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Abstract: In this paper, a compact microstrip Wilkinson power divider is designed and proposed using rectangular-
shaped resonator cells. The presented resonator cells are used instead of quarter-wave length branches in the traditional
structure to reduce the circuit size, increase the bandwidth, and eliminate the unwanted harmonics. The designed
resonator behavior is studied analytically and the locations of transmission zeros are investigated using transfer function
and LC equivalent circuit methods. The proposed power divider (PD) operates at 2 GHz frequency and suppresses the 2nd
to 14th unwanted harmonics. The proposed PD achieves approximately 50% size reduction and 40% fractional bandwidth
(FBW). The abilities of desirable size reduction and harmonic suppression along with simple structure and wide FBW
make the proposed divider a good choice for the modern communication systems, such as multistage power amplifier
applications. The proposed divider is implemented and measured. The measurement results verify the simulation
responses.
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1. Introduction
The first Wilkinson power divider (WPD) was introduced in 1960 by J. Wilkinson [1]. The Wilkinson divider is
a three-port passive element, which divides input power with an equal or unequal division ratio [2]. Emerging
RF/microwave communications has led to the design and production of high frequency devices with features,
such as high performance, compact size, low cost, and light weight [3]. Compact size and harmonic canceling
are known as advantages in PD design. In terms of size reduction and harmonic suppression, comprehensive
studies have been done in recent years [4–22]. In [3], a compact microstrip Bagley divider is introduced, using
dual transmission lines technique. A small divider with a wideband response and unequal planar design is
presented in [4], which includes nonuniform microstrip lines and two asymmetric coupled transmission line
sections. Applying an electromagnetic bandgap (EBG) in power divider structure can provide a compact PD
with harmonic suppression [5]. Using microstrip resonators instead of 70.7 Ω transmission lines in conventional
divider structure leads to a decrease in the size and eliminates the harmonics in [6–11]. In [12] open stubs are
applied to eliminate 2nd and 3rd harmonics in Gysel divider design, but size reduction and harmonic rejection
in this work are not superior. In [13], two varactor capacitors are used in WPD to make tunable transmission-
line transformers and in [14] capacitors are used to create composite transmission lines for size reduction aims.
Unfortunately using lumped reactive components are not desirable in high-frequency microwave design.
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Two 4-way dividers are presented in [15, 16]. The divider in [15] has a bandpass filtering response,
which utilizes frequency-dependent coupling structures. The presented divider in [16] suffers from large size and
existence of the unwanted harmonics in frequency response. In [17], a simple PD with two tunable transmission
zeros is presented using cascaded inhomogeneous coupled-lines. In [18], stub loaded lines are applied instead of
two traditional λ/4 branches, to decrease the circuit size and achieve better harmonic elimination in the GSM
frequency band. In [19], a microstrip Wilkinson PD with harmonic suppression is designed, using resonator
cells. In this reported work, lowpass filters are used instead of λ/4 transmission lines. In some dividers lumped
reactive components are used to decrease the circuit area and eliminate unwanted harmonics [20], but this
method is undesirable in the fabrication process [21].

Also, a neuro-based approach to designing a Wilkinson power divider is published in [22], which is
composed of two lowpass filters instead of two quarter wavelength line in conventional circuit. Applying
microstrip resonators is useful in designing good performance RF circuits as in [23–26]. Another Wilkinson
power divider with harmonic suppression and bandpass filtering response is suggested in [27], which used open
and short stubs and even-odd mode analyses, but this design has a large circuit size.

In this paper, a WPD using resonators is presented. The applied main resonator is formed by rectangular-
shaped and modified T-shaped resonators. The main resonator is replaced instead of quarter-wavelength
branches in conventional circuit. The main resonator can reduce the circuit area and reject the higher order
of harmonics. The proposed PD can correctly work from 1.60 GHz to 2.40 GHz, which shows 40% fractional
bandwidth. Also, the proposed PD has an acceptable level of output ports isolation better than 22 dB. In
order to investigate the proposed Wilkinson PD behavior, its LC equivalent model is calculated and its transfer
function is extracted.

2. Wilkinson power divider design

Figure 1 shows the traditional WPD including two λ/4 transmission lines and a 2Z0 lumped resistor [2]. In the
proposed divider, two λ/4 transmission lines are replaced by two main resonator cells for harmonic suppression
and size reduction. The design procedure is explained in the next section.
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Figure 1. Conventional Wilkinson PD.
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3. Main resonator design

The proposed main resonator cell is depicted in Figure 2. The main resonator is made of a modified T-shaped
resonator and four rectangular-shaped resonators.
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Figure 2. Proposed main resonator.

Figure 3a depicts the modified T-shaped resonator. To analyze the modified T-shaped resonator, its LC
equivalent model is obtained. The proposed LC equivalent model of the modified T-shaped resonator is given in
Figure 3b. The electromagnetic (EM) simulation results of the modified T-shaped resonator and LC equivalent
model simulation, which are in good agreement, are illustrated in Figure 3c.

The modified T-shaped resonator has a transmission zero (Tz1) at 4.20 GHz, which is located near the
second harmonic as depicted in Figure 3c. The created transmission zero has 47 dB attenuation level, which
can suppress the second harmonic in the stopband.

