
Turk J Elec Eng & Comp Sci
(2020) 28: 2448 – 2466
© TÜBİTAK
doi:10.3906/elk-1909-112

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Real-time anomaly detection and mitigation using streaming telemetry in SDN

Çağdaş KURT1,∗, O. Ayhan ERDEM2
1Department of Computer Engineering, Institute of Science and Technology, Gazi University, Ankara, Turkey

2Department of Computer Engineering, Faculty of Technology, Gazi University, Ankara, Turkey

Received: 20.09.2019 • Accepted/Published Online: 20.12.2019 • Final Version: 25.09.2020

Abstract: Measurement and monitoring are crucial for various network tasks such as traffic engineering, anomaly
detection, and intrusion prevention. The success of critical capabilities such as anomaly detection and prevention
depends on whether the utilized network measurement method is able to provide granular, near real-time, low-overhead
measurement data or not. In addition to the measurement method, the anomaly detection and mitigation algorithm is
also essential for recognizing normal and abnormal traffic patterns in such a huge amount of measured data with high
accuracy and low latency. Software-defined networking is an emerging concept to enable programmable and efficient
measurement functions for these kinds of challenging requirements. In this paper, we present a new, real-time, model-
driven anomaly detection and mitigation platform. Model-driven streaming telemetry and exponential smoothing are the
underlying approaches of the platform. A customized collector is proposed to gather streaming telemetry metrics, and
Holt’s prediction algorithm is improved to handle real-time streaming data and decrease false positives. The developed
system is tested on a campus network and the success rate of the system is calculated as 92%.

Key words: Streaming telemetry, anomaly detection, software-defined networks

1. Introduction
Network measurement is a critical matter in many aspects. For any organization that has operations in IT
infrastructure and networking, it is a significant job to ensure that the infrastructure is working properly
as it is designed for, that its performance is satisfactory, and that nothing happens outside of the network
administrator’s control. Measurement is also essential to collect data from the network to understand what is
happening at a certain time. Thus, network measurement is one of the key topics for real-time intrusion detection
and mitigation. Considering the need for provisioning, configuration, and monitoring functions, there are many
measurement techniques and anomaly detection methodologies that have been developed in the literature [1–7].

In [5], sFlow and OpenFlow were used to understand traffic patterns in polling and sampling. OF@TEIN
[6] was developed for network-wide traffic visibility. sFlow and OpenFlow protocols are used as complementary
solutions for collecting information to obtain an overview of a network. FlowTrApp [7] was presented to detect
and categorize distributed denial of service (DDoS) attacks by using an efficient conjunction of sFlow and
OpenFlow. All three studies [5–7] used statistical metric collection methods to collect flow statistics. Although
the studies provided relatively less overhead, if an attack does not reach high traffic rates or it occurs in a short
time slot, the sampling-based methods cannot sense the attack. This is the security deficiency of sampling
approaches like sFlow and NetFlow in granular attacks.
∗Correspondence: cagdaskurt@gmail.com

This work is licensed under a Creative Commons Attribution 4.0 International License.
2448

https://orcid.org/0000-0001-8492-0952
https://orcid.org/0000-0001-7761-1078


KURT and ERDEM/Turk J Elec Eng & Comp Sci

Fully OpenFlow-based studied are presented to overcome the problems of sampling-based methods [8–12].
OpenTM [8] is suggested as a pull-based traffic matrix estimation methodology. It gets statistics and other flow
data by using OpenFlow, which induces reduced overhead on hardware resources. PayLess [9] is proposed as
an SDN monitoring architecture. By adapting collection frequency between the highest and lowest thresholds,
the development aims to provide real-time measurement data with low overhead and high accuracy. In [10],
FlowSense was designed for zero measurement cost within its own passive packet capturing approach. Although
the proposed architecture brings zero overhead to the network, FlowSense cannot provide real-time monitoring
information. It works fine generally when the flow has a short duration.

There are some other studies in the literature that are developed especially for DDoS-based anomaly
detection and mitigation [13–20] and that are in the manner of streaming telemetry [21–25]. In [13], an effective
traffic measurement solution was proposed to detect network anomalies and malicious attacks. The study
focuses on identifying large traffic aggregations to provide high accuracy and low-overhead in measurement.
OpenWatch [14] is presented for detection anomaly in software-defined networking (SDN). The objective of the
authors was implementing an efficient and interactive application programming interface (API) for anomaly
detection platforms. The study focuses on keeping a balance between measurement overhead and anomaly
detection accuracy. However, the programmability capabilities are ignored.

The differences between various anomaly detection and mitigation approaches are accuracy, detection
speed, granularity, and scalability. Legacy anomaly detection and prevention systems are relatively successful
in considering the real-time, programmable, granular, and low-cost measurement requirements of the networks.
SDN is an emerging technology in providing a set of advantages to measure, monitor, and manage network
flows and hardware [26]. Streaming telemetry is one of the cutting-edge technologies that SDN brings to
the networking field as a new measurement concept. It offers structured measurement data to the consumer
platforms. The finer granularity and higher frequency of data enable better performance in monitoring and
therefore faster action in the case of anomalies. This paper mainly aims at faster anomaly detection and
mitigation with higher accuracy in both long-period and granular attacks, higher scalability through many
measurement metrics from the devices, more efficiency with less bandwidth usage, and low computational cost.

In this paper, a low-latency, real-time, programmable, granular, and highly accurate anomaly detection
and mitigation system is presented. The leverages of the proposed platform are a model-driven streaming
telemetry architecture and exponential smoothing prediction approach with distinctive improvements in both
areas. An open-source collector is customized to maximize the speed of the transactions in the model-driven
telemetry architecture. A new anomaly prediction algorithm empowered by adaptive error constant, service
check, and gradual activation functions is presented. The rest of the paper is structured as follows: Section 2
describes all aspects of our algorithms and software modules. In Section 3, evaluation and experimental results
are presented. Finally, Section 4 concludes the paper.

