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Abstract: Mixed-signal in-memory computation can drastically improve the efficiency of the hardware implementing
machine learning (ML) algorithms by (i) removing the need to fetch neural network parameters from internal or external
memory and (ii) performing a large number of multiply-accumulate operations in parallel. However, this boost in
efficiency comes with some disadvantages. Among them, the inability to precisely program nonvolatile memory devices
(NVM) with neural network parameters and sensitivity to noise prevent the mixed-signal hardware to perform a precise
and deterministic computation. Unfortunately, these hardware-specific errors can get magnified while propagating along
with the layers of the deep neural network. In this paper, we show that the inability to implement parameters of
the already trained network with enough precision can completely stop the network from performing any meaningful
operation. However, even at this level of degradation, the feature extractor section of the network still extracts enough
information from which an acceptable level of performance can be achieved by just retraining the last classification layers
of the network. Our results suggest that instead of just blindly trying to implement software algorithms in hardware as
precisely as possible, it might be more efficient to implement neural networks with imperfect devices and circuits and let
the network itself compensate for these imprecise computations by only retraining few layers.

Key words: Artificial neural networks, memristor, in-memory computation, convolutional neural networks, imprecise
computation, fault tolerance

1. Introduction
Deep neural networks (DNN) are gaining more and more attention every day, and nowadays can be found in so
many applications such as object detection [1, 2] autonomous driving [3], speech recognition [4],a gaming [5],
image recognition and segmentation [6], etc. However, most of these applications depend on the computing power
of cloud centers mainly because of the high computational complexity of machine learning algorithms. Since
using the 250 watts graphics processing unit (GPU) on the IoT device to deploy practical-size AI at the edge is
not a feasible solution [7], there has been a new wave of efforts in developing better and more efficient hardware
accelerators for DNN. Although some improvements can be achieved through the complementary algorithms like
weight quantization [8] or network pruning [9], but most dramatic improvements are still needed to bring power
consumption down to the level of IoT devices. Among the possible solution, neuromorphic computing systems
developed to accelerate the execution of DNN algorithms have demonstrated very promising performances in
terms of power and speed in recent years [10–13]. These systems have recognized the memory bottleneck of
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von Neumann architecture in digital hardware and have tried to solve it through the concept called in-memory
computation. In this concept, instead of moving the network parameters back and forth between the external
memory and processing units, the network parameters are stored inside the memory of nonvolatile memory
devices in analog form and the same physical devices are used to perform the computations of the network.
Although any type of nonvolatile memory devices can be used for this purpose, floating-gate transistors and
memristors are the most popular ones mainly because of their good analog behaviors and properties [12, 13].

Despite all the advantages, neuromorphic computing systems have their own drawbacks. The most
important problem is the resolution of weights that can be stored in nonvolatile memory devices. Although in
digital implementation reaching any weight precision is pretty much straightforward, the accuracy of weights
stored in analog nonvolatile devices can barely reach 6 to 8 bits [14]. Reducing weight precision can degrade the
functional performance of the network and impact the practicality of the neuromorphic systems in real-world
applications.

In this paper, we try to understand the effect of having imprecise weights on the performance of
neuromorphic hardware accelerating the execution of an already trained DNN. We show here that there is
a point in the accuracy of deep neural network parameters up to which the network can tolerate faulty or
imprecise network parameters. By passing this point, the performance of the network drops sharply almost
to the untrained network. Unfortunately, this key switching point is still within the range of programming
accuracies of nonvolatile memory devices demonstrated to date [10–12] meaning that just importing the weights
of the trained network into the neuromorphic system may not lead into any acceptable performance especially
when dealing with deep networks. Although there is always hope in the development of more robust and
precisely programmable devices in the future, the reader should understand that its chance is very slim due to
the fact that the switching behavior of these nonvolatile memory devices is highly stochastic [10].

Several methods can be considered to overcome this problem. For example, by using multiple memory
devices rather than one (or two in the case of differential implementation) to implement each individual weight,
weight precision can be increased to any desired level. However, this will waste a huge area and remove most of
the advantages that could have been achieved with in-memory computation. In situ training is another method
of dealing with imprecise or faulty hardware in which the network is retrained based on the information extracted
from the hardware hoping that retraining can take care of the effects of the imprecise hardware automatically
[11]. Although it sounds promising, this method needs (i) full characterization of the hardware and (ii) full
retraining of the whole network, which can be computationally expensive and impractical at large scale.

