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Abstract: Network reconfiguration is a process to change the open-switches in distribution system for a minimum power
loss. In the past, metaheuristic techniques were applied widely for network reconfiguration with consideration of a fixed
loading profile. When the loading changes, the current configuration may not be the optimal one. Thus, the technique
needs to be executed to find a new optimal configuration based on the latest loading. The process is time-consuming
since metaheuristic techniques commonly require high computational times and produces inconsistent results. Therefore,
this paper proposes a network reconfiguration technique based on artificial neural network (ANN) for variable loading
conditions. The proposed ANN model is tested on IEEE 33-bus, IEEE 69-bus, and IEEE-118 bus systems. The test
results indicate the efficiency of the proposed technique in three aspects: processing time, simple structure, and high
accuracy.
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1. Introduction
Distribution network reconfiguration (DNR) has gained very high attention due to its importance in power
delivery. It was reported in the literature that the power loss in distribution system is in the range of 5%
to 20% [1–3] depending on the size and configuration of the system. There are many techniques used to
reduce power loss in distribution systems. DNR is primarily considered for reduction in the power loss and
load balancing across the feeder. Additionally, DNR is implemented for distribution system restoration [4, 5],
minimizing reverse current from distributed generations [6], and improving distribution system reliability [7].
Other techniques for power loss reduction, such as the integration of distributed generations units [8–10] and
reactive power compensators [11], are used for further reduction in power loss and enhancing voltage profile
[12]. Distribution network reconfiguration is the process of altering the system topology in such a way that
the power loss is minimal. Due to the large number of switching elements in the system, DNR is considered
a combinatorial, nondifferential, and constrained optimization problem. The process of altering the system
topology is done by changing the open/close status of sectionalizing switches (normally closed) and tie switches
(normally open) while maintaining the radial structure of the system without isolating any load.

A considerable amount of research has been done on loss reduction in distribution systems. The first
category of approaches to solving DNR is heuristic techniques. Merlin and Back [13] proposed a heuristic
branch-and-bond approach to solve DNR. Another heuristic method based on power flow was presented in
∗Correspondence: hazli@um.edu.my
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[14]. A technique called branch exchange was proposed by [15] which was later used by [16] to obtain global
or near-global solutions for DNR. Such techniques are easy to formulate; however, there is no assurance of
convergence. Due to the increase of switching options and size of distribution systems, the second category of
approaches, which are metaheuristic techniques, were used. Such techniques are genetic algorithm [17], particle
swarm optimization [18], firefly [19], discrete evolutionary programming [20], discrete artificial bee colony [21],
tabu search [22], runner root [23], and harmonic search [24]. Metaheuristic techniques have the ability to obtain
global optimum solution; however, the computational time is very high. Thus, it is not suitable for practical
problem.

Unlike heuristic and metaheuristic techniques, the artificial intelligence (AI) techniques can be considered,
which will provide an optimum solution in a short span of time. The most popular technique is artificial neural
networks (ANN). In [25], an ANN approach was proposed for power loss minimization of distribution system.
The proposed method can provide a solution in both constant and load variation cases. A similar ANN approach
was proposed in [26], where only one set of ANNs were used according to the number of sensitive switches for
different load patterns. DNR is a complex optimization problem and when it is evaluated with variable loading,
it becomes more complex. To reduce the complexity of the problem. The authors in [27] utilized ANN with a
novel strategy to reduce the number of inputs to ANN by applying a dynamic fuzzy-c mean clustering technique.
A similar technique based on clustering was proposed in [28].

From the above analysis, heuristics and metaheuristics categories are not suitable for variable DNR
problem in two reasons: First, large computation time as such techniques determines one solution for a specific
load condition, through an iterative process. Once a change occurs in the load, recalculation of DNR process
is required. The second reason is inconsistency in providing optimal solution due to the random search process
[20]. On the other hand, the application of ANN techniques can significantly reduce the time required for DNR
process. However, there are some drawbacks of ANN technique in the application of network reconfiguration.
Approaches in [25, 26] require a large number of trained neural networks to find solutions for large systems, since
the number of proposed ANNs is dependent on the number of sensitive switches in the system. Additionally,
reducing the amount of training data may limit the generalization capacity of neural network.

Considering the advantages of ANN, this paper proposes optimal distribution network reconfiguration
to reduce power loss based on ANN technique. In this work, the proposed ANN technique is different from
previous work in the following aspects: (1) The structure of ANN model is divided into smaller models. (2) Each
model is associated with a tie switch in the system. (3) The optimal configuration is determined by combining
the smaller ANN models. As a result, this technique has improved the accuracy of ANN prediction ability.
Moreover, the proposed ANN technique facilitated the utilization of ANN for large-scale distribution systems
with small number of training networks. The proposed method is tested on IEEE 33-bus, IEEE 69-bus, and
IEEE 118-bus systems under static and dynamic loading conditions. The test result and comparison with other
techniques in the literature revealed the proposed method’s effectiveness in finding configuration in a short span
of time.

