ω

Source impedance (ZS)
ZS1=100%, ZS2= 10 %-100 %
in steps of 25

ZS1=100%, ZS2=10 %-100 %

Fault type LG, LL, LLG, LLL, LLLG,
no fault situations

LG, LL, LLG, LLL, LLLG,
no fault situations

Owing to the figure constraints, the simulated fault current signal and the extracted features ∆Dip only
for LG fault at DF = 40 km and 100 km on phase ‘A’ and LL fault at DF = 40 km and 100 km on phase
‘AB’ with varying system constraints for few cases only are depicted in Figures 5 and 6. The acquired values
of ∆Dip for the same are reported in Table 5. It is observed that the value of ∆Dip for the faulted phase is
high and exceeds the threshold value as mentioned in subsection 3.1, while it is low for that of healthy phase.
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Hence, the obtained results demonstrate that the extracted fault feature vector F = {∆Dip} , p = 0, 1, 2, 3 can
be used for both fault detection and faulty phase selection as well. Later, this extracted feature dataset with
known pertinent classes is fed to MCSVM classifier as an input to categorize the new test cases.
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Figure 5. Simulated fault current waveforms and the extracted features in case of LG and LL fault (a) AG fault at
DF =40 km with FIA=0◦ , RF =0 Ω , (b) Extracted ∆Dip for AG fault, (c) AB fault at DF =40 km with FIA=0◦ ,
RF =20 Ω , (d) Extracted ∆Dip for AB fault.

Fault classes are ranked as 0(no fault), 1(AG), 2(BG), 3(CG), 4(AB), 5(BC), 6(AC), 7(ABG), 8(BCG),
9(ACG), 10(ABC), 11(ABCG). The results obtained for both the tactics (i.e. OVO and OVA) are stated in
Table 6. Obtained results prove the aptness of the proposed OCMF-MCSVM-based technique for the hasty,
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Figure 6. Simulated fault current waveforms and the extracted features in case of LG and LL fault (a) AG fault at
DF =100 km with FIA=0◦ , RF =0 Ω , (b) Extracted ∆Dip for AG fault, (c) AB fault at DF =100 km with FIA=0◦ ,
RF =20 Ω , (d) Extracted ∆Dip for AB fault.

precise and unfailing detection and classification of transmission line faults. As the proposed technique avails
a two-sample data window, the fault detection and classification is achieved in less than the quarter of the
cycle. The potency of the offered combined OCMF-based feature extraction scheme is compared with the other
existing techniques WT+SVM [15], PCA+SVM [19], determinant function combined with SVM (DF+SVM)
[22] from the perspectives of group delay, data window size and CA. The obtained results are revealed in Table
7.
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Table 6. Comparison of both the tactics of MCSVM combined with OCMF.

Tacticts used CA (%) RMSE MAE Tt ms Tr ms

OVO

Linear 98.57 0.044 0.014 342.53 343.75
Polynomial 91.67 0.733 0.209 378.26 380.48
Sigmoid 39.05 20.99 3.197 395.51 397.73
RBF 98.98 0.032 0.002 328.53 330.75

OVA 94.76 0.838 0.209 480.00 482.22

Table 7. Comparison of the proposed feature extraction technique with existing one.

Scheme Data window size Delay CA
WT+SVM [15] >2 cycles 16 samples 95.44
PCA+SVM[19] >2 cycles 1 cycle 97.30
DF+SVM [22] <(1/4) cycle 4 samples 95.96
Proposed <(1/4) cycle <(1/2) cycle 98.98

Although the aim of this work is feature extraction technique for quick and reliable detection and
classification of transmission line faults. Table 5 shows the extracted fault features at two different fault
locations of 40 km and 100 km, respectively. These features could be used in regression algorithms like support
vector regression (SVR), multilayer perceptron, decision tree regressor (DTR) etc. to estimate the fault location
as well.