2. Proposed work
This study has three main modules as illustrated in Figure 1. The first module is responsible for the modeled
data collection. A model-driven streaming telemetry collector is developed by implementing the Google Protocol
Buffers (GPB)-Compact encoding mechanism to collect Yet Another Next Generation (YANG)-modeled, GPB-
encoded, and Google Remote Procedure Call (gRPC)-transported measurement data from the telemetry device.
The second module is responsible for the anomaly detection. Holt’s double exponential smoothing forecasting
algorithm [27] is enhanced with our developments that significantly affect the results. The third module is

2449



KURT and ERDEM/Turk J Elec Eng & Comp Sci

for anomaly mitigation after accurate detection. The Network Configuration (NETCONF) protocol is used to
deploy predefined prevention policies to the model-driven telemetry device. The rest of the section presents the
details and developments of the proposed system.

From the SDN perspective, Figure 2 defines the protocol stack of the planes. Our work relies on data plane
telemetry. In this type of telemetry, the quality, quantity, and timeliness streaming abilities of the measurement
data are critical for the success of the method. For this reason, model-driven streaming telemetry architecture
is applied in the data plane. Because of YANG and NETCONF support, gRPC is used instead of OpenFlow
as the southbound transport protocol. NETCONF is used to implement mitigation policies and Python is used
to code management plane software and related modules.

Figure 1. Modules of the proposed work.

Figure 2. Protocol stack of the work in SDN arch.

Today, all IT processes are getting digitalized and the amounts of data generated by these systems reach
very big sizes. One of the most common use cases is the collect-store-process [28] model to handle these massive
amounts of data. In this model, dozens of different types of data collected from hundreds of different sources
are accumulated by the collectors in a pipeline to be processed. Owing to the fact that we regard the anomaly
detection and mitigation as a big data problem because of the high volume data streamed in the model-driven
case, the collect-store-process model is combined with model-driven streaming telemetry to improve scalability
in this study.

2450



KURT and ERDEM/Turk J Elec Eng & Comp Sci

Our research shows that the success of real-time or near-real-time intrusion detection is directly associated
with the fact that the monitoring method is able to respond at the same speed and accuracy. Flow collector
type, flow data structure, pull or push mechanism, and sampling or event-based measurement methods are
quite determinant attributes for anomaly detection success. Model-driven telemetry allows network devices to
export very high dimensions and quantities of data out of the device in a formatted way that also provides high
scalability. There are many collectors in the field but almost none of them support model-driven telemetry. In
this paper, we present our developed and coded GPB-Compact encoding mechanism in an open-source collector
as the collection part of the collect-store-process model. The details of the study are given in Section 2.1.1.

The second part of the collect-store-process model is storing the streamed data. The collectors subscribe
to the metrics to take them out of the box in some seconds or even in some milliseconds in this approach.
Time series databases (TBSDs) are developed for such subsecond task purposes. In contrast to traditional
databases, TSDBs index the streamed data by time. This mechanism provides high-performance indexing,
low-latency storage, and well-known APIs for the units where real-time streaming data will be processed [29].
Due to having a Python client, which allows users to apply their own code quickly on the database, micrometric
measurement accuracy and in-RAM correlation features, InfluxDB is used as the TSDB in this paper.

The third part of the collect-store-process model is processing the streamed data stored in the TSDB.
The Python [30] programming language is used to code modules and monitor the dashboard in this study.

2.1. Telemetry module

Streaming telemetry with a push mechanism is a novel technology that presents continuous, uninterrupted,
scalable, and efficient communication by providing the operator a modeled data structure. This approach that
provides fine-granular and high-frequency data about network states and other measurement statistics plays an
important role in monitoring network events, performance, and security metrics. In order to increase the speed
of the systems, it is more important how data are modeled and parsed rather than how data are transported
[31]. Thus, we customized a collector to collect measurement data in an encoding mechanism that is commonly
used in the literature for many purposes but is new in anomaly detection and mitigation.

2.1.1. Customized collector
While one of the basic functions is migration from polling to pushing mechanism, another innovation that
provides scalability and flexibility in streaming telemetry are the data serialization/encoding abilities where
data are converted into the desired format at the collector. Pipeline Collector is an open-source data bus that
can carry model-based data generated by the IOS XR, which is the next-generation network operating system
developed by Cisco. Besides the many advantageous features of Pipeline, our research shows that it does not
support the GPB-Compact encoding protocol.

The data sizes of common encoding methods are given in Figure 3. As shown, GPB-Compact has
minimum overhead and minimum capacity cost as it defines all data in binary format. Furthermore, GPB-
Compact significantly affects the amount of streamed data, which directly influences the measurement cost. It
provides maximum bandwidth efficiency, which also offers high scalability and high speed in data collection,
which are crucial for the aims of this paper. On account of these reasons, the GPB-Compact encoding scheme
is implemented to decrease measurement costs and increase speed in Pipeline Collector.

In order to determine the best combination of encoding method and transport protocol, a script is coded
and performed. The algorithmic model of the script is given in Algorithm 1, and benchmark results are listed

2451



KURT and ERDEM/Turk J Elec Eng & Comp Sci

Figure 3. Capacity cost comparison of different encoding mechanisms.

in Table 1. The results show that the gRPC + GPB (Compact) combination minimizes the measurement cost
in terms of produced data amount, efficiency in bandwidth consumption, speed, and reliability. As stated in
their RFCs, TCP and gRPC are more resistant to packet loss than UDP. Thus, UDP’s reliability is defined as
“Low” while the others are “High”. The K-means [32] clustering algorithm is used to define datasets as “Low”,
“Medium”, and “High”.

Considering all the reasons given above, the gRPC + GPB (Compact) combination is chosen for this
study. The Go programming language is used for GPB (Compact) implementation.

Table 1. Performance comparison of the protocols.

Streaming
Encoding Data

Data size Bandwidth 1KB data arrival Speed Reliability
transport

model
for specific efficiency time to the (1/latency) (low/high)

protocol dataset (KB) (low/med./hi.) collector (ms) (low/med./hi.)
UDP GPB (Comp.) YANG 40 High 0.01895 High Low
UDP KVGPB YANG 260 Med 0.06942 Med Low
UDP JSON YANG 310 Low 0.79839 Low Low
TCP GPB (Comp.) YANG 60 High 0.57751 Med High
TCP KVGPB YANG 275 Med 0.85356 Low High
TCP JSON YANG 360 Low 0.91675 Low High
gRPC GPB (Comp.) YANG 45 High 0.02653 High High
gRPC KVGPB YANG 240 Med 0.03163 High High
gRPC JSON YANG 345 Low 0.06032 Med High

2.1.2. Modeled data
Although the YANG data modeling language offers a flexible, scalable, structural, and hierarchical framework
by pushing measurement data from devices to collectors, the data must be converted into the flat format
because time series databases can process data in a single layer. Thus, YANG-modeled measurement data in
the hierarchical design must be converted into a structural but flat format while passing from collector to the
InfluxDB. For this purpose, the measurement data are converted to JSON format as seen in Figure 4.