The dimensions of the modified T-shaped resonator are as follows: d1 = 7.7, d2 = 2.4, d3 = 6.3, W1 =
0.4, W2 = 0.7, W3 = 0.1, W4 = 0.2, S1 = 0.7 (all in millimeter). The obtained values for the LC equivalent
model of the presented modified T-shaped resonator are listed in Table 1.

Table 1. Computed values for LC equivalent model of the modified T-shaped resonator (Units: C, pF; L, nH).

Parameters L’1 L2 L3 L4
Calculated 4.23 2.50 2.09 1.05
Parameters C’1 C2 C3 C4
Calculated 0.19 0.15 0.11 0.05

Inductance and capacitance values are computed using open-ended lines and high impedance lines
equations. Formulas for these lossless lines are given in (1) and (2) [2].

LS =
1

w
× ZS × sin

(
2πl

λg

)
(1)

CS =
1

w
× 1

ZS
× tan

(
πl

λg

)
(2)

where ZS is the characteristic impedance of the line and λg denotes the guided wavelength. Locations
of the transmission zeros are obtained using transfer function (TF). The transmission zeros are computed using
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Figure 3. Proposed modified T-shaped resonator, (a) layout, (b) proposed LC equivalent model, (c) EM simulation
and circuit simulation results.

the numerator of the TF. The TF is extracted from Figure 3b, which is written in (3).

Vo

Vi
|T−Shaped =

r ×X

(r + L1S)(r + L1S + 2X)
(3)

where ”r = 50Ω”, ”X” and ”A” parameters are defined in (4) and (5), respectively as follows:

X =
A+ 2L2S +AC2L2S

2

2 +AC1S +AC2S + 2C1L2S2 +AC1C2L2S3
(4)

A =
1 + C3L3S

2 + C4L3S
2 + C4L4S

2 + C3C4L3L4S
4

s(C3 + C4 + C3C4L4S2)
(5)
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If the numerator of the TF is equated to zero, the location of the transmission zero (TZ) will be defined,
as demonstrated in (6). According to this equation, the location of the TZ can be controlled by changing the
values of the inductances and capacitances. In the other words, by changing the values of the inductances and
capacitances, the parameters of P1, P2, P3, b, and c will be changed; therefore, the TZ location can be justified.

Tz1 =
1

2π

√
|(− b

3c
)− (P1) + (P2) + (P3)| (6)

where ”P1” ,”P2” , and ”P3” are defined in (7), (8), and (9) as follows:

P1 =
3
√
2a

(−2b3 + 9abc− 27c2 +
√
4(−b2 + 3ac)3 + (−2b3 + 9abc− 27c2)2)

1
3

(7)

P2 =
3
√
2b2

3c(−2b3 + 9abc− 27c2 +
√

4(−b2 + 3ac)3 + (−2b3 + 9abc− 27c2)2)
1
3

(8)

P3 =
(−2b3 + 9abc− 27c2 +

√
4(−b2 + 3ac)3 + (−2b3 + 9abc− 27c2)2)

1
3

3
√
32c

(9)

where ”a” , ”b” , and ”c” parameters can be obtained in (10), (11), and (12) respectively as bellow:

a = (C4(2L2 + L3 + L4) + C3(2L2 + L3) + C2L2) (10)

b = C3C4L4(2L2 + L3) + C2L2(C3L3 + C4(L3 + L4)) (11)

c = C2L2C3C4L3L4 (12)

The proposed modified T-shaped resonator did not have a good suppression level in the stopband. In
order to have an acceptable harmonic suppression, more transmission zeros should be added in the stopband.
Thus, four rectangular-shaped resonator cells are added to the modified T-shaped resonator. The rectangular
shaped resonators help to create better stopband. The LC equivalent model for the main resonator, which is
depicted in Figure 2, and its frequency response are illustrated in Figures 4a and 4b, respectively.

As seen in Figure 4b, the proposed structure can create two transmission zeros at 3.58 GHz and
4.75 GHz. These transmission zeros can suppress more harmonics in WPD design. The presented main res-
onator dimensions are as follows: d4 = 2.4, d5 = 1.4, d6 = 0.5, d7 = 1.2, d8 = 0.9, d9 = 0.1, d10 = 2.8, d11
= 0.11, W3 = 0.1, W5 = 2.1, W6 = 0.1, W7 = 0.1, W8 = 2.6, S3 = 0.1, S4 = 0.3, S5 = 0.2, S6 = 0.2, S7 =
0.2 (all in millimeter). The computed values for the LC equivalent model of the proposed main resonator are
listed in Table 2.

The TF of the designed main resonator is computed in (13).

Vo

Vi
|mainresonator =

(CF 2r)

((L1S(r + L10S) + F (r + (L1 + L10)S))(L1S(r + L10S) + 2C(F + r + L10S) + F (r + (L1 + L10)S)))

(13)
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Figure 4. Proposed main resonator, a) LC equivalent model, b). EM and LC simulation results.

Table 2. Computed values for LC equivalent model of proposed main resonator (Units: C, pF; L, nH).