Our proposed method for a more practical system is a mixed-signal solution in which each network is
divided into two sections: (i) feature extractor and (ii) knowledge extractor or detector. While the first early
layers of any deep neural networks are responsible for extracting features, the last fully connected layers are using
the extracted features for decision making and mapping the inputs to one of the possible outputs. Interestingly,
it has been demonstrated that through the process called transfer learning [15], we can use the exact feature
extractor trained on one dataset in a completely different problem without retraining. This clearly implies
that the accuracy of the feature extractor part of the deep neural network is not the key deciding factor in
the overall performance of the network. Using this observation, our solution proposes to implement the feature
extractor part of neural network with neuromorphic hardware consisting of imprecise nonvolatile memory devices
and implement the last layers with digital or more accurate analog circuits. Then, instead of retraining the
whole network, we will just retrain the last layers or knowledge extractor section of the neural network using
the inaccurate outputs of the feature extractor. In this way, we can take advantage of the high efficiency of
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neuromorphic hardware when implementing the computationally expensive part of neural network (i.e. feature
extractors) and still reach acceptable performance by performing light and fast retraining on a few last layers
of the network implemented with more accurate hardware. As our simulation results show, an indistinguishable
level of performance can be achieved even when the programming accuracy of the utilized nonvolatile memory
devices in the neuromorphic hardware barely reaches 2–3 bits.

The authors would like to acknowledge their awareness of the necessity of expanding the current study
to larger and deeper neural networks trained with more sophisticated training algorithms (like using data
augmentation) which can generate better classification performance than those presented in this paper. However,
these network architectures are not included in this study due to the lack of access to the cluster of GPUs which
is required for training large networks. Moreover, the goal of this paper is not to surpass the highest classification
performance reported for this dataset. Instead, our focus here is to show that for any given neural network, there
is a possibility of reaching very high hardware efficiency by performing the significant portion of computations
of the inference phase of neural networks using imprecise in-memory computing hardware and still achieve good
performance. We believe that the proposed method is valid for other network architectures and applications not
covered in this paper because solving more complicated problems like classifying ImageNet dataset requires more
powerful networks like ResNet [16] or Yolo [17] which still would have high tolerance to imprecise computation
due to their large capacity (comping from the large number of parameters they have.)

The rest of the paper is organized as follows: In Section 2 we describe the structures and characteristics
of the networks we have studied their sensitivity to imprecise weights in this paper. We will also explain how
we have modeled the imprecise weights of neuromorphic hardware for software simulation. The results of the
sensitivity study on multi-layer, fully-connected and conventional networks to noisy weights are presented in
Section 3 using MNIST and CIFAR10 datasets. Here we also show how these degraded results can be improved
by retraining a last layer of the network. Further discussions that can be found in Section 4 conclude the paper.

2. Network architectures considered for this study
In order to validate our proposed solution, two different network architectures, i.e. fully-connected and con-
volutional networks, are considered as shown in Figure 1. Each of these networks has several intermediate or
hidden layers, allowing them to be categorized as deep neural networks. The exact specifications of each of
these architectures are explained below.

2.1. Fully-connected neural network
The fully-connected network shown in Figure 1a is used for the classification of the MNIST dataset so it will
always have 28×28 inputs and 10 outputs. All layers except the last layer of the network use the tansig activation
function. For any original fully-connected network with any number of hidden layers, we will assume that the
last layer of the network is the knowledge extractor or detector layer and the remaining layers of the network
belong to the feature extractor part of the network. In this way, after training the original network, we will
separate the feature extractor part, convert precise trained parameters into imprecise weights similar to how
they will be programmed in neuromorphic hardware (i.e. by adding noise to the weights), and then connect
altered feature extractor to the new knowledge extractor network. This new knowledge extractor network can
be the detector used in the original network, or can be a new fully-connected network with one or more hidden
layers. Now that the network is created, only the detector part of the new network will be trained or retrained
(if we are initializing the network with the parameters of the original network) to improve the classification
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performance of the new network as much as possible. For this part, our original network can have one or two
hidden layers and the added feature extractor can have zero or one hidden layer. For each of the hidden layers
of the original network, or the added knowledge extractor, we considered different numbers of hidden neurons
so we would be able to see the effect of network capacity with the ability of the retrained network to tolerate
faults and imprecise computation.

2.2. Convolutional neural network
It is a known fact that fully connected layers are much less sensitive to imprecise weights because of the huge
redundancy which exists in these layers. One the other hand, when moving toward deep convolutional networks,
we expect the sensitivity of the network to imprecise weight increases because of two reasons. First of all, these
layers might have less capacity due to their smaller number of parameters. Secondly, computation errors can
propagate and get magnified as the signal passes through the layers of the deep network. However, we want
to show that the reader should not jump into the conclusion right away because convolutional layers, usually
extract local features compared to fully-connected layers which extract global features. As a result, we will show
that the poorly implemented feature extractor, extracts enough information with which we can still squeeze an
acceptable level of performance from the network.
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Figure 1. Internal architectures of the network studied in this paper. (a) Multilayer fully-connected network. (b)
Convolutional neural network. In the fully-connected network, NFE is the number of neurons in the hidden layers of
the feature extractor portion of the network and ND shows the number of neurons in the detector section (when there
is a hidden layer). Networks showed in (a) and (b) are trained on MNIST and CIFAR10 datasets, respectively.