2.2. Anomaly detection module

Although there are many definitions related to anomalies in the literature [4–7], all expressions intersect in the
common description of “unexpected behavior in usual traffic patterns”. It is a critical issue to detect anomalies
at the immediate time of the start of an abnormal pattern. The main objective of anomaly detection systems is
the highest detection ratio of the correct anomaly in the shortest duration with the lowest count of false-positive
alarms [33].

2452



KURT and ERDEM/Turk J Elec Eng & Comp Sci

Algorithm 1 Performance comparison algorithm.
dataSet = MeasurementDataExample
dataModel = “YANG”
transport = “UDP”, “TCP”, “gRPC”
encoding = “GPB Compact”, “KVGPB”, “JSON”
dataSetForArrival = 1KBDataSetExample
Controller_IP = “172.16.16.16”
procedure DataSet(dataSet, dataModel, transport, encoding, Controller_IP)

size_transport← transport.size
size_encoding ← encoding.size
f()← f(transmitdataingiven, dataModel, transport, encoding, Controller_IP )
for i < size_transport do

for j < size_encoding do
stream← f(dataSet, dataModel, transport[i], encoding[j], Controller_IP )
measured.append← stream.size
return stream.size

end for
end for

end procedure
procedure DataArrivalTime(dataSetForArrival, dataModel, transport, encoding, Controller_IP)

size_transport← transport.size
size_encoding ← encoding.size
f()← f(transmitdataingiven, dataModel, transportl, encoding, Controller_IP )
for i = 1..size_transport do

for j = 1..size_encoding do
timer.start()
stream← f(dataSetForArrival, dataModel, transport[i], encoding[j], Controller_IP )
timer.stop()
measured2.append← timer
return timer

end for
end for

end procedure
procedure LabelData(measured)

n_clusters← 3
size_measured← measured.size
labels← [Low,Medium,High]
kmeans← KMeans(c_clusters).fit(measured)
for point in kmeans do

cluster_labels← define_label(kmeans, labels)
end for
return cluster_labels

end procedure
procedure BandwidthEfficiency(measured)

return LabelData(measured)
end procedure
procedure Speed(measured)

return LabelData(measured2)
end procedure

2453



KURT and ERDEM/Turk J Elec Eng & Comp Sci

Figure 4. Metric format conversion from YANG to JSON.

In this paper, telemetry data collected using a model-based streaming telemetry approach by the collector
and stored as time series are analyzed in real time by a customized anomaly detection algorithm coded in Python.
Holt’s prediction algorithm is enhanced for better detection by developing adaptive error constant, service level
control, and gradual activation mechanisms. Our experiments show the efficiency of the implementations in
reducing false positives and increasing accuracy.

2.2.1. Adaptive error constant

One of the most common methods for detecting network anomalies is taking a model of the normal traffic pattern
of the network, called the baseline, and capturing the deviations in this baseline curve. Holt’s exponential
smoothing algorithm is one of the widely used methods to forecast time series data. The method can produce
successful results because of its features whereby the data trend can change randomly in time, its performance
is correlated with big data, and it is applicable for both deterministic and stochastic series.

In the method, α is used for an error smoothing factor and β is used for trend estimation. Errors
are smoothed using α , and they are added into the model. The model performs as the cumulative sum of a
predetermined estimation of the previous period and a certain percentage of the previous period’s error. If α

= 0, the previous period’s error is not taken into account. If α approaches one, the error in the previous period
affects prediction more intensively. The success of the estimation method is linked to the determination of the
α coefficient that contains the lowest error. The α constant, which minimizes the error, is determined by trial
in the current Holt’s algorithm. Equations 1, 2, and 3 are used in Holt’s algorithm to calculate the forecast in
period t, the trend in period t, and the forecast in period t+1, respectively:

Ft = αYt−1 + (1− α)(Ft−1 − Tt−1), (1)

Tt = β(Ft− Ft−1) + (1− β)Tt−1, (2)

Ft+1 = Ft + Tt, (3)

where α is the smoothing constant for the level, β is for trend estimation, Yt is the real value, Ft is the
forecast value, and Tt is the trend value in the period t (0 ⩽ α ,β ⩽ 1).

Mean squared errors (MSE) and the mean of absolute deviation (MAD) are widely used techniques in
the literature to figure out errors. The α value where the MSE is the smallest will make the most successful

2454



KURT and ERDEM/Turk J Elec Eng & Comp Sci

prediction. A script is developed to determine the best α that has minimum MSE and MAD by changing the
α value from 0.1 to 0.9 for eight traffic patterns. Scapy1 is implemented to generate arbitrary traffic patterns,
and TCPreplay2 is used to replay captured packets. Generated traffic patterns are counter values of 5-min in
length observed every second from physical interfaces of the MDT device. They include different amounts of
network traffics such as HTTP, FTP, DNS, SMTP, UDP, and ICMP. The traffic matrix changes randomly to
simulate more realistic traffic patterns. After the generation process, one dataset looks like “74, 178, 350, 500,
850, 1100…” and another one looks like “300, 750, 1400, 1950, 2700, 3400…”

The script is given in algorithmic form in Algorithm 2, and the results are given in Table 2. The result
shows that the best α with minimum error varies according to the dataset. Considering that the best α value
varies according to the traffic pattern, the prerequired dynamic learning module is added to Holt’s exponential
smoothing algorithm to predict the best α with minimum error that specifies the traffic. Dynamically calculated
and adaptive to traffic patterns, the α constant is planned to be used after this learning process. In order to
test the development, predefined/static α and adaptively learned α are applied to test traffic that includes
50 different patterns. In the case where the predefined/static α value is used, the success rate of detecting
anomalies is 62%, and the success rate is 90% when the α value calculated adaptively in the prerequired
dynamic learning process is used. It is shown that the prerequired dynamic learning module and the adaptive
α constant have significant and positive effects on the success of the developed anomaly detection system.