The organization of this paper is as follows. Mathematical formulation and constrains are developed
in Section 2. Section 3 is an overview of ANN, application of evolutionary programming (EP) to network
reconfiguration is presented in Section 4. Section 5 describes the proposed ANN methodology. Tests and results
are analyzed in Section 6 and conclusion is given in Section 7.
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2. Mathematical formulation
The main objective for network reconfiguration is to change the power flow in distribution system by transferring
heavily loaded feeders to less heavily loaded feeders. Reconfiguration should reduce the power loss and improve
the voltage profile. Therefore, the main objective function of this study is:

min(PT,loss =

m∑
i=1

Ri(
P 2
i +Q2

i

V 2
)) (1)

where m is the number of closed branches. Pi , Qi and Vi are the active power, reactive power, and the voltage
at the receiving terminal of branch i , respectively. Ri is the resistance of branch i . The objective function
is subject to the following constraints. These constraints should be satisfied during the process of network
reconfiguration.

The first constraint is power balance:

Psub =

br∑
k=1

(Pload + PT,loss) (2)

where PSub is the power supplied by the substation and Pload is the active power of the load. This
equation implies that the power of the load and the total power loss is equal to the total power generated
substation.

The second constraint is bus voltage limitation:

Vmin ≤ Vi ≤ Vmax (3)

where V(min) and V(max) represent the upper and lower bound of permitted voltage (from 0.9 pu to 1.1
pu).

The third constraint is current limitation:

Ii ≤ Imax (4)

where I(max) is the maximum current limit of branch i .
The final constraint is the radial structure of the network. The radial structure of distribution network

must be maintained during reconfiguration process and all loads must be served.

3. Overview of artificial neural network
An overview of artificial neural network (ANN) is provided in this section since it is applied for network
reconfiguration. Basically, ANN consists of input layer, a number of hidden layers, and output layer. It is based
on a collection of densely connected nodes called neurons, usually in a feed forward way [29]. The input layer
propagates the received information to output layers through the hidden layers, where each node (neuron) has
an associated weight wij . A group of data consisting of input and output can be represent by equation (5).

TrainingSet = [(I1, O1), (I2, O2), ..., (IP , OP )] (5)

where (Ip, Op) represents the input and the desired output for a single training pattern.
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The training process is a matter of adjusting the weights wij between neurons until a good mapping
function f is achieved. The relation between input layer and hidden layer is shown in equation (6).

NetHn
=

h∑
j

p∑
i

xi ∗ wij (6)

where Net(Hn) is the total output of the hidden layer n , h is the number of neurons in the hidden layer
Hn , p is the number of input patterns to input layer x, and wij is the weight associated with each connection
between inputs and hidden layers.

Then, equation (6) can be represented as follows:

OutHn = f(NetH) (7)

where f is the activation function of the hidden layer. Generally, the Sigmoid (logsig) activation function
is selected for the nonlinear mapping. Equation (8) shows the relation between input and output of hidden
layer Hn .

OutHn =
1

1 + e−(NetH+bH)
(8)

where bH is the bias of the hidden layer.
The input to the next layer is the output of hidden layer Hn . If there is more than one hidden layer,

the process is repeated as in Equations Equations (6) to (8). The training process continues until the mean
square error (MSE) is minimized, which is the squared sum of the difference between the desired output and
NN output for all patterns [25].

E(w) =
1

n

p∑
i=1

(Ot −ONN )2 (9)

where Ot is the desired output; ONN is NN output for single training pattern, and n is the total number
of outputs.

During the learning process, the training algorithm updates the weights according to direction function
r(t) [27]. In this paper Levenberg-Marquardt, a second-order optimization algorithm, is applied. It is considered
to be the fastest backpropagation algorithm for medium-sized NN. The algorithm can be represented by the
following equations:

∆wt = ϵr(t) (10)

r(t) = [JTJ + µI]−1JT e (11)

wt+1 = wt +∆wt (12)

where J is the Jacobean matrix containing the first derivatives of NN errors with respect to weights and
biases; e is a vector containing network errors, and ϵ is the learning rate.
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4. Network reconfiguration based on evolutionary programming

In order to model the proposed ANN for network reconfiguration, a set of data of optimal configuration for
different loading conditions are required. This task can be achieved by using any optimization technique. In this
work, evolutionary programming (EP) is chosen due to it simplicity, reasonable convergence time and because
it has been proven to work well for network reconfiguration application [20, 30]. The application of EP for
network reconfiguration can be summarized in the following steps:

Step 1: Set the input data for EP such as bus data, line data, population size, maximum iteration, and
minimum error.

Step 2: Generate random solutions which are the tie switches in distribution system to be opened. These
switches are called population (parents), which is represented by equation 13.

Sjn =


G1 G2 · · · Gn

S11 S12 · · · S1n

S21 S22 · · · S2n

...
...

...
Sm1 Sm2 · · · Smn

 (13)

where j = 1, 2, 3, . . . ,m represents the population index, m represents population size, n represents the
number of switches to be opened, and G is the switch group number.

Step 3: Start the EP by solving load flow analysis using Newton–Raphson for each population and get
the power flow values through the entire network.

Step 4: Evaluate the fitness function for each population which means calculate the power loss for that
specific configuration using equation 1.

Step 5: The initial population in step 2 undergoes mutation process in which the switch group G1 starting
from S11 to Sm1 is mutated using Gaussian mutation operator as in equation 14 to produce offspring. Then
the process is repeated for switch group G2 and so on until switch group Gn .

