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Abstract: Human immunodeficiency virus (HIV) has devastating effects on human society. Researchers have proposed

many models for the decay of CD4
+ T cells, the growth of infected cells, and viral load. In this paper, four first-order

nonlinear coupled differential equations have been considered. Four variables are CD4
+ T cells, which are healthy, less

infected cells, more infected cells capable of producing virus, and finally the viral load. Apart from the two drug therapies,
protease inhibitor (PI) and reverse transcriptase inhibitor (RTI), which have already been considered in the literature,
we have proposed antiretroviral drug (ARD) that works as sliding mode controller. We have used numerical methods
to study the effect of RTI, PI, and ARD on healthy cells, infected cells, and the viral load. We have expressed our
solutions in terms of log sigmoid functions and used memetic computing for the solution which is a hybridization of GA,
a global optimizer, and sequential quadratic programming, a local optimizer. ARD, as a sliding mode controller, does
help to improve the situation of the HIV patient, especially, in further reducing the viral load and also decreasing the
infected cells which have the potential to produce virus. This helps in giving relief to the patient and an increase in life
expectancy.
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1. Introduction
Due to the catastrophic effect of HIV on human society, it has motivated the researchers to formulate accurate
and representative models for this disease. Usually, the models for HIV in the literature are represented by
three or four first-order nonlinear coupled differential equations. They investigate the internal dynamics of the
infected cells, the target cells, viral production, viral clearance, and the impact of antiretroviral drugs in the
treatment [1–4].

Being a retrovirus, HIV primarily targets the CD4
+ T cells, which are an integral part of the human

immune system. It diminishes the CD4
+ T cells and thus lowers the resistance of the immune system. [1, 5, 6].

During the infection process, HIV inserts its genetic material RNA into the host cell by binding itself to the

CD4
+ T cell. As a consequence, viral RNA is reversely transcribed into DNA and is integrated into the genome

of the host cell through integrase. On the activation of the cell, the production of viral RNA starts. The viral
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particles come out of the infected cells and start infecting other CD4
+ T cells [7]. This process of life cycle for

the virus continues and finally breaks down the human immune system.
It is known that even after three decades of the first emergence of HIV, there is no absolute cure; therefore,

different methods for its treatment are suggested. The recommended methods include both preventive and
treatment measures. The preventive methods are used to reduce the number of new HIV infections, whereas
treatment measures are used with the objective of increasing life expectancy of the patients and reducing
the rate of HIV transmission in the already infected persons. Various clinical trials have been carried out to
develop different treatment measures and investigate their risks and gains in order to determine the optimal
treatment. As different host–pathogen interaction mechanisms are not known, the questions like the best
treatment combination, optimal dosage cannot be answered yet [8].

Drugs like protease inhibitors (PIs) and reverse transcriptase (RTIs) are used to inhibit enzymes that
are used in the replication cycle. The role of the entry inhibitors is to prevent a virus from entering into a cell.
The main responsibility of enzyme integrase is to integrate the HIV DNA to human DNA, while the integrase
inhibitors are used to suspend the activity of enzyme integrase. The virus multiplication and the enzyme action
are directly blocked by reverse transcriptase inhibitors (RTIs). Production of infectious virus particles from
infected cells is prevented through protease inhibitors (PIs). Since the virus replication rate is extremely high,
effective therapies for HIV integrate concurrent administration of two or more antiretroviral drugs. [9–12].

Most of the mathematical models use optimal control theory to assist in treatment strategies for infected
patients. Optimal control theory finds optimal ways of controlling a dynamical system [13]. Specifically, it helps
to decide the optimal dosage for different types of available drugs. Optimal control problems are studied to
determine the effects of these drugs. For instance, Srivastava et al. [14] considered an initial infection model
with reverse transcriptase inhibitors (RTIs). The study claimed that an infected cell reverts to susceptibility
by using RTIs. Hattaf et al. [15] analyzed two optimal treatments of HIV infection model. The study aimed at
measuring the efficiency of RTIs and PIs. Kamboj et al. [16] proposed a model and also analyzed the effect of
joint drug therapy, i.e. RTI and PI, on different parameters involved in the dynamics of T cells.