For the β factor, values closer to zero provide more accurate results for the streaming telemetry datasets.
In other words, as the β constant approaches one, the prediction system becomes unstable. Hence, β is defined
as 0.1 in this paper.

Algorithm 2 Calculating MSE and MAD to find the best α value.
1: alpha_value← 0.1
2: minMSE,minMAD,minAlpha← 99999999
3: procedure Best_Alpha(dataSets)
4: for dataset in dataSets do
5: for count = 1..9 do
6: detect← HoltsDoubleExpSmoothing(dataset[0], alpha = alpha_val, beta = 0.1)
7: forecasted_series← detector.detect(dataset[1 :])
8: doubleseries← [t[0] for t in [forecasted_series] + [detector.forecasted]
9: difference← doubleseries[len(doubleseries)− 1])(dataset[len(dataset)− 1])

10: MSE[count][1]←MSE[count][1] + abs(difference)
11: MAD[count][1]←MAD[count][1] + difference ∗ difference
12: if MSE[count][1] < minMSE then {minMSE ←MSE[count][1];minAlpha← alpha_val}
13: end if
14: if MAD[count][1] < minMAD then {minMAD ←MAD[count][1];minAlpha← alpha_val}
15: end if
16: alpha_val← alpha_val + 0.1
17: end for
18: end for
19: return minAlpha
20: end procedure

1SCAPY (2017) Traffic Generator Tool [online]. Website https://github.com/secdev/scapy [accessed 10 Sep 2019].
2TCPreplay (2017). Traffic Replay Tool [online]. Website https://github.com/appneta/tcpreplay [accessed 10 Sep 2019].

2455



KURT and ERDEM/Turk J Elec Eng & Comp Sci

Table 2. Differentiation of the best α value according to the traffic pattern.

Data-
α MSE MAD Data-

α MSE MAD Data-
α MSE MAD Data-

α MSE MAD
set set set set

1

0.1 45.3120 2975.0832

2

0.1 202.5659 15955.8856

3

0.1 45.0739 789.8100

4

0.1 74.4233 3487.6433
0.2 19.1651 555.3393 0.2 100.7790 3953.9221 0.2 20.3865 182.3752 0.2 79.0051 3753.1321
0.3 18.4733 799.2909 0.3 101.5580 6036.4096 0.3 27.5024 458.2566 0.3 74.3822 3475.3415
0.4 24.3542 1392.4823 0.4 110.0622 6224.3835 0.4 26.4567 334.5268 0.4 73.9062 3242.3256
0.5 25.8403 1211.2345 0.5 103.8075 5048.0674 0.5 28.3525 315.2422 0.5 81.2341 3974.3352
0.6 25.9234 1028.2523 0.6 99.8884 4201.4497 0.6 20.3952 199.0525 0.6 84.2457 4214.6752
0.7 26.5809 970.1804 0.7 101.6909 3870.1592 0.7 20.0122 172.2567 0.7 88.9421 4674.3241
0.8 27.4140 975.3446 0.8 105.4525 3995.0424 0.8 36.2562 203.4525 0.8 78.2345 3845.3421
0.9 28.0389 993.7642 0.9 109.2221 4845.9893 0.9 43.3425 662.5266 0.9 77.1345 3746.6352

5

0.1 192.6747 1496.1279

6

0.1 373.9816 59658.2524

7

0.1 174.2456 18956.2562

8

0.1 134.2323 9247.4324
0.2 93.9395 3551.2964 0.2 166.4965 12069.5626 0.2 173.5625 18600.6221 0.2 156.2445 9845.3453
0.3 93.9732 5310.1592 0.3 216.9784 29549.5256 0.3 198.4221 23295.6621 0.3 170.1312 11345.256
0.4 110.952 6652.4525 0.4 192.9656 21171.0425 0.4 203.4497 26733.5662 0.4 140.4215 9566.5245
0.5 102.0282 5028.0104 0.5 169.2158 13954.0525 0.5 207.4623 28906.2552 0.5 132.4555 9042.4273
0.6 94.5284 3955.5256 0.6 169.9624 14902.4525 0.6 194.1134 25245.5266 0.6 141.4251 9765.3415
0.7 93.6293 5503.6363 0.7 176.2318 11800.5798 0.7 180.5267 21456.5221 0.7 144.5764 10421.5256
0.8 95.6293 3406.4903 0.8 183.5894 12058.8682 0.8 179.4198 21300.4986 0.8 160.4963 10567.352
0.9 98.0608 3629.6546 0.9 189.5431 12272.0193 0.9 175.2455 20675.2345 0.9 154.5623 9703.1045

2.2.2. Service check module
In this study, it is aimed to decrease false-positive errors by checking whether the service is up or not. In cases
where there is no attack for the hosts and the servers in the same local area network (LAN), the average latency
of the communication is measured under 30.00 ms in many trials. It is observed that the packet loss ratio
increases when there is an attack and service interruption. After checking the service quality at the moment of
an attack, the final action is decided by analyzing whether the service is down or not. Algorithm 3 shows the
pseudocode of the service check script, and Figure 5 shows the output of the service quality control code. It
is seen from the experimental results that the service downtime increases exponentially if TCP packet count is
increased and the false-positive alarms increase if TCP packet count is decreased. In order not to extend the
service interruption and also to have the fewest false positives, the probing period is defined as six TCP packets.
The packets are sent to the server’s serving port that is 80 because of the HTTP in our scenario. The service
success rate and the latency times are calculated as minimum, maximum, and average. The calculated success
rate is utilized to decide the final action in the next module.

It is one of the most commonly faced challenges for anomaly detection and mitigation systems to generate
alerts inaccurately. Anomaly detection algorithms can detect legitimate traffic as an intrusion. By developing
a service check module, false-positive errors are mostly eliminated. The details are given in Section 3.2.

Algorithm 3 Service check algorithm.
1: procedure ServiceCheck(serverIP, Port)
2: for counter = 1..6 do
3: SendrandomlygeneratedTCPpackettotheserverIP:Port
4: Calculate latency, cumulative_latency, packet_loss

if (packet_loss <> 0)then fail = fail + 1 else success = success+ 1 end if
5: end for
6: success_rate = (success/count) ∗ 100
7: return success_rate,min(cumulative_latency),max(cumulative_latency),avg(cumulative_latency)
8: end procedure

2456



KURT and ERDEM/Turk J Elec Eng & Comp Sci

Figure 5. Service quality control output.