Sm+j,n = Sm,n +N(0, β(Sm,max − Sm,min)(
fi

fmax
)) (14)

where Sm+j,n is mutated population (offspring), Sm,n is the old population (parents), N is random
Gaussian number, β is the search step, Smmax is the maximum random number in switch group G , Smmin is
the minimum random number in switch group G , fj is the fitness value for random switch population j , and
fmax is the maximum fitness value in switch group G .

Step 6: The parents and offspring are combined in new population and sorted in an ascending order
based on the fitness value. Then, the first half of the new population is selected to become the new population
for the next generations.

Step 7: Finally, the process is repeated from step (4–6) until the difference between the maximum fitness
value and minimum fitness value is less than minimum error (ME) as shown in equation 15. The flow chart of
EP is shown in Figure 1.

fmax − fmin ≤ ME (15)
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Figure 1. Network reconfiguration based on evolutionary programming.

5. Proposed methodology

5.1. Load groups

In this work, the loads in the test system are categorized into three load groups; residential, commercial, and
industrial as suggested in [26]. Each load group has similar characteristics in which the changes of loads in each
load group present similar behavior. The load groups can operate on estimated levels according to their peak
demand load curves as shown in Figure 2. The number of estimated load levels is determined based on the
range of the actual loads as shown in Table 1. As a result, the total number of load patterns will be pm , where
p and m are the load level and load group, respectively. In this case, the total number of load patterns will
be 216. For each load pattern, network reconfiguration based on EP is applied to find optimal configuration
having minimum power loss. These configurations and its load patterns are used as the training set for ANN.

5.2. ANN design

The proposed ANN technique for distribution system reconfiguration is shown in Figure 3. The input consists
of load patterns (operating percentages of the three load groups) and the output is the switch number. The
number of ANNs will be equal to the number of tie switches in the system, where each ANN will give one
switch to be opened. The output of all ANNs will give optimal configuration for a specified load pattern. The
relation between the input and output of DNR problem is nonlinear. Therefore, a normalization layer is added
before the input layer of ANN. The purpose of this normalization layer is to normalize the switch numbers to
increase the learning performance of ANN models. The normalization process is done for each group of switches
associated with a particular ANN model. Thus, this process is repeated according to the number of tie switches
in the system. This step changes the values of optimal switches data to be set in the range between 0 and 1.

3018



YOUSSEF et al./Turk J Elec Eng & Comp Sci

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24

%
 o

f 
p

ea
k

 l
o

ad

Time (h)

P

Q

P

Q

P

Q

(a) Residential

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24

%
 o

f 
p

ea
k

 l
o

ad

Time (h)

(b) Commercial

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20 22 24

%
 o

f 
p

ea
k

 l
o

ad

Time (h)

(c) Industrial

Figure 2. Daily load curves in peak load percentage.

Table 1. Estimated operating load levels.

Load level Actual load levels Estimated load levels
(% of peak demand) (% of peak demand)

1 45 ≤ 54 50
2 55 ≤ 64 60
3 65 ≤ 74 70
4 75 ≤ 84 80
5 85 ≤ 94 90
6 95 ≤ 100 100

5.2.1. ANN training steps

Each ANN model is trained only for one switch, while the input for all ANN models does not change. The
process of training is iterative, since choosing the appropriate number of neurons in the hidden layer is done
by trial and error. The training will start with one neuron and then the number is increased until a good
convergence is achieved. The weights are initialized as random values. During the training process, the weights
are adjusted iteratively to minimize the mean-squared-error. The steps for training ANN are as follows:

Step 1: Generate the training data for ANN by using EP optimization in such a way the data is represented
as follows.

Data =


G1 G2 · · · Gp

LP1 OS11 OS12 · · · OS1p

LP2 OS21 OS22 · · · OS2p

...
...

...
...

LPm OSm1 OSm2 · · · OSmp

 (16)
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Figure 3. Proposed ANN design for distribution system reconfiguration.

where OSmp is the optimal tie switch in a switch group Gp for a load pattern LPm , m is the number of load
patterns, and p is the number of switch groups. LPm is the operating percentage for residential, commercial,
and industrial loads.

Step 2: The data for training ANN is selected randomly form the generated data (70% of generated
data), which consists of load patterns as inputs and optimal switches as desired output for ANN model.

Step 3: Normalize all switches in the first optimal switch group G1 , starting from OS11 to OSm1 using
equation 17, then repeat for the rest of the optimal switch groups, for p = 2, 3, . . . , p (giving a matrix of m× p

elements of normalized switches).

OSnorm =
OSm1 −min(OSm1)

max(OSm1)−min(OSm1)
(17)

Step 4: Train the first ANN on the first group of optimal switches G1 , starting with one neuron and
random initial weights.

Step 5: The training process continues for specific number of iterations, while the weights are updated
each iteration.

Step 6: Store the final value of weights after convergence.
Step 7: Test the network accuracy on the remaining data (30% of training data) using the weight values

in step 6. RMS and absolute error are used to determine the level of learning the ANN of the data. If the RMS
value is below 0.1, then the network has reached satisfactory level of training [26].