In this paper, we have proposed an antiretroviral drug in the form of a sliding mode controller. We have
used a novel sliding surface and proved that it takes a finite time to reach this surface. This directly affects
and reduces the viral load of the HIV patient. The decrease in viral load does help to increase the expectancy
of life for HIV patients. For numerical solution, we have used log sigmoid functions which are entire domain
basis functions. We have used a genetic algorithm to find the coefficients as a global optimizer, while sequential
quadratic programming has been used as a local optimizer. The use of hybrid algorithms, known as memetic
computing, is a recent phenomenon that has become popular in the last decade [17–22].

The rest of the paper is organized as follows. Section 2 gives an HIV model without drug therapy.
Section 3 gives HIV model with drug therapy. Section 4 gives the proposed antiretroviral drug as a sliding
mode controller, Section 5 gives the heuristic method for solving the equations. Section 6 gives the results and
discussion while Section 7 concludes and gives future directions.

2. HIV model without drug therapy

HIV model without RTI and PI drug therapy is given below by four coupled nonlinear differential equations.

dT

dt
= p− µT + rT (1− T + I1 + I2

Tmax
)− kV T + cI1 (1)
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dI1
dt

= kV T − µ1I1 − δ1I1 − cI1 (2)

dI2
dt

= δ1I1 − δ2I2 (3)

dV

dt
= Nδ2I2 − µvV (4)

T represents the number of CD4
+ T cells present in a blood unit. I1 represents the infected T cells prior

to reverse transcription (pre-RT class) and are not yet capable of producing virus. I2 denotes the number of
infected T cells for which the reverse transcript has been accomplished and has the potential to produce a virus.
It is called the post-RT class. V represents the count of virus particles.

Here in Eq. (1), p represents the rate of supply of healthy CD4
+ T cells from precursors in thymus

while µ is the natural death rate. The T cells can also be created by the reproduction of existing T cells;
therefore, the term rT (1− T+I1+I2

Tmax
) is more realistic to represent the proliferation of T cells. The proliferation

is density-dependent and decreases as T cell count increases and stops when it is equal to Tmax . A portion
of the infected class for which the transcription process is not completed may revert to uninfected class and
is represented with c . kV T represents the infection of healthy T cells. µ1 in Eq. (2) is the rate of death of
infected cells, while δ1 represents the rate of transition from pre-RT infected class to productively infected class
(post-RT). δ2 in Eq. (3), represents the death rate of actively infected cells and takes into account the bursting
of infected T cells, while N is the average amount of viral particles produced by an infected cell. µv in Eq. (4)
represents the viral clearance rate. The variables and parameters of the model are summarized in Table.

Table . Parameters used in the model.
Term Description
T Number of CD4

+T cells measured in a unit of blood
p Rate of supply of healthy T cells from precursors in thymus
µ Average per capita death rate of T cells
r Average growth rate in the absence of population limitation
I1 Density of infected T cells before reverse transcription takes place (pre-RT class) not yet capable of

producing virus
I2 Post-RT class represents the density of infected T cells in which reverse transcript is completed and

are capable of producing virus
c Reverting rate of infected T cells
µ1 Death rate of infected T class
k Interaction infection rate of T cells
δ1 Rate at which pre-RT class cells (I1) leave and join the productively infected class (post-RT class)
δ2 Death rate of actively infected cells which includes the bursting of infected cells
δ2I2 Production of viral particles at an average rate of N per infected cell of I2 class
µ Clearance rate of virus
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3. HIV model with drug therapy

Earlier models, proposed by Perelson [23, 24], were used and extended by various researchers to understand the
various aspects of HIV in order to devise and analyze the effects of drug therapy interventions [3–5, 25, 26].