In order to demonstrate the effect of the proposed method on convolutional networks, we considered the
simple network architecture shown in Figure 1b which consists of three convolutional and two fully connected
layers. In our study, we will break the network in the convolutional section representing the feature extractor and
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the fully-connected section playing the role of the detector. The original network was trained on the CIFAR10
dataset first and after degrading the feature extractor by adding noise to its parameters, we just retrained the
knowledge extractor layers of the original network (i.e. fully connected layers). the results of this study are
presented in Section 3.

2.3. Mixed-signal in-memory computation
If we look closely to the types of computations used in most deep neural networks, we can see that the most
computationally expensive layers are those which their operation can be expressed as a simple operation
of vector-by-matrix multiplication (VMM). while fully-connected layers are literally performing the VMM
operation, with some shuffling of inputs and weights, the convolution operation can also be expressed by the
VMM operation. Despite its simplicity, hardware implementation of these VMM operations is very challenging
because of two reasons: (i) they have high volume of computation (i.e. multiplication and addition) and (ii)
they have huge number of parameters that need to be transferred usually form an external memory into the
processor. Mixed-signal circuits based on in-memory computing architectures are considered as a promising
solution to overcome both of these problems by performing the computations in analog directly within the
same memory that stores synaptic weights. Figure 2 explains this concept with more details. Figure 2a shows
the simple VMM computation that can be found in almost all neural network architectures. If we look into
just a single neuron, its output can be written as a dot product between its inputs and their corresponding
weights. To implement this dot product operation using in-memory computing system such as the one shown in
Figure 2b, we first need to map the synaptic weights to the conductance of the NVM devices (through analog
programming). Now by representing inputs of the network as voltages and applying them to the rows of this
memory module, the current of each NVM device would be equal to the multiplication of its conductance and
the input voltage applied to it. Following the kirchhoff’s current law, the total current on the columns of this
array would be equal to the VMM operation that we were trying to compute. The main two advantages of using
in-memory computation to perform VMM operation should be clear by now. First of all, we can perform N×N
multiplications and additions automatically in parallel and secondly, there is no need to transfer the network
parameters around. Of course there are drawbacks associated with this way of computing with the main one
being the inability of precise programming of NVM devices with synaptic weights. In the following sections,
we first study the sensitivity of neural networks to imprecise synaptic weights and then propose a solution to
overcome this problem.

2.4. Implementation of imprecise network parameters
To simulate the network as closely as how it will eventually be implemented in the neuromorphic hardware,
we looked into the literature to see how precisely today’s nonvolatile memory devices can be programmed and
modified the parameters of the trained network accordingly. Due to the feedback-based or write-read-verify the
nature of algorithms used to program nonvolatile memory devices with analog or multibit values [9–11], the
distribution of weight programming error is expected to be a Gaussian function centered around the original
weight. In other words, the amplitude of the programming error is always proportional to the amplitude of the
weight as shown in experiments [15]. As a result, in all of our experiments, we express the g(·) which is the
function modeling the effect of weight programming algorithms used in neuromorphic hardware as:

g(w) = (1 + α×N (µ = 0, σ2 = 1))× w, (1)
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Figure 2. Implementation of VMM operation using mixed-signal in-memory computing architecture. (a) Typical VMM
operation in neural networks. (b) Mapping VMM operation to NVM memory array and performing VMM operation
using in-memory computation.

where N (µ = 0, σ2 = 1)) is a normal distribution function with the mean and standard deviation of 0
and 1 respectively while α models the goodness of the analog property of the NVM devices or the programming
algorithm. To keep this study as general as possible and show its potential in improving noisy networks, in our
simulations the range of α is set to values much larger than those demonstrated in experiments [9–11].