Step 8: If the accuracy is high, continue. Otherwise, the number of neurons is increased by 1, then repeat
steps (4–7).

Step 9: Train the other ANN models using the same procedure from steps 4–7 based on the number of
optimal group switches Gp .
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5.2.2. Testing accuracy of trained ANN

The remaining 30% of generated data that was not used in the training process is new to the ANN, which
means that network has not been trained on these load patterns. The ANN is evaluated based on the number
of correct predictions for unseen data and the number of correct responses for seen data. This is done by using
the combined ANN model to find the output of all load patterns and compare with the actual values.

6. Test and results
In this section, the proposed method was evaluated on IEEE 33-bus, IEEE 69-bus, and IEEE 118-bus systems.
Two optimization techniques are used to evaluate the performance of the proposed method: EP and PSO [31].
The search step parameter in EP is set to 0.05; this value is based on a trial basis. Simulation results were
performed on Intel Core 2 Duo CPU and 3 GB RAM computer using MATLAB software.

6.1. Test System 1

The IEEE 33-bus system is shown in Figure 4, the system consists of 33 buses, 32 sectionalizing switches, and
5 tie switches. The default opened tie switches are 33, 34, 35, 36, and 37 in the network. The system voltage
is 12.66 kV, while the total real and reactive power loads are 3.7 MW and 2.3 MVAR, respectively. The power
loss of the default operating condition is 208.459 kW and the lowest bus voltage is 0.9108 pu.

Substation
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17

S19 S20

S21

S22

S23 S24

S25

S26 S27 S28 S29 S30 S31 S32

S33

S18

S34

S35

S36

S37

Bus

Line

Tie Line

Residential

Commercial

Commercial

Industrial

11 2 3 4 65 87 1211109 13 14 15 16 17 18

19 20 21 22

23 24 25

26 27 28 29 30 31 32 33

Figure 4. IEEE 33-bus distribution system.

6.1.1. Results
From the solution of network reconfiguration for 33-bus system, most of the configurations are the same, and
can be grouped into six distinct configurations as tabulated in Table 2. Furthermore, it can be observed from
this table that the first three tie switches do not change in all 6 configurations. Therefore, two ANNs are used
for the training which are ANN4 and ANN5. The final structure of the training network is determined based
on the most accurate results of ANN models. While the structures of both ANNs are similar regarding input
and output neurons, the numbers of neurons in the hidden layer are different.

Table 3 shows the performance of each ANN model based on the mean square error and the absolute
error. ANN4 accuracy is 99.07% which corresponds to 214 optimal solutions for switch group 4 out of 216 load
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patterns while ANN5 gives 100% optimal solution for switch group 5. The overall accuracy of the final solution
(combination ANN4 and ANN5 models) is 99.07%. It was identified that for ANN4, inaccuracy occurred for load
pattern 42 and load pattern 195. For these load patterns, the final solution of switches for the proposed ANN
and EP optimization are presented in Table 4. Although the solution of ANN is different from the optimization
solution based on EP, only one switch is different from the optimization solution and the power loss differences
between two techniques are also small.

In order to verify the proposed ANN technique, a comparison with other published studies is provided
in Table 5. The optimal configurations obtained from references that used fireworks algorithm (FWA) [19],
discrete evolutionary (DEP) [20], harmony search algorithm (HAS) [24],cuckoo search algorithm (CSA) [32] were
reevaluated at 100% loading to determine the power loss using the same load flow program (from MATPOWER)
as in this work. The results are presented in Table 5. It can be observed that there is a slight difference between
the references and recalculated one. This might be due to difference in load flow program/method and computer
processor used in the referred papers. The proposed ANN method obtained the optimal solutions as in other
references except [19], which is higher than others. The optimal configuration is 7, 9, 14, 32, 37, which results
in 33.35% power loss reduction. Figure 5 shows the 33-bus test system after reconfiguration using ANN.

Table 6 shows the results obtained from EP and PSO. Both algorithms give optimal configuration and
power loss value. However, the time needed to find the optimal configuration to minimize the power loss is
30.47s for EP, 18.65s for PSO, respectively. On the other hand, the time for the proposed method is 0.052 s,
which is shorter compared to both techniques. Moreover, for 200 iterations, the consistency of the proposed
method to give optimal configuration is 100%, while for other techniques it is 25% for EP and 32% for PSO.

Figure 6 shows the voltage profile of the distribution network before and after the reconfiguration for
100% loading condition. The minimum voltage of the system has improved by 3.35%, while the minimum bus
voltage in all load patterns before and after reconfiguration has improved by an average of 2.37%.

Table 2. Optimal configurations of IEEE 33-bus distribution system.