2.2.3. Gradual activation
In this module, the network administrator enters the mitigation level (stated as mitig_level in the experiments)
to specify the service cut-off level at which the anomaly prevention policies will be applied. This module provides
significant flexibility and reliability for the networks that have various characteristics such as inconsistent,
unstable, or bursty.

There are four mitigation levels as seen in Figure 6. The service success rate thresholds are defined
empirically according to user experience under different levels of attacks. If the service success rate is 90%
and above, it is decided that there is no attack, the alarm is produced inaccurately, the users are not affected,
and no prevention policy will be applied. If the service success rate is between 70% and 90%, it is defined as
low service interruption with only a few users experiencing connectivity issues to the service, while 50%–70%
service success rate indicates high service interruptions with large numbers of users having connectivity issues.
If the success rate is smaller than 50%, it means that more than half of the traffic drops and the service is no
longer working. According to the degree of sensitivity determined by the network administrator, the anomaly
prevention module is activated or not. Algorithm 4 shows the gradual activation code in the algorithmic model.

Algorithm 4 Gradual activation algorithm.
1: procedure GradualActivation(success_rate, mitig_level)
2: if success_rate >= 90 and mitig_level == 1 then Attack_Prevention()
3: else if success_rate >= 70 and success_rate < 90 and mitig_level <= 2 then

Attack_Prevention()
4: else if success_rate >= 50 and success_rate < 70 and mitig_level <= 3 then

Attack_Prevention()
5: else if success_rate < 50 and mitig_level <= 4 then Attack_Prevention()
6: end if
7: end procedure

For instance, if the success rate is calculated as 90% and the mitigation level is defined as two or higher,
the mitigation policy will not be applied. In another case, if the success rate is calculated as 50% and the
mitigation level is defined as three or lower, the mitigation policy will be applied. The module offers useful
predefinitions for admins to decrease false positives and increase adaptability to various traffic behaviors in
advance.

2.2.4. Parsing attackers’ IP addresses
After an anomaly is detected, attackers’ IP addresses are parsed from the flow. The implemented parser sniffs
the traffic and calculates the traffic matrix considering the volumes. The IP addresses that generate abnormally
higher volume traffic to the server than the value predicted by the prediction algorithm are defined as attackers.
The K-means algorithm is used to cluster normal and abnormal IP addresses. The output of the parser is given
Figure 7.

2457



KURT and ERDEM/Turk J Elec Eng & Comp Sci

Figure 6. Gradual activation admin panel. Figure 7. Defining attacker IP addresses by K-means
clustering.

2.3. Anomaly mitigation module

If the protection module is activated as a result of gradual activation, the quarantine configuration for each
attacker’s IP address obtained from the flow is applied automatically without any manual trigger. The
quarantine configuration can be of two types: i) reduction of the bandwidth of the attackers’ IP addresses
to a value that does not interfere with the network service availability anymore or ii) isolation of the attackers’
IP addresses completely from the network. The quarantine configuration type is selected by the network admin.
NETCONF is implemented for policy enforcement on network devices. Algorithm 5 presents the details of the
quarantine algorithms for the proposed system.

3. Evaluation and test
In this module, we demonstrate how our real-time anomaly detection and mitigation platform with streaming
telemetry concept works. We also present feature comparison covering the well-known works in the literature.

3.1. Experimental results

The volumetric attacks aim to make the service inaccessible by consuming the bandwidth and the other resources
of the victim server by sending very high amounts of traffic. In our algorithm, high-volume anomalies such as
UDP, TCP, or ICMP flood attacks can be detected in real time and with high accuracy. The test platform is
deployed in a real networking infrastructure. All users, servers, and services are located in the Gazi University
campus network that includes more than 1000 clients and dozens of virtual LANs (VLANs). Implemented
logical and physical topologies are given in Figure 8 and Figure 9.

In the topology, IOS XRv 6.1.2 is used as the telemetry-supported network device. A Windows 2012
R2 server is deployed to provide DNS and HTTP services to the network. The collector, TSDB, process units,
and SDN controller are located on one single virtual machine to minimize intersystem packet delay. Ubuntu
16.04.04 is used for this system and referred to as the “platform”. InfluxDB 1.6.4 is used for the TSDB, while
Python 2.7.12 is used for the coding platform. GNS3 is used to combine virtual machines in the topology.

2458



KURT and ERDEM/Turk J Elec Eng & Comp Sci

Algorithm 5 Quarantine algorithms.
1: procedure Mitigation(AttackerIPs, serverIP, mitigation_policy)
2: Initiate YANG Models, RPC session for the MDT Device, NETCONF

if (mitigation_policy == 1) configfile = policy1.conf else configfile = policy2.conf end if
3: Connect Device using NETCONF
4: Send configfile using NETCONF
5: end procedure
6: policy1.conf
7: ipv4 access-list Prevention_Policy1
8: for x in AttackerIPs
9: permit ipv4 host “+x+” host “+serverIP”

10: class-map attackers
11: match access-group Prevention_Policy1
12: policy-map BandwidthReductionPolicy
13: class attackers
14: police 1000 1000 conform-action transmit exceed-action drop
15: interface g0/0/0/0
16: service-policy output BandwidthReductionPolicy
17: policy2.conf
18: ipv4 access-list Prevention_Policy2
19: for x in AttackerIPs
20: deny ipv4 host “+ x +” host “+ serverIP”
21: permit ipv4 any any
22: interface g0/0/0/0
23: ipv4 access-group Prevention_Policy2 ingress

First of all, the gradual activation level is inserted by the network admin, and the adaptive α constant is
calculated automatically from the streaming traffic in the learning mode. Then the network traffic is continuously
monitored in protection mode. The anomaly detection module activates itself and starts the probing phase from
the moment an anomaly is detected in the traffic. In order not to extend the service interruption and also to
have the lowest rate of false positives, the probing period is defined as 5 s. When it is determined that the
attack is continuing during this period, the next action proceeds according to the service availability threshold
value and the selection of the gradual activation level. The service availability check query mostly takes 3-5 s.
Finally, the mitigation mechanism is triggered and the attack is mitigated. In repeated tests, it is determined
that the system recognizes the anomaly in 1 s and prevents it within an average of 8–10 s after the attack
started.