Most of the existing RTI-based drug therapy models [12, 27, 28] consider the effect of a drug only on the
interaction-infection rate. The role of RTI is to inhibit the reverse transcription only after the virus has entered
the host cell but it does not directly affect the interaction-infection rate. It is important to note that the effect
of reverse transcription takes place before an infected T-cell starts producing virus particles [16]. Using these
facts, infected cells are divided into two different classes, namely, pre-RT class and post-RT class [29]. The
infected cells for which the reverse transcription has not been finished are represented by pre-RT class whereas
the infected cells that have completed the reverse transcription process and are capable of producing new virus
are represented by the post-RT class. It is also studied in [14] that a fraction of the infected cells may revert to
uninfected cells. Also, some of the infected cells in the pre-RT class will revert to uninfected class because RTI
may stop the reverse transcription. Since no drug is effective in total, despite drug therapy, only a fraction of
infected cells in the pre-RT class will revert to uninfected cells and the remaining cells in this class will progress
to complete the reverse transcription and will be producing virus by becoming productively infected. Various
models based on pre-RT class and post-RT class are proposed and the effect of RTI [14] and drug inhibitor
called PI [30] is analyzed on the dynamics of HIV. Kamboj et al. [16] proposed a model and analyzed the
effect of combined drug therapy, RTI plus PI on the growth of T cells, and decrease of viral load of different
parameters involved in the dynamics of T cells.

Let there be an RTI drug with efficiency ηR . Without RTI drug δ1I1 cells were leaving the pre-RT class
and going to post-RT class. With RTI drug having efficacy ηR, δ1I1 cells is divided into two classes. ηRδ1I1

cells from pre-RT class join back to healthy T cells, while (1− ηR)δ1I1 join the post-RT class. kV T represents
the loss of healthy cells in Eq. (5) and it is also a source term for infected cells in Eq. (6). PI, with efficacy
ηP ∈ (0, 1) , causes post-RT cells to produce noninfectious virions with rate ηPN . Thus, (1− ηP )N is the rate
of production of infectious virions which PI has not been able to inhibit. The noninfectious virions ηPN do not
play any role in the dynamics of T, I1, I2 and V .

Thus, HIV model with RTI + PI drug therapy is modified as follows:

dT

dt
= p− µT + rT (1− T + I1 + I2

Tmax
)− kV T + cI1 + ηRδ1I1 (5)

dI1
dt

= kV T − µ1I1 − δ1I1 − cI1 (6)

dI2
dt

= (1− ηR)δ1I1 − δ2I2 (7)

dV

dt
= (1− ηP )Nδ2I2 − µvV (8)

Remodified HIV model with RTI + PI drug therapy, along with the antiretroviral drug (ARD) that
directly affects the viral load, has the same first three equations (5-7). However, the last equation is modified
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as follows:
dV

dt
= (1− ηP )Nδ2I2 − µvV + u(t) (9)

where u(t) represents the antiretroviral drug.

4. Proposed antiretroviral drug as sliding mode controller

We consider the two critical equations for I2 and V in Eq. (7) and Eq. (9) and use sliding surface σ = mI2+V

where m > 0 is a design parameter. Using Eq. (7) and Eq. (9) we get

σ̇ = mİ2 + V̇ = (1− ηR)mδ1I1 + ((1− ηP )N −m)δ2I2 − µV V + u(t) (10)

The controller u(t) is designed below in Eq. (11):

u(t) = −ϱsgn(σ)− ((1− ηP )N −m)δ2I2 + µvV (11)

Substitute Eq. (11) in Eq. (10) we get:

σ̇ = (1− ηR)mδ1I1 − ϱsgn(σ) (12)

Multiply Eq. (12) by σ and use the fact σsgn(σ) = |σ| we get:

σσ̇ = −ϱ|σ|+ σ(1− ηR)mδ1I1 ≤ −ϱ|σ|+ |σ|(1− ηR)mδ1I1

σσ̇ ≤ −|σ|(ϱ− (1− ηR)mδ1I1)

Let
ϱ = (1− ηR)mδ1Tmax + η where η > 0 (13)

σσ̇ ≤ −|σ|
[
(1− ηR)mδ1(Tmax − I1) + η

]
≤ −η|σ| since Tmax > I1

Hence, we have achieved the reachability condition. The time to reach the sliding surface σ = 0 is given
as

tr ≤ |σ(0)|
η

Substituting Eqs. (11) and (13) in Eq. (9) we get:

V̇ = (1− ηP )Nδ2I2 − µV V − ((1− ηP )N −m)δ2I2 + µV V −
[
(1− ηR)mδ1Tmax + η

]
sgn(σ)

= mδ2I2 − ((1− ηR)mδ1Tmax + η)sgn(σ)
(14)

Since m ≥ 0, I2 ≥ 0, V ≥ 0 ; hence, σ ≥ 0

If σ > 0 , sgn(σ) = 1 and Eq. (14) becomes:

V̇ = mδ2I2 − ((1− ηR)mδ1Tmax + η) (15)

where m and η are to be adjusted to minimize the error.
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This sudden dosage, which is like a step function, can be changed to the following case:

sgn(σ) =
σ

|σ|
∼=

σ√
σ2 + ϵ

This continuous approximation of the sliding mode controller is more practical for the dosage. Just as in
a system it avoids high-frequency chattering phenomenon, this will equivalently avoid or minimize any reaction
in the human body. Moreover, with practical dosage, this ideal sliding is not there. The continuous control
action drives the state to a neighborhood of the switching surface. In the literature, it is called pseudosliding.

Hence, if ϵ is very small, we shall hit the ideal surface σ = 0 at the cost of a sudden dosage to the
patient. If ϵ is slightly large, we shall be giving dosage slowly to the patient but at the cost of staying away
from ideal surface σ = 0 for a long time. Hence, an optimal ϵ needs to be chosen.

We shall look at the effect of this new u(t) on virus rate V and uninfected cells T by solving these
equations numerically.

5. Heuristic method for solving the equations

In order to solve this set of coupled nonlinear differential equations, we express T , I1 , I2 , and V as a linear
combination of log sigmoid functions given as

Φ(wi, θi, t) =
1

1 + exp−(wit+θi)
(16)

T =

n∑
i=1

aiΦ(w
a
i , θ

a
i , t) (17)

Similarly

I1 =

n∑
i=1

biΦ(w
b
i , θ

b
i , t) (18)

I2 =

n∑
i=1

diΦ(w
d
i , θ

d
i , t) (19)

V =

n∑
i=1

eiΦ(w
e
i , θ

e
i , t) (20)

T (0) = 300 , I1(0) = 10 , I2(0) = 10 , V (0) = 10

The error term for Eq. (5) is given as follows:

ET =
1

11

10∑
j=0

[dT
dt

(tj)− p+ µT (tj)− rT (tj)(1−
T (tj) + I1(tj) + I2(tj)

Tmax
) + kV (tj)T (t)j)− cI1(tj)− ηRδ1I1(tj)

]2
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=
1

11

10∑
j=0

[ n∑
i=1

aiΦ̇(w
a
i , θ

a
i , tj)− p+ µ

n∑
i=1

aiΦ(w
a
i , θ

a
i , tj)− r

n∑
i=1

aiΦ(w
a
i , θ

a
i , tj)

(1−
∑n

i=1 aiΦ(w
a
i , θ

a
i , tj) +

∑n
i=1 biΦ(w

b
i , θ

b
i , tj) +

∑n
i=1 diΦ(w

d
i , θ

d
i , tj)

Tmax
)