Optimal Tie switches to Load patterns numbers
configuration be opened
number
1 S7, S9, S14, 1, 7, 8, 13, 14, 19, 20, 25, 26, 31, 32, 43, 44, 49, 50, 51,55, 56, 57,

S32, S37 61, 62, 63, 67, 68, 69, 79, 85, 86, 87, 91, 92,93, 94, 97,98, 99, 100,
103, 104, 105, 106, 122, 128, 129, 130, 134, 135, 136

2 S7, S9, S14, 2, 3, 4, 37, 38, 39, 40, 41, 42, 45, 46, 47, 74, 75, 76, 77, 78, 80, 81,
S32, S28 82, 83, 84, 88, 89, 90, 96, 111, 112, 113, 114, 116, 117, 118, 119,

120, 123, 124, 125, 126, 131, 132, 148, 149, 150, 153, 154, 155, 156
3 S7, S9, S14, 5, 6, 10, 11, 12, 18, 48, 53, 54

S31, S28
4 S7, S9, S14, 9, 15, 16, 17, 21, 22, 23, 24, 27, 28, 29, 30, 33, 34, 35, 36, 52, 58,

S31, S37 59, 60, 64, 65, 66, 70, 71, 72, 95, 101, 102, 107, 108
5 S7, S9, S14, 73, 109, 110, 145, 146, 147, 151, 152, 181, 182, 183, 184, 187, 188,

S36, S28 189, 193, 194, 195
6 S7, S9, S14, 115, 121, 127, 133, 139, 157, 163, 169, 175, 199, 200, 205, 206, 211,

S36, S37 212

3022



YOUSSEF et al./Turk J Elec Eng & Comp Sci

Table 3. ANN models’ performances for IEEE 33-bus system.

ANN Structure Accuracy MSE Training results Testing results
Number Cases Correct Alter Cases Correct Alter
ANN4 3-3-1 99.07% 2.2e-04 151 151 - 65 63 2
ANN5 3-2-1 100% 1.7e-08 151 151 - 65 65 -
Combined - 99.07% - 151 151 - 65 63 2
ANN

Table 4. Comparison between optimal configuration and ANN alternative response for IEEE 33-bus system.

Load pattern Optimal switches Power loss (kW) ANN switches Power loss (kW)
42 7, 9, 14, 32, 28 75.737 7, 9, 14, 31, 28 76.289
195 7, 9, 14, 36, 28 86.971 7, 9, 14, 32, 28 87.083

Table 5. Comparative analysis of reconfiguration methods for the IEEE 69-bus system.

Tie switches Power loss (kW) Loss reduction (%)
Vmin (pu)opened Reference Recalculated (based on recalculation)

Initial 33, 34, 35, 36, 37 - 208.459 - 0.9108
configuration
HSA[24] 7, 9, 14, 32, 37 138.06 138.928 33.35 0.9423
DEP[20] 7, 9, 14, 32, 37 138.928 138.928 33.35 0.9423
CSA[32] 7, 9, 14, 32, 37 138.87 138.928 33.35 0.9423
FWA[19] 7, 9, 14, 28, 32 139.98 139.982 32.85 0.9413
Proposed ANN 7, 9, 14, 32, 37 - 138.928 33.35 0.9423
method

Substation
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Industrial

11 2 3 4 65 87 1211109 13 14 15 16 17 18

19 20 21 22

23 24 25

26 27 28 29 30 31 32 33

Figure 5. Comparison of simulation results for IEEE 33-bus system

3023



YOUSSEF et al./Turk J Elec Eng & Comp Sci

Table 6. Comparative analysis of DNR between optimization techniques and proposed method for 33-bus system.

Tie switches Power loss Loss reduction Vmin Consistency
opened (kW) (%) (pu) (%)

EP 7, 9, 14, 32, 37 138.928 33.35 0.9423 25
PSO 7, 9, 14, 32, 37 138.928 33.35 0.9423 32
Proposed ANN method 7, 9, 14, 32, 37 138.928 33.35 0.9423 100
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6.2. Test system 2

The IEEE 69-bus system is shown in Figure 7, the system consists of 69 buses, 68 sectionalizing switches, and
5 tie switches. The default opened tie switches are 17, 22, 25, 58, and 37 in the original network. The system
voltage is 12.66 kV, while the total real and reactive power loads are 3.8 MW and 2.7 MVAR respectively. The
power loss of the default operating condition is 224.975 kW and the lowest bus voltage is 0.90929 pu.

6.2.1. Results
From the solution of network reconfiguration for 69-bus system, most of the configurations are the same, and
can be grouped into four distinct configurations as tabulated in Table 7. Switch group 4 is the only changing
group with switch numbers 62, 63, 64, and 65; thus, only 1 ANN is needed for training in this case. The
structure of the training network is determined based on the most accurate results of ANN models. While the
structure of the ANN model is similar to previous system in the input and output layers, the number of neurons
in the hidden layer is different.

Table 8 shows the performance of the ANN model, to evaluate the performance of ANN model, the mean
square error and the absolute error is used, which represents the accuracy of each ANN model. ANN4 accuracy
is 100% which corresponds to 216 optimal solutions for switch group 4 out of 216 load patterns.

In order to verify the proposed ANN technique, a comparison with other published works from the
literature is conducted. Four references are considered; fireworks algorithm (FWA) [19], discrete artificial bee
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Figure 7. IEEE 69-bus distribution system.

colony (DABC) [21], adaptive cuckoo search algorithm (ACSA) [33], and fast nondominated sorting genetic
algorithm (FNSGA) [34]. Similar to what is done in test of 33-bus system, the optimal configurations obtained
from the referred references are reevaluated at 100% loading to determine the power loss using the same load flow
program as in this work. The results are presented in Table 9. It can be observed that there is a slight difference
between the references and the recalculated one. The proposed ANN method obtained optimal solutions as other
comparison methods, which results in 56.37% power loss reduction. The optimal configurations are similar
except for switches 55, 56, and 57. However, the obtained power loss is similar as shown in the table. The
69-bus test system after reconfiguration is shown in Figure 8.