Figure 10 and Figure 11 show the outputs of the developed real-time network monitoring dashboard before
and during the attack. The blue line indicates the measurement data received from the device via streaming
telemetry, and the orange line indicates the next data predicted by the prediction algorithm. In Figure 10, as
there is a wide variety of traffic in the network, streamed and predicted data lines increase. The prediction
algorithm defines the next value of the interface counter by its own baseline algorithm. In all new streamed data,
the calculation repeats in real time. If there is an outlier or fluctuation in the streamed data as experienced
between 12 and 15 s, the algorithm adapts itself dynamically unless there is an attack. In Figure 11, a real
attack is applied to the HTTP/DNS server (IP address: 10.10.10.10) from a real PC (IP address: 10.2.0.10).
In this case, the deviation between measured and estimated data increases. The algorithm tries to predict the
next data by using streamed data. Thus, the predicted data grow correlated to the streamed data. After 5 s in

2459



KURT and ERDEM/Turk J Elec Eng & Comp Sci

Figure 8. Logical topology.

Figure 9. Physical topology.

the probing stage, if the streamed data volume is still higher than predicted, the developed platform perceives
that there is an attack. The system reaches the next stage, where the service check and gradual activation
modules become active, respectively. Approximately 10 s later, the anomaly mitigation module becomes active
and the attack is mitigated by isolating the attackers’ IP addresses from the network. Immediately after the
mitigation policy is activated and attack is mitigated, normal users’ communication with the server returns to
normal within some milliseconds and the clients can reach the server.

2460



KURT and ERDEM/Turk J Elec Eng & Comp Sci

Figure 10. Dashboard output - legitimate traffic.

Figure 11. Dashboard output - abnormal traffic.

3.2. Performance tests
In order to evaluate our proposed platform, we implemented 100 different network patterns in the real Gazi
University campus network. The Scapy tool is used to generate patterns in addition to campus network traffic.
The patterns are 5-min packet counter values that are compositions of various network protocols such as HTTP,
FTP, DNS, TCP-SYN, TCP-ACK, UDP, and ICMP. In some patterns, the protocol weights are intentionally
altered during the 5-min period to create a wide range and more realistic traffic pattern space.

Seventy-five of 100 patterns include volumetric flood attacks on the given network protocols above and
25 of 100 patterns are legal, daily routine traffics of the campus. The Tcpreplay tool is used to capture
generated patterns to use them in other performance tests. Some of the streaming telemetry datasets used in
the experiments are listed in Table 3.

2461



KURT and ERDEM/Turk J Elec Eng & Comp Sci

Table 3. Dataset examples used in the tests.

Dataset1 92, 510, 980, 1320, 1900, 2310, 2740, 3178, 3512…
Dataset2 1400, 2950, 4250, 6750, 7800, 9300, 10620, 11480…
Dataset3 6500, 16000, 23000, 32500, 51000, 60000, 67000…

Sixty-seven of the 75 attack traffics are detected correctly. All 25 legitimate patterns are marked as
normal. Equations 4 and 5 are used to calculate the detection rate (DR) and false positive rate (FPR).
Equations 6, 7, 8, and 9 are used to calculate accuracy, precision, recall, and F1 scores, respectively. Table 4
presents the accuracy performance results of the proposed platform.

DR =
TP

TP + FN
, (4)

FPR =
FP

TN + FP
, (5)

Accuracy =
TP + TN

TP + FP + FN + TN
, (6)

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
, (9)

where TPs (true positives) are attack patterns predicted as attacks, FNs (false negatives) are attack
patterns predicted as legitimate, FPs (false positives) are legitimate patterns predicted as attacks, and TNs
(true negatives) are legitimate patterns predicted as legitimate.

As seen from Table 4, the platform has no mitigation action for legitimate traffic. By developing a false-
positive robustness module, the developed system provides high accuracy in false-positive performance. The
overall success rate of the normal and abnormal traffic detection of the developed system is 92%.

Table 4. Accuracy calculation results of the proposed platform.

Datasets Detection rate (%) False positive rate (%) Accuracy Precision Recall F1
Abnormal datasets 89 11 - - - -
Legitimate datasets 100 0 - - - -
Total 92 8 0.92 1 0.89 0.94

The datasets are classified into attack types and they are implemented to measure the real-time anomaly
detection ability of the proposed platform. In every attack type, 10 datasets are selected and implemented.
The average detection times are calculated and presented in Table 5. As is seen, all attack types are detected
in under 1 s. UDP-based attacks are detected faster than TCP attacks.

In order to evaluate the granular attack detection ability, short-period attacks are implemented. The
attack periods are gradually decreased. The proposed system can easily detect the attacks that last more than

2462



KURT and ERDEM/Turk J Elec Eng & Comp Sci

0.7 s. The attacks lasting between 0.7 and 0.4 s are not detected stably. The system can not sense attacks
lasting less than 0.4 s. The results are given in Table 6.

Table 5. Attack detection time tests.

Attack type Avg. detection
time (s)

TCP-SYN flood 0.948
TCP-ACK flood 0.989
UDP flood 0.772
HTTP flood 0.874
ICMP flood 0.831

Table 6. Granular attack detection.

Attack period (s) Detection
61–300 Successful
31–60 Successful
30–1 Successful
1 Successful
1–0.70 Successful
0.69–0.40 Unstable
0.39–0.00 Failed

In order to evaluate the CPU overhead of the proposed platform, the CPU resources of the controller
when anomaly detection and mitigation Python codes are run are observed before and during the process. After
the interface metrics of the device in the data plane are started to be streamed every second starting from the
40th second, only 2% CPU fluctuations are observed. When the utilized bandwidth is incremented gradually,
the CPU load is not affected by the bandwidth (BW) as seen in Figure 12. As the streaming telemetry concept
promises, the system performance is not affected by how much data flows through it. In this way, the concept
provides highly scalable measurement infrastructures for multitenant environments or big networks with many
devices. Large amounts of metrics from many devices can be monitored and fetched without any performance
issues. In this way, the proposed work provides high scalability.

Figure 12. CPU overhead under diff. BWs.

3.3. Comparison of results

The feature comparison table of the common anomaly detection and mitigation systems in the literature is
given in Table 7. The same datasets and experimental setups are used to calculate results. The studies are
investigated with three main approaches.