With an eye to affirm the eminence of the MCSVM, the suggested feature extraction technique is also
validated by combining it with other ML-based techniques such as ANN and kNN. The obtained results in
terms of the classification accuracy (CA), root mean squared error (RMSE), mean absolute error (MAE), Tt

and Tr are depicted in Table 8. Though the proposed technique has large training time than ANN and kNN,
the CA obtained with proposed technique is ≈ 99 % which is higher as compared to others. Hence proved the
eminence of the MCSVM.

Table 8. Comparison of the proposed feature extraction technique with other ML-techniques.

Scheme CA (%) RMSE MAE Tt ms Tr ms
OCMF+ANN 94.84 0.1015 0.0103 60.408 62.631
OCMF+kNN 97.62 0.1190 0.0476 25.964 30.187
OCMF+MCSVM 98.98 0.032 0.002 328.53 330.75

4.3. Application to real-field signals
In this subsection, in order to weigh its performance, the proposed technique is applied to the real-time
fault events recorded during the different fault types on different phases of different transmission lines in the
Maharashtra State Electricity Transmission Network. All the fault signals are in COMTRADE format and
recorded at a 1200 Hz sampling rate (24 samples/cycle). More than 100 fault cases are studied. Due to the
figure constraints the results are depicted for some cases only (Figure 7) which verifies the applicability of the
offered method for real-time fault detection and classification.
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Figure 7. Results for real-field fault events (a) case I: captured fault signal during BG fault on 132 kV Amravati-Ambazari
line, (b) extracted ∆Dip for case I, (c) case II: captured fault signal during ABCG fault on 132 kV Amravati-Achalpur
line, (d) extracted ∆Dip for case II.

5. Discussion
The proposed OCMF-based feature extraction technique excerpts the fault features more reliably in less than a
quarter of a cycle with reduced data window size and a minimum delay of as compared to others. Apart from
this, the suggested OCMF-MCSVM-based technique, which combines OCMF with supervised ML technique
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i.e. MCSVM and uses a supervised data, is more competent when used for fault detection and classification as
compared to ANN and kNN. The proposed technique exhibits lots of advantages as follows:

• The proposed feature extraction technique involves only addition and subtraction, henceforth has a reduced
computational intricacy compared to others and hence offers the promising results without sacrificing the
speed.

• Also, it is highly immune to the DDC parameters, noise, and harmonics which are frequently present
during a fault.

• Since the proposed method needs only four features for detecting and classifying the faults, the memory
requirement and computational time will substantially reduce.

• The proposed OCMF-based feature extraction technique excerpts the fault features more reliably in less
than a quarter of a cycle with reduced data window size and a minimum delay of < 1/4 cycles compared
to others.

• The obtained results proved that when combined with MCSVM, the proposed feature extraction scheme
is more efficient to accomplish the speedy and precise fault detection and classification as compared to
ANN and kNN.

6. Conclusion
The OCMF-based new, simple real-time feature extraction technique to achieve speedy and precise fault
detection and classification on high voltage transmission line is proposed in this paper. The efficacy of the
proposed technique to wrench the distinctive fault features is verified in terms of data window size, delay and
computational complexity by comparing it with recent techniques. The extracted features are then fed as an
input to MCSVM for fault classification. The performance of the suggested OCMF-MCSVM-based approach
is verified by simulating several fault events with varying system constraints on 400 kV, 150 km long overhead
transmission line. With an eye to justify the potency of MCSVM, the presented feature extraction technique is
validated by combining it with ANN and kNN. Also, the proposed technique is applied to detect and classify
the real-time fault events at the Maharashtra State Electricity Transmission Network, India. An extensive
set of simulation and real-time results has revealed that, the proposed feature extraction technique is highly
sensitive to abrupt deviations with reduced data window size, time delay and computational intricacy as it
entails much fewer computations compared to others. When combined with MCSVM, the offered technique can
be efficiently applied to have speedy and precise fault detection and classification on a high voltage transmission
line. The suggested OCMF-MCSVM-based approach merely needs the data from a single end of the line and
the decision-making is achieved within a quarter of cycle with an accuracy of ≈ 99 % and hence is suitable for
real-time applications.
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