Table 10 shows the results obtained from EP and PSO. Both algorithms give optimal configuration and
power loss value. However, the time needed to find the optimal configuration to minimize the power loss is
26.475 s for EP and 21.338 s for PSO. On the other hand, the time for the proposed method is 0.054 s, which
is shorter compared to both techniques. Moreover, for 200 iterations, the consistency of the proposed method
to give optimal configuration is 100%, while for other techniques it is 40% for EP and 50% for PSO.

Figure 9 shows the voltage profile of the distribution network before and after the reconfiguration for
100% loading condition. The minimum voltage of the system has improved by 2.27%, while the minimum bus
voltage in all load patterns before and after reconfiguration has improved by an average of 1.79%.

6.3. Test system 3
The IEEE 118-bus system is shown in Figure 10, the system consists of 118 buses, 118 sectionalizing switches,
and 15 tie switches. The default opened tie switches are from 119 to 133 in the original network. The system
voltage is 11 kV, while the total real and reactive power loads are 22.709 MW and 17.041 MVAR, respectively.
The power loss of the default operating condition is 1298.09 kW and the lowest bus voltage is 0.8688 pu.
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Table 7. Optimal configurations of IEEE 69-bus distribution system.

Optimal Tie switches to Load patterns numbers
configuration be opened
number
1 S17, S22, S23, 1,8,17,19,20,32,37,38,40,48,51,58,59,62,63,64,76,83,91,100,101,104,

62, S68 112, 117,121,122,124,125,127,128,129,133,138,140,151,152,153,154,
164,165,167,168,173,177,181,182,187,198,199,204,205,206,209

2 S17, S22, S23, 2,11,15,21,26,27,28,31,33,36,39,46,47,54,61,69,70,71,75,78,80,90,92,
63, S68 93,105,106,109,111,113,116,130,135,136,139,143,145,147,149,

158,161,169,175,178,189,191,192,193,195,196,200,202,210,215
3 S17, S22, S23, 3,6,12,14,23,29,30,34,42,45,49,50,52,55,60,77,86,87,94,96,98,102,108,

64, S68 118,123,131,141,142,144,148,155,159,160,162,163,166,170,
172,176,180,185,186,190,194,201,203,208,216

4 S17, S22, S23, 4,5,7,9,10,13,16,18,22,24,25,35,41,43,44,53,56,57,65,66,67,68,72,73,
65, S68 74,79,81,82,84,85,88,89,95,97,99,103,107,110,114,115,119,120,126,

132,134,137,146,150,156,157,171,174,179,183,184,188,197

Table 8. ANN models performance for IEEE 33-bus system.

ANN number Structure Accuracy MSE Training results Testing results
Cases Correct Alter Cases Correct Alter

ANN4 3-4-1 100% 1.2e-04 151 151 - 65 65 0

Table 9. Comparative analysis of reconfiguration methods for the IEEE 69-bus system.

Tie switches Power loss (kW) Loss reduction (%)
Vmin (pu)opened Reference Recalculated (based on recalculation)

Initial 69, 70, 71, 72, 73 - 224.975 - 0.90929
configuration
ACSA[33] 14, 57, 61, 69, 70 98.59 98.161 56.37 0.9982
FWA[19] 14, 56, 61, 69, 70 98.59 98.161 56.37 0.9982
FNSGA[34] 14, 55, 61, 69, 70 98.59 98.161 56.37 0.9982
DABC[21] 14, 55, 61, 69, 70 98.59 98.161 56.37 0.9982
Proposed ANN 14, 55, 61, 69, 70 - 98.161 56.37 0.9982
method

Table 10. Comparison of simulation results for IEEE 69-bus system.

Tie switches Power loss Loss reduction Vmin Consistency
opened (kW) (%) (pu) (%)

EP 14, 55, 61, 69, 70 98.161 56.37 0.9528 40
PSO 14, 55, 61, 69, 70 98.161 56.37 0.9528 50
Proposed ANN method 14, 55, 61, 69, 70 98.161 56.37 0.9528 100

3026



YOUSSEF et al./Turk J Elec Eng & Comp Sci

Substation
S9

Bus

Line

Tie Line

S1 S2 S3 S6 S8 S10 S11 S13 S15 S16 S19 S21 S23 S24 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36

1 2 3 4 65 7 8 9 10 11 1312 14 15 16 17 18 2019 21 22 23 24 2625 27

47 48 49 50

S7

444888 444999 555000

S55 S56 S57

51 52

S12

55551111 5552222

S59

S5 S45 S46 S47 S48 S49 S50 S51 S53S52 S54

36 37 38 39 40 41 42 43 44 45 46

28 29 30 31 32 33 34 35

S4

2222288888 2229999

S38 S39 S40 S41

33333333333 333333444444 33333355555

S42 S43 S44

S14

S60 S61 S62 S63 S64 65 S66 S68S67 S69

53 54 55 56 57 58 59 60 61 62 63

S70 S71

64 65

68 69

S20

6666888 66999

S73

66 67

S18

66666666 6666777

S72

S17

S22

S25

S58

S37

Residential

Commercial

Industrial

Figure 8. IEEE 69-bus distribution system after reconfiguration.
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Figure 9. Voltage profile before and after reconfiguration based on ANN for IEEE 69-bus system.