3. Experimental results

3.1. Sensitivity study
Figure 3 shows the sensitivity of the considered fully-connected and convolutional neural network to the accuracy
of the parameters in the feature extractor part of the networks. For this study, after training the network, the
network parameters in the feature extractors were degraded according to Eq. (1) and then the classification
performance of the network is remeasured. Both Figures 3a and 3b are in the fully-connected networks where
in Figure 3a the network just had a single hidden layer with NFE hidden neurons while Figure 3b is for the
fully-connected network with two hidden layers, each with NNE hidden neurons. In both networks, all the
network parameters were degraded, except the weights connecting the last hidden layer to the output neurons.
Surprisingly, the two-layer network with less network parameters and therefore less capacity seems to have
less sensitivity to noisy weights which can be because of three reasons. Firstly, the chance of having over-
fitted network is higher in the three-layer networks than two-layer ones which makes it more sensitive to noisy
computation (this is also the reason of why increasing hidden neurons to more than 50 in both networks does
not increase the classification rate). Secondly, the higher sensitivity of the three-layer networks can be because
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of the higher depth of the network where the noise can propagate and get magnified. Finally, the activation
function in these networks is a tansig function which clips the large numbers. Therefore, if the noisy input of
the activation function gets into those clipping regions, the information may get lost.
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Figure 3. Results of the sensitivity study of the network shown in Figure 3. (a) Fully-connected network with a single
hidden layer consisting of NFE neurons. (b) Fully-connected network with a two hidden layer each with NFE neurons.
(c) Convolutional neural network shown in Figure 3c trained on CIFAR10 without any data augmentation.
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Things get more interesting as we move to the convolutional neural networks as shown in Figure 3c.
Although the weights of the first three convolutional layers are degraded in this deep network, the slope of the
classification rate drop is more similar to the two-layer fully connected network shown in Figure 3a meaning
that the network performance does not get degraded significantly by the increase of the depth network. This
is an important observation because intuitively one would expect convolutional layers to be more sensitive to
noisy parameters because of the small number of parameters these layers have. As mentioned in the previous
section, this robustness to imprecise computation can be due to three reasons. First, convolutional layers extract
local features from the input image compared to fully-connected layers which can be classified as global feature
extractors. Secondly, this network uses a ReLU activation function which does not have the limited output
range like tansig. Thirdly, the max pooling layer used in this network acts as a sort of filter preventing some
noisy signals from propagating within the network.

3.2. Improving the performance of degraded networks using the proposed method

Figure 4 shows the classification rate of the same degraded networks of Figure 3 when the extractor section is
kept fixed, but the detector portion of the networks was retrained. As these figures show, for all the networks,
we can still reach an indistinguishable classification rate even when the parameters of the feature extractor part
of the network are severely degraded and are highly inaccurate. Note that alpha = 1 means any weight with
the value of w would be mapped to a random value within the range of [−2w , 4w ] with a Gaussian distribution
centered around w which is a very severe degradation. This level of degradation is much worse than what can
be achieved with currently available NVM devices. Also the results of Figures 4a–4c show that while increasing
the redundancy in feature extractor portion of the network can make the network more and more robust to
imprecise network parameters, using a more powerful detector has a small impact on the network performance.
However, this could have been expected since we have just degraded the parameters in the feature extractors.
Figure 5 shows how much we were able to improve the classification rate by just retraining the last one or two
layers of the already trained network and not touching the noisy feature extractor. To be more precise, Figure
5 is the result of subtracting classification performances presented in Figure 3 from the results presented in
Figure 4. Unexpectedly, our proposed method has worked extremely well for the convolutional network used to
classify CIFAR10 dataset which has also been our deepest network.

4. Further discussion and conclusion
Memory bottleneck is slowing down the deployment of real AI capabilities at the edge using digital hardware.
To overcome this barrier, one solution is to use a so-called in-memory computation where the main computation
is happening inside the array of nonvolatile memory elements that also stores the parameters of neural networks.
Storing network parameters in analog inside the memory array come with the drawback of ending up having low-
precision weights. In this article we studied the effect of these imprecise weights on the classification performance
of deep fully-connected neural networks as well as convolutional networks and showed that it would be very hard
to reach an acceptable level of performance if we just blindly import the parameters of the trained network to
the nueromorphic hardware. Using more sophisticated and more complex hardware can improve the hardware
quality with the cost of reducing its efficiency. On the other hand, our solution is simple: implement the feature
extractor section of the network with any imprecise hardware to maximize the efficiency and just retrain the
detector section of the network. In this way, we will be implementing the computationally expensive part of the
network with very efficient hardware and retrain just a small part of the network which can be done pretty fast.
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Figure 4. Improving the degraded performance of neural networks by retraining the detector part of the network. (a)
Two-layer, fully-connected network. (b) Three-layer, fully-connected network. (c) Convolutional network. It is worth
noting that although for most values of NFE the degraded networks in Figures 4a and 4b produced meaningless outputs,
here we can see that with retraining the networks with larger number of hidden neurons in their feature extractors have
significantly better performances.

In this way we can reach very high hardware efficiency while keeping the retraining time at a manageable level.
As the results of our study showed, using this method we could reach the indistinguishable level of performance
using extremely imprecise computations.
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Figure 5. This figure shows how much we could increase the classification performance of the degraded networks
by just retraining the detectors. (a) Two-layer fully connected network. (b) Three-layer fully-connected network. (c)
Convolutional network. For the fully connected networks, the results are averaged over 100 runs but for the convolutional
network, the network is simulated just once due to the lack of enough computing resources.
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