+k

n∑
i=1

eiΦ(w
e
i , θ

e
i , tj)(

n∑
i=1

aiΦ(w
a
i , θ

a
i , tj))− c

n∑
i=1

biΦ(w
b
i , θ

b
i , tj)− ηRδ1

n∑
i=1

biΦ(w
b
i , θ

b
i , tj)

]2
(21)

Similarly, the error term for Eq. (6), (7) and (8) is given as follows:

EI1 =
1

11

10∑
j=0

[ n∑
i=1

biΦ̇(w
b
i , θ

b
i , tj)− k

n∑
i=1

eiΦ(w
e
i , θ

e
i , tj)

n∑
i=1

aiΦ(w
a
i , θ

a
i , tj) + (µ1 + δ1 + c)

n∑
i=1

biΦ(w
b
i , θ

b
i , tj)

]2
(22)

EI2 =
1

11

10∑
j=0

[ n∑
i=1

diΦ̇(w
d
i , θ

d
i , tj)− (1− ηR)δ1

n∑
i=1

biΦ(w
b
i , θ

b
i , tj) + δ2

n∑
i=1

diΦ(w
d
i , θ

d
i , tj)

]2 (23)

EV =
1

11

10∑
j=0

[ n∑
i=1

eiΦ̇(w
e
i , θ

e
i , tj)− (1− ηP )Nδ2

n∑
i=1

diΦ(w
d
i , θ

d
i , tj) + µV

n∑
i=1

eiΦ(w
e
i , θ

e
i , tj)

]2 (24)

Four initial conditions given below need to be satisfied as well. Their error terms are given as follows;

T (0) = 300 ⇒ E T
IC = (

n∑
i=1

aiΦ(w
a
i , θ

a
i , t = 0)− 300)2 (25)

I1(0) = 10 ⇒ E I1
IC = (

n∑
i=1

biΦ(w
b
i , θ

b
i , t = 0)− 10)2 (26)

I2(0) = 10 ⇒ E I2
IC = (

n∑
i=1

diΦ(w
d
i , θ

d
i , t = 0)− 10)2 (27)

V (0) = 10 ⇒ E V
IC = (

n∑
i=1

eiΦ(w
e
i , θ

e
i , t = 0)− 10)2 (28)

Net error to be minimized is E , given as follows:

E = ET + EI1 + EI2 + EV + E T
IC + E I1

IC + E I2
IC + E V

IC (29)

For sliding mode controller case, where the antiretroviral drug is given to directly finish the infectious
virus, only the last equation has changed. The new equation is given as Eq. (14) and its error given by Eq.
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(24) is modified as Eq. (30):

EV SMC =
1

11

10∑
j=0

[ n∑
i=1

eiΦ̇(w
e
i , θ

e
i , tj)−mδ2

n∑
i=1

diΦ(w
d
i , θ

d
i , tj) +m(1− ηR)δ1Tmax + η

]2 (30)

In order to minimize the error, we have to adjust the coefficients {ai, bi, di, ei}ni=1 . We use the genetic
algorithm (GA) as a powerful heuristic technique along with local optimizer, sequential quadratic programming
(SQP). Pseudosteps of GA and SQP are given below and the flowchart of the proposed solution is given in
Figure 1.

Step 1: Initialization of GAs: The chromosomes in the initial population or generation are initialized by
randomly generating real numbers between 2 and −2 . Each chromosome consists of 120 genes, owing to 120
parameters to be optimized. The population consists of 100 chromosomes.

Step 2: Fitness evaluation: The fitness of each chromosome is evaluated using Eq. (29) above.
Step 3: Crossover and mutation: The chromosomes with higher fitness values are selected for crossover

to generate a new chromosome for the next generation.
Step 4: Selection method for new population: Find the fitness of new children. For the new population,

take fifty percent of the old population by choosing the best among them. Choose the next fifty percent of the
new children by choosing the best among them in fitness.

Step 5: Termination criterion: The algorithm is stopped either depending on certain error value or the
number of iterations.