6.3.1. Results

From the solution of network reconfiguration for 118-bus system, most of the configurations are the same, and
can be grouped into seven distinct configurations as tabulated in Table 11. Switch groups 6, 7, 8, 9, and 11 are
the changing group; thus, 5 ANNs are needed for training in this case. The structure of the training network
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Figure 10. IEEE 118-bus distribution system.

is determined based on the most accurate results of ANN models. While the structure of the ANN model is
similar to previous system in the input and output layers, the number of neurons in the hidden layer is different.

Table 12 shows the performance of each ANN model based on the mean square error and the absolute
error. ANN6, ANN7, ANN8, and ANN11 have accuracy of 99.54% which corresponds to 215 optimal solutions
out of 216 load patterns while ANN9 gives 100% optimal solution for switch group 9. The overall accuracy of
the final solution (combination ANN4 and ANN5 models) is 99.15%. It was identified that for ANN6, ANN7,
ANN8, and ANN11, inaccuracy occurred for load pattern 7, load pattern 60, and load pattern 145. For these
load patterns, the final solution of switches for the proposed ANN and EP optimization are presented in Table
13. Although the solution of ANN is different from the optimization solution based on EP, the power loss
differences between two techniques are small.

In order to verify the proposed ANN technique, a comparison with other published works from the
literature is conducted. Three references are considered; fireworks algorithm (FWA) [35], improved tabu search
(ITS) [36], and two-stage firefly algorithm [37]. Similar to what is done in test of 33-bus system, the optimal
configurations obtained from the referred references are reevaluated at 100% loading to determine the power
loss using the same load flow program as in this work. The results are presented in Table 14. It can be
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Table 11. Optimal configurations of IEEE 118-bus distribution system.

Optimal Tie switches to Load patterns numbers
configuration be opened
number
1 S24, S26, S35, S40, 1,2,3,4,8,12,15,16,17,18,23,24,28,29,36,39,45,47,49,50,51,53,

S43, S51, S59, S72, 61,64,66,68,73,74,75,85,88,89,95,96,100,104,107,112,
S75, S96, S98, S110, 116,118,123,132,134,136,139,156,162,165,166,168,
S122, S130, S131 174,175,176,178,181,189,191,193,197,201,203,206,216

2 S24, S26, S35, S40, 13,31,35,57,58,59,69,71,81,86,102,105,110,111,
S43, S51, S59, S73, 117,126,127,130,137,148,155,167,171,173,188,
S75, S96, S98, S110, 196,198,208,213
S122, S130, S131

3 S24, S26, S35, S40, 9,33,46,78,98,103,109,113,121,144,150,152,160,
S43, S51, S59, S71, 164,177,185,187,195,207,214
S75, S96, S77, S110,
S122, S130, S131

4 S24, S26, S35, S40, 5,26,34,56,62,63,65,72,83,91,97,125,133,138,140,
S43, S52, S59, S72, 141,151,153,159,170,179,180,182,190,204
S75, S96, S98, S110,
S122, S130, S131

5 S24, S26, S35, S40, 19,20,21,22,30,32,67,76,77,79,80,82,84,87,90,92,
S43, S53, S59, S72, 93,99,106,114,115,122,128,129,131,135,142,146,
S75, S96, S98, S110, 157,161,163,169, 205
S122, S130, S131

6 S24, S26, S35, S40, 6,7,14,37,40,43,44,48,52,54,55,70,94,101,108,119,
S43, S51, S62, S72, 120,124,143,147,158,183,194,199,209,212,215
S75, S96, S98, S110,
S122, S130, S131

7 S24, S26, S35, S40, 10,11,25,27,38,41,42,60,145,149,154, 172,184,
S43, S51, S61, S72, 186,192, 200,202,210,211
S75, S96, S77, S110,
S122, S130, S131

observed that there is a slight difference between the references and recalculated one. The proposed ANN
method obtained optimal solutions as other methods compared except [36], which is higher than others. The
optimal configuration results in 34.21% power loss reduction. The 118-bus test system after reconfiguration is
shown in Figure 11.

Table 15 shows the results obtained from EP and PSO. Both algorithms give optimal configuration and
power loss value. However, the average time needed to find the optimal configuration to minimize the power
loss is 568.47 s for EP and 434.69 s for PSO. On the other hand, the time for the proposed method is 0.064
s, which is much shorter compared to both techniques. Moreover, for 200 iterations, the consistency of the
proposed method to give optimal configuration is 100%, while for other techniques is 12% for EP and 36% for
PSO.
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Table 12. ANN models performance for IEEE 118-bus system.