In the first approach, it is seen that the attack detection accuracy rates are low as expected because
of the fact that sampling-based mechanisms are relatively strong to sense granular attacks. The studies also

2463



KURT and ERDEM/Turk J Elec Eng & Comp Sci

Table 7. Comparison of the approaches.

Sampling and OF-based appr. Only OpenFlow-based appr. Streaming telemetry-based appr.
Features Giotis[5] FlowTr.[7] OpenW.[14] LightW.[16] Mehdi et al.[17] Cheng[22] DenStr.[24] Proposed Work

False positive
ratio 39.3% #NA #NA 0.59% 30% 22% 0.4% 11%

Robustness to
false positives

No No No No No No Yes Yes

Attack detection
period

30 s 48 s 60 s 26 s 23 s 12 s 16 s 1 s

Attack mitiga-
tion period

30 s 10 s 120 s No mitigation #NA 20 s 30 s 10 s

Granular attack
detect. (attacks
less than 30 s)

No Yes No Yes No Yes Yes Yes

CPU Overhead 25% 19% 20% #NA 17.54% #NA #NA 2%
Accuracy 69% 63% #NA 98.61% 90% 79% 99% 92%

do not have any protection mechanisms for false-positive alarms. In addition, they have higher overheads and
computational costs than the other two approaches.

The studies in the second approach use only OpenFlow to get measurement metrics out of the devices.
Thus, they have higher accuracy than sampling-based studies. However, OpenFlow-only studies are mainly
used for anomaly detection in a passive manner. The anomaly mitigation abilities are missing. Attack detection
periods are lower than those for sampling-based techniques, but they are still higher when compared to streaming
telemetry-based approaches.

In the literature, streaming telemetry-based approaches are getting more popular because of their scala-
bility, integration ability, and programmability features. As they consider all metrics flows through the network,
granular attack detection is easily possible with this approach. Because of its modeled data structure and metric
subscription architecture, it is highly flexible and scalable to integrate third-party solutions and gain visibility of
network behaviors in a very short time. When streaming telemetry-based approaches are analyzed, our proposed
platform provides lower false-positive protection with real-time anomaly detection and mitigation abilities. By
using the model-driven streaming telemetry architecture with our own improvements, the proposed platform
provides near real-time protection. It can detect granular and also short-term attacks in 1 s and mitigate
them in 10 s. By improving Holt’s algorithm, it provides augmented accuracy, flexible adaptation, and high
customization for the traffic and network administrator’s needs.

4. Conclusion
In this paper, a real-time anomaly detection and mitigation system is proposed on SDN architecture. The
developed system combines model-driven streaming telemetry and an enhanced version of Holt’s double ex-
ponential smoothing forecasting algorithm. The YANG data model, GPB (Compact) encoding method, and
gRPC transport model are implemented in the telemetry module, and Holt’s forecasting algorithm is enhanced
with adaptive error constant, service check module, and gradual activation features for the anomaly detection
module. NETCONF is used to enforce predefined prevention policies on the model-driven telemetry device for
the anomaly mitigation module. The experiments are conducted on the Gazi University campus network. The
results indicate that our platform detects volumetric anomalies in real time and with high accuracy.

In this study, only volumetric attacks are considered. In further studies, nonvolumetric but application-
specific and sophisticated attacks can also be investigated due to emerging and changing attack patterns. On the

2464



KURT and ERDEM/Turk J Elec Eng & Comp Sci

other hand, as well as the SDN architecture that provides a wide view of network and programmability abilities
by omitting the data plane from the control plane, the centralized network functions are more vulnerable to
attacks than before. Thus, other kinds of approaches like artificial intelligence and machine learning algorithms
might be used to improve protection capability and accuracy.

References

[1] Bawany NZ, Shamsi JA, Salah K. DDoS attack detection and mitigation using SDN: methods, practices, and solutions.
Arabian Journal for Science and Engineering 2017; 42 (2): 1-17.

[2] Yu M, Jose L, Miao R. Software Defined Traffic Measurement with OpenSketch. Berkeley, CA, USA: Networked Systems
Design and Implementation; 2013. pp. 29-42.

[3] Giotis K, Androulidakis G, Maglaris V. Leveraging SDN for efficient anomaly detection and mitigation on legacy networks. In:
3rd European Workshop on Software Defined Networks; Budapest, Hungary; 2014. pp. 85-90. doi: 10.1109/EWSDN.2014.24

[4] Wang P, Chao KM, Lin HC, Lin WH, Lo CC. An efficient flow control approach for SDN-based network threat detection and
migration using support vector machine. In: IEEE 13th International Conference on e-Business Engineering; Macau; 2016.
pp. 56-63. doi: 10.1109/ICEBE.2016.020

[5] Giotis K, Argyropoulos C, Androulidakis G, Kalogeras D, Maglaris V. Combining OpenFlow and sFlow for an effective and
scalable anomaly detection and mitigation mechanism on SDN environments. Computer Networks 2014; 62 (1): 122-136. doi:
10.1016/j.bjp.2013.10.014

[6] Rehman SU, Song WC, Kang M. Network-wide traffic visibility in OF@TEIN SDN testbed using sFlow. In: 16th Asia-Pacific
Network Operations and Management Symposium; Hsinchu, Taiwan; 2014. pp. 1-6. doi: 10.1109/APNOMS.2014.6996541

[7] Buragohain C, Medhi N. FlowTrApp: An SDN based architecture for DDoS attack detection and mitigation in data centers.
In: 3rd International Conference on Signal Processing and Integrated Networks; Noida, India; 2016. pp. 519-524. doi:
10.1109/SPIN.2016.7566750

[8] Jose L, Yu M, Rexford J. Online measurement of large traffic aggregates on commodity switches. In: Proceedings of the
USENIX HotICE; Boston, MA, USA; 2011. pp. 13-14.