Parameters L1 L2 L3 L4 L5 L6 L7
Calculated 2.76 2.5 2.09 1.05 2.18 0.53 0.06
Parameters L8 L9 L10 C1 C2 C3 C4
Calculated 1.13 0.59 1.35 0.145 0.08 0.11 0.12
Parameters C5 C6 C7 C8 C9 C10
Calculated 0.08 0.22 0.24 0.11 0.0.07 0.04

where ”B” and ”C” parameters are defined in (14) , (15) and ”r = 50Ω”:

B =
(1 + C3L3S

2 + C4L3S
2 + C4L4S

2 + C3C4L3L4S
4)

(C2S + 2C3S) + 2C4S + C2C3L3S3 + C2C4L3S3 + C2C4L4S3 + 2C3C4L4S3 + C2C3C4L3S5
(14)

C =
B + L2S

(1 +BC1S + C1L2S2)
(15)

where ”D”, ”E”, and ”F” parameters are defined in (16), (17), and (18):

D =
(1 + C6L5S

2 + C7L5S
2 + C7L6S

2 + C6C7L5L6S
4)

(C5S + C6S + C7S + C5C6L5S3 + C5C7L5S3 + C5C7L6S3 + C6C7L6S3 + C5C6C7L5L6S5
(16)

E =
(1 + C8L8S

2 + C9L8S
2 + C9L9S

2 + C8C9L5L8L9S
4)

(C8S + C9S + C10S + C8C10L8S3 + C9C10L8S3 + C9C10L9S3 + C8C9L9S3 + C8C9C10L8L9S5
(17)

F =
(D × E)

(D + E)
(18)
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4. Proposed power divider design
Figure 5 illustrates the topology of the designed Wilkinson PD. Two main resonator cells are used instead of
the two long λ/4 transmission lines in the conventional PD. Therefore, the circuit size is extremely reduced
and the harmonic suppression are achieved. The dimensions of the designed Wilkinson PD are as follows: d12
= 2.44, d13 = 3.50, d14 = 5.70, W9 = 1.1, W10 = 1.1, W11 = 1.1, W12 = 0.2, S8 = 0.3, S9 = 0.9, S10 = 0.2
(all in millimeter).
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Figure 5. Topology of proposed Wilkinson PD.

5. Simulation and experimental results

The RT/Duorid 5880 substrate, with a relative dielectric constant equal to 2.2 and 31 mil thickness is considered
for the simulation and implementation of the proposed PD. Figure 6 shows the implemented PD photograph
with occupied size of 0.137 λg  × 0.076 λg , where λg is calculated at 2 GHz.

Figure 6. Photograph of the proposed PD.

The simulated and measured results are obtained by electromagnetic simulator advanced design system
(ADS) software and an Agilent network analyzer N5230A, respectively. The simulation results of the proposed
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WPD are shown in Figure 7. The comparison between the simulation and measurement results of the proposed
WPD are shown in Figure 8. The measurement responses are in good agreement with the simulation results.
The fabricated PD can suppress the 2nd to 14th spurious harmonics by 20, 18, 13, 26, 15, 21, 26, 18, 16, 19,
13, 17, and 16 (all in dB) respectively. The proposed PD has a fractional bandwidth of about 40%, which is
calculated based on [22–25].
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Figure 7. Measurement and simulation results of scattering parameters (a) S11 and S21 (b) S22 and S32 (c) in-band
frequency response.

The proposed WPD is compared with related studies in Table 3. According to this table, the proposed
WPD shows good performances in terms of size reduction, harmonic suppression, and fractional bandwidth
parameters. Also, higher order of harmonic suppression (up to 14) is achieved in the proposed divider compared
to the listed dividers in Table 3. Moreover, in terms of size reduction and fractional bandwidth (FBW), the
proposed divider has an acceptable performance.
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Figure 8. Measured and simulated scattering parameters of proposed WPD (a) S11 and S21 (b) S22 and S23.

Table 3. Comparison between the proposed Wilkinson PD design and other published studies.

Ref. FBW Relative Harmonic suppression (dB)
(%) area (%) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

Conv. 30 100 - - - - - - - - - - - - -
[5] - 61 26 25 - - - - - - - - - - -
[6] - 34 13 35 - - - - - - - - - - -
[7] - 70.7 - 53 25 26 20 - - - - - - - -
[8] 37.7 22.7 17 28 47 57 35 20 - - - - - - -
[15] - 50 32 28 - - - - - - - - - - -
[19] 44 43.5 21 20 23 24 32 - - - - - - - -
This 40 50 20 18 13 26 15 21 26 18 16 19 13 17 16
work

6. Conclusion
A Wilkinson PD with compact size and harmonic rejection using resonator cells instead of 70.7 Ω transmission
lines in the conventional circuit is designed. To verify the design procedures, the proposed PD with 50% size
reduction and 13 harmonic suppression (2nd to 14th) has been fabricated. With the overall good features
such as: compact size, high ability to harmonic suppression and acceptable isolation between output ports, the
proposed PD is a good choice to operate in compact modern wireless circuits.
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