ANN Structure Accuracy MSE Training Results Testing results
Number Cases Correct Alter Cases Correct Alter
ANN6 3-3-1 99.54% 7.3e-04 151 151 - 65 64 1
ANN7 3-3-1 99.54% 1.2e-08 151 151 - 65 64 1
ANN8 3-3-1 99.54% 4.3e-04 151 150 1 65 65 -
ANN9 3-2-1 100% 5.8e-04 151 151 - 65 65 -
ANN11 3-2-1 99.54% 3.1e-04 151 151 - 65 64 1
Combined - 98.15% - 151 150 1 65 62 3
ANN

Table 13. Comparison between optimal configuration and ANN alternative response for IEEE 118-bus system

Load pattern Optimal switches Power loss (kW) ANN switches Power loss (kW)

7

24, 26, 35, 40,

315.385

24, 26, 35, 40,

316.23143, 51, 62, 72, 43, 53, 62, 71,
74, 96, 98, 110, 74, 96, 98, 110,
112, 130, 131 112, 130, 131

60

24, 26, 35, 40,

343.283

24, 26, 35, 40,

344.19443, 51, 59, 71, 43, 51, 59, 71,
74, 96, 77, 110, 74, 96, 98, 110,
112, 130, 131 112, 130, 131

145

24, 26, 35, 40,

343.733

24, 26, 35, 40,

345.42143, 51, 59, 71, 43, 51, 61, 71,
74, 96, 77, 110, 74, 96, 77, 110,
112, 130, 131 112, 130, 131

Table 14. Comparative analysis of reconfiguration methods for the IEEE 118-bus system.

Tie switches Power loss (kW) Loss reduction (%) Vmin

opened Reference Recalculated (based on recalculation) (pu)
Initial 119 to 133 - 1298.092 - 0.90929
configuration

FWA[35]
24, 26, 35, 40, 43, 51,

854.06 854.031 34.21 0.998259, 72, 75, 96, 98,
110, 122, 130, 131

ITS[36]
43, 27, 24, 52, 120,

865.865 871.656 32.85 0.932159, 40, 96,75, 72, 98,
130,131 110, 35

Two-stage FA[37]
24, 26, 35, 40, 43, 51,

853.58 854.031 34.21 0.998259, 72, 75, 96, 98,
110, 122, 130, 131

Proposed 24, 26, 35, 40,43, 51,
- 854.031 34.21 0.9323

ANN method 59, 72, 75, 96, 98,
110, 122, 130, 131
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Figure 11. IEEE 118-bus distribution system after reconfiguration.

Table 15. Comparison of simulation results for IEEE 118-bus system.

Tie switches opened Power loss Loss reduction Vmin Consistency
(kW) (%) (pu) (%)

EP
24, 26, 35, 40, 43, 51,

854.031 34.21 0.9323 1259, 72, 75, 96, 98, 110,
122, 130, 131

PSO
24, 26, 35, 40, 43, 51,

854.031 34.21 0.9323 3659, 72, 75, 96, 98, 110,
122, 130, 131

Proposed ANN 24, 26, 35, 40, 43, 51,
854.031 34.21 0.9323 100

method 59, 72, 75, 96, 98, 110,
122, 130, 131

Figure 12 shows the voltage profile of the distribution network before and after the reconfiguration for
100% loading condition. The minimum voltage of the system has improved by 2.53%, while the minimum bus
voltage in all load patterns before and after reconfiguration has improved by an average of 1.67%.

Finally, the proposed method is compared with other ANN techniques from the literature as shown
in Table 16. The accuracy of the proposed method is 99.07% and 100% for 33-bus and 69-bus test system,
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respectively, which are higher than other methods. Additionally, the number of load patterns introduced to
the proposed ANN model is larger than other methods, which improves the generalization and learning ability
of the proposed ANN method. However, the number of required neurons in the training process is small and
similar to other methods, which implies the effectiveness of the proposed ANN method.
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Figure 12. Voltage profile before and after reconfiguration based on ANN for IEEE 118-bus system.

Table 16. Comparison between proposed ANN model and published ANN work for network reconfiguration.

Test Structure Pretraining Number of Accuracy Processing Processor
system operation load patterns (%) time (s) (GHz)

ANN[27] 16-bus 12-20-7 Clustering 64 96.67 0.993 2.0
system

ANN[28]

33-bus 14-3-8
Clustering

64 98 0.37
2.2system

69-bus 16-3-9 64 98 0.51
system

Proposed ANN

33-bus 3-3-1

None

216 99.07 0.052

2.0

system
69-bus 3-4-1 216 100 0.054
system
118-bus 3-3-1 216 98.15 0.064
system

7. Conclusion
In this work, an ANN has been proposed for successfully solving the distribution network reconfiguration problem
by obtaining the optimal configuration, in which the power loss is minimal. The proposed method was tested
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on IEEE 33-bus and IEEE 69-bus test systems. The optimal configuration obtained by the proposed method
for 100% loading condition is similar to other techniques with an improvement in the power loss reduction
by 33.35% and 56.37% for 33-bus and 69-bus test systems, respectively. Furthermore, the proposed method
outperforms other methodologies in processing time, where the average time taken by proposed ANN technique
is 0.052 s for 33-bus system, while it is 0.054 s for 69-bus system. Moreover, the proposed technique achieved
higher accuracy than other compared ANN techniques. The comparative results verified the efficiency and high
accuracy of the proposed ANN technique.
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