Step 6: Initialization of SQP: After the termination of GA, the best-fit chromosome is handed over to
SQP which is one of the most successful methods for the numerical solution of nonlinear optimization problems.
Although it is a local search technique, its convergence is considerably fast.

Step 7: Fitness evaluation: Fitness evaluation is performed by using Eq. (29) as done in GA.
Step 8: Termination: If the proposed fitness is achieved, iteration stops else when the specified number

of iterations is achieved, the algorithm stops.

6. Numerical simulation and discussion
Our main interest is to check the effects of drug therapies. Firstly, we would like to see the effect of the
reverse transcriptase inhibitors (RTIs) that directly stops the enzyme action and multiplication of the virus
and secondly, the effect of the protease inhibitors (PIs) that stop infected cells from producing infectious virus.
Thirdly, we would like to see the effect of the antiretroviral drug (ARD) acting directly on HIV-1 viral load.
This is our main contribution as we have fed in u(t) in Eq. (9) for virus V and used sliding mode control
and sliding surface as a linear combination of I and V. The constants that are adjusted, determined the dosage
concentration.

The values of parameters have been taken from [14, 16, 23]. Initial conditions are T (0) = 300mm−3 ,
I1(0) = 10mm−3 , I2(0) = 10mm−3 , V (0) = 10mm−3 p = 10mm−3/day , µ = 0.01/day , k = 0.000024mm−3/day ,
c = 0.05/day , δ1 = 0.4/day , δ2 = 0.26/day , µ1 = 0.015/day , µV = 2.4/day , r = 0.03/day , Tmax =

1500mm−3 , N = 1000 .
There are two main cases. The first case is when u(t) , as an antiretroviral drug, has not been used.

Hence, ARD = 0 . The second case is when u(t) as sliding mode controller has been applied, i.e. ARD ̸= 0 .
Each case has further subcases.
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Design of optimization variables GA based global optimization SQP based local optimization

Initialize chromosomes for the 

coefficients of equations

Calculate fitness of chromosomes

New population of chromosomes, crossover, 

mutation and selection

Best chromosomes by GA

Initialize weights with best 

chromosomes of GA

Calculate fitness

Update weights

Final weights using GA-SQP

Stopping criteria met? Stopping criteria met?

Representation of mathematical model of HIV 

infection using system of ordinary differential 

equations

Modeling the equations of healthy cells, infected 

cells and virus population

Formulation of fitness function for the equations 

based on mean squared error

Set of optimized variables
Approximate solution of HIV 

model

No

Yes

No

Yes

Figure 1. Flowchart of the proposed optimization algorithm using GA as global while SQP as local optimizer.

Case 1: ARD = 0
Subcase A: RTI = 0 , PI = 0

In this case ηR = ηP = 0 . ARD = 0 implies, u(t) as a sliding mode controller, has not been used.
Subcase B: RTI ̸= 0 , PI = ARD = 0

Both the subcases A and B have been shown for T cells and viral load V in Figures 2a and 2b, respectively.
One can observe that T cell population increases as ηR goes up from 0 to 0.9 . Viral load as expected keeps
decreasing in Figure 2b as ηR increases from 0 to 0.9 .

In Figures 3a and 3b, we find the T cell population and viral load respectively when only PI drug therapy
is applied, i.e. ηP efficacy is increased from 0.5 to 0.9 . The T cell population improves with ηP . Similarly,
the viral load decreases as ηP increases from 0.5 to 0.9 . One should observe carefully that RTI prevents the
pre-RT class to become a post-RT class and brings it back to healthy T cells. On the contrary, PI tries to
prevent post-RT cells from producing viral load. Hence, RTI is more effective in increasing T cells while PI is
more effective in decreasing viral load.