[9] Chowdhury S, Bari M, Ahmed R, Boutaba R. PayLess: A low cost network monitoring framework for Software Defined
Networks. In: Proceedings of the 14th IEEE/IFIP NOMS; Krakow, Poland; 2014. pp. 1–9. doi: 10.1109/NOMS.2014.6838227

[10] Yu C, Lumezanu C, Zhang Y, Singh V, Jiang G et al. FlowSense: Monitoring network utilization with zero measurement
cost. In: Proceedings of the 14th IPAM; Toronto, Canada; 2013. pp. 31–41. doi: 10.1007/978-3-642-36516-4_4

[11] Wang MH, Wu SY, Yen LH, Tseng CC. PathMon: Path-specific traffic monitoring in OpenFlow-enabled networks.
In: 8th International Conference on Ubiquitous and Future Networks; Vienna, Austria; 2016. pp. 775-780. doi:
10.1109/ICUFN.2016.7537143

[12] Ballard JR, Rae I, Akella A. Extensible and scalable network monitoring using OpenSAFE. In: Proceedings of the 2010
Internet Network Management Conference on Research on Enterprise Networking; Berkeley, CA, USA; 2010. p. 8.

[13] Khan F, Hosein N, Ghiasi S, Chuah CN, Sharma P. Streaming solutions for fine-grained network traffic measurements and
analysis. IEEE/ACM Transactions on Networking 2014; 22 (2): 377-390. doi: 10.1109/TNET.2013.2263228

[14] Zhang Y. An adaptive flow counting method for anomaly detection in SDN. In: Proceedings of the 9th ACM CoNEXT;
California, USA; 2013. pp. 25–30. doi: 10.1145/2535372.2535411

[15] Shirali S, Ganjali Y. Efficient implementation of security applications in OpenFlow controller with FleXam. In: IEEE 21st
Annual Symposium on High-Performance Interconnects; San Jose, CA, USA; 2013. pp. 49-54. doi: 10.1109/HOTI.2013.17

[16] Braga R, Mota R, Passito A. Lightweight DDoS flooding attack detection using NOX/OpenFlow. In: Proceedings of the 35th
Conference on Local Computers; Denver, CO, USA; 2010. pp. 408-415. doi: 10.1109/LCN.2010.5735752

[17] Mehdi SA, Khalid J, Khayam SA. Revisiting traffic anomaly detection using software defined networking. In: Proceedings of
the 14th International Conference on Recent Advances in Intrusion Detection; Menlo Park, CA, USA; 2011. pp. 161-180.

[18] He D, Chan S, Ni X, Guizani M. Software-defined-networking-enabled traffic anomaly detection and mitigation. IEEE Internet
of Things Journal 2017; 4 (6): 1890-1898. doi: 10.1109/JIOT.2017.2694702

2465



KURT and ERDEM/Turk J Elec Eng & Comp Sci

[19] Vasilomanolakis E, Karuppayah S, Mühlhauser M, Fischer M. Taxonomy and survey of collaborative intrusion detection.
ACM Computing Surveys 2015; 47 (4): 1-33. doi: 10.1145/2716260

[20] Khairi MH, Sharifah HS, Abdul NM, Abdullah AS, Hassan MK. A review of anomaly detection techniques and distributed
denial of service (DDoS) on software defined network (SDN). Engineering, Technology & Applied Science Research 2018; 8
(2): 2724-2730.

[21] Miller Z, Deitrick W, Hu W. Anomalous network packet detection using data stream mining. Journal of Information Security
2017; 2 (4): 158–168.

[22] Cheng J, Xu R, Tang X, Sheng VS, Cai C. An abnormal network flow feature sequence prediction approach for DDoS attacks
detection in big data environment. Computers, Materials and Continua 2018; 55 (1): 95-119.

[23] Nataf E, Festor O. End-to-end YANG-based configuration management. In: IEEE Network Operations and Management
Symposium; Osaka, Japan; 2010. pp. 674-684. doi: 10.1109/NOMS.2010.5488381

[24] Putina A, Rossi D, Bifet A, Barth S, Pletcher D et al. Telemetry-based stream-learning of BGP anomalies. In: Proceedings of
the 2018 Workshop on Big Data Analytics and Machine Learning for Data Communication Networks; New York, NY, USA;
2018. pp. 15-20. doi: 10.1145/3229607.3229611

[25] Manso P, Moura J, Serrão C. SDN-based intrusion detection system for early detection and mitigation of DDoS attacks.
Information 2019; 10 (3): 106. doi: 10.3390/info10030106

[26] McKeown N, Anderson T, Balakrishnan H, Parulkar G, Petrson L et al. OpenFlow: Enabling innovation in campus networks.
ACM SIGCOMM Computer Communication 2008; 38 (2): 69-74. doi: 10.1145/1355734.1355746

[27] Holt CC. Forecasting seasonals and trends by exponentially weighted moving averages. International Journal of Forecasting
2004; 20 (1): 5-10. doi: 10.1016/j.ijforecast.2003.09.015

[28] Eliseev D, Farkhadov M. Modern methods to collect, store, and process big data in large-scale systems. In: 5th Interna-
tional Conference on Control, Instrumentation, and Automation; Shiraz, Iran; 2017. pp. 179-182. doi: 10.1109/ICCIAu-
tom.2017.8258674

[29] Miller Z, Dickinson B, Deitrick W, Hu W, Wang AH. Twitter spammer detection using data stream clustering. Information
Sciences 2014; 260: 64–73. doi: 10.1016/j.ins.2013.11.016

[30] Dobesova Z. Programming language Python for data processing. In: International Conference on Electrical and Control
Engineering; Yichang, China; 2011. pp. 4866-4869. doi: 10.1109/ICECENG.2011.6057428

[31] Garima S, Rani S. Review on time series databases and recent research trends in time series mining. In: 5th International
Conference - Confluence, The Next Generation Information Technology Summit; Noida, India; 2014. pp. 109-115. doi:
10.1109/CONFLUENCE.2014.6949290

[32] MacQueen J. Some methods for classification and analysis of multivariate observations. In: Proceedings of the Berkeley
Symposium on Mathematical Statistics and Probability; Berkeley, CA, USA; 1967. pp. 281-297.

[33] Ahmed M, Mahmood N, Hu J. A survey of network anomaly detection techniques. Journal of Network and Computer
Applications 2016; 60: 19–31. doi: 10.1016/j.jnca.2015.11.016

2466


	Introduction
	Proposed work
	Telemetry module
	Customized collector
	Modeled data

	Anomaly detection module
	Adaptive error constant
	Service check module
	Gradual activation
	Parsing attackers' IP addresses

	Anomaly mitigation module

	Evaluation and test
	Experimental results
	Performance tests
	Comparison of results

	Conclusion