Subcase D: RTI ̸= 0 , PI ̸= 0

In this, we vary drug efficacies, ηR and ηP , from 0.5 to 0.9.
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As can be observed in Figure 4, ηR = 0.5 , the T cells are increasing in the same respective manner as
PI efficacy, ηP , increases from 0.5 to 0.9 . Similarly, the viral load decreases with an increase in ηP . Similarly
in Figures 5 and 6, better behavior is observed as ηR is increased from 0.7 to 0.9 along with the PI therapy,
ηP increase from 0.5 to 0.9 .
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Figure 2. Growth of T cells and decay of viral load for subcases A and B where PI = 0 and RTI has different values
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Figure 3. Growth of T cells and decay of viral load for subcase C where RTI = 0 and PI has different values
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Figure 4. Growth of T cells and decay of viral load for the subcase D where RTI = 0.5 and PI has different values.
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Figure 5. Growth of T cells and decay of viral load for the subcase D where RTI = 0.7 and PI has different values.
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Figure 6. Growth of T cells and decay of viral load for the subcase D where RTI = 0.9 and PI has different values.

Case 2: ARD ̸= 0

Subcase A: RTI = PI = 0

Subcase B: RTI ̸= 0 , PI = 0

Comparing Figure 2 (ηR ̸= 0 , ηP = 0 and ARD ̸= 0) with Figure 7 (ηR ̸= 0 , ηP = 0 and ARD = 0),
the viral load in Figure 7b is settling at lower levels compared with that of Figure 2b. We see its effect on viral
load only, which in fact decreases. It does not increase T cell population.

Subcase C: RTI = 0 , PI ̸= 0

Figure 8 shows the case where ηP varies from 0.5 to 0.9 and ηR = 0 . In this case, situation in T cells
improves compared to the same case shown in Figure 3 (ηR = 0 , ηP = varying and ARD = 0). Similarly, viral
load is decreased for the case ARD ̸= 0 shown in Figure 8b compared to the equivalent case with ARD = 0

given in Figure 3b.
Subcase D: RTI ̸= 0 , PI ̸= 0

In this case, where ηR = 0.5 while ηP varies from 0.5 to 0.9 shown in Figure 9, the ARD does not play
a significant role, especially in T cells growth. However, the virus population does decrease compared to the
same case when ARD = 0 which is given in Figure 4b.

Similarly in Figures 10 and 11, we do see improvement in T cells growth and comparative decrements in
viral load if we compare these with Figures 5 and 6, respectively.

The performance of the sliding mode controller to increase healthy cells and to decrease viral load has
proved to be better as compared to the cases where ARD, as sliding mode controller is not used. Beside better
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Figure 7. Growth of T cells and decay of viral load for the subcases A and B where PI = 0 and RTI has different values.
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Figure 8. Growth of T cells and decay of viral load for the subcase C where RTI = 0 and PI has different values.
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Figure 9. Growth of T cells and decay of viral load for the subcase D where RTI = 0.5 and PI has different values.
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results, the mean squared error (MSE) is also very small. It dies down to 10−5 in 100 iterations as shown in
Figure 12.
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Figure 10. Growth of T cells and decay of viral load for the subcase D where RTI = 0.7 and PI has different values.
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Figure 11. Growth of T cells and decay of viral load for the subcase D where RTI = 0.9 and PI has different values
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Figure 12. The convergence behavior of mean squared error.

7. Conclusion and future directions
The model used for HIV already exists in the literature. It is a classical epidemiological model considered in
[16]. However, a modification has been made in the viral load equation. Apart from the protease inhibitor and
reverse transcriptase inhibitor, we have introduced antiretroviral therapy as a sliding mode controller. It reduces
the infected cells that have the potential to produce virus. Thus, viral load decreases on the HIV patient which
results in increasing the life expectancy. In our further work, we shall make a study for finding the optimal
dosage of the multitherapies in which time shall be taken as an important parameter. Moreover, we shall try
to use a combination of a sliding mode controller and a synergetic controller to achieve better results.
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