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Abstract: Robotic manipulators are open to external disturbances and actuation failures during performing a task
such as trajectory tracking. In this paper, we present a modifed controller consisting of a global fast sliding surface
combined with an adaptive neural network which is called adaptive fast sliding neural control (AFSNC) for a robotic
manipulator to precise stable trajectory tracking performance under the external disturbances. The adaptive term is
employed to reduce uncertainties due to unmodeled dynamics. Tracking error asymptotically converges to zero according
to the Lyapunov stability theorem. Numerical examples have been carried on a planar two-links manipulator to verify
the control approach efficiency. The experimental results show that the proposed control approach performs satisfactory
trajectory tracking and tracks the desired trajectory in less time with reduced chattering effect compared to the other
methods.
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1. Introduction
The integrated robotic platforms such as arm and end-effector have been available in the industry to perform
different simple tasks such as pick and place, screwing, drilling, welding and etc. for the last decades. These
robots basically need to follow the desired trajectory in a high constraint environment in order to successfully
achieve all these tasks. However, in real applications, even if having a motion controller, it is not easy due to
uncertainty parameters from the unknown environment and nonlinear dynamical behavior of robot manipulators.
During the last decades, many researchers have been interested in designing control algorithms for achieving
robust trajectory such as variable structure control method, intelligent control, PID control, torque control,
adaptive control and etc. [1–6].

Because of having a basic mathematical model, PID control algorithm has been mostly employed in
various applications among the industrial robotic manipulators, where parameters of the dynamic model are
accurately known [7]. The stability of the system depends on operating speed which should be slow enough to
converge the parameters and setting the initial condition of robot motions. It has been arguing that PID control
algorithm cannot handle nonlinear systems having uncertainty parameters in high speed applications. On the
other hand, it is required that robotic manipulators ultimately overcome this uncertainty for tracking robust
trajectory [8]. Computed torque control (CTC) based on feed back linearization has applicable performance in
high speed applications [9]. However, CTC is not useful in practical application because this method needs an
exact dynamic model of robots and is not stable when subjected to uncertainty. Computed torque control based
adaptive control algorithms are used to handle uncertainty regarding the unknown parameters due to payload
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disturbances and friction coefficients [10]. Although it is verified that the adaptive controller is asymptotically
stable in the Lyapunov sense in the case that manipulator is subjected to bounded external disturbances, it
cannot handle unmodelled dynamic parameters. The well known variable structure control method which is
sliding mode control (SMC), which is a popular variable structure control method, is combined with the adaptive
controller to achieve asymptotic convergence infinite time where dynamic parameters of the manipulator are not
exactly known [11]. The SMC is based on switching control law that includes two phases. The sliding surface is
firstly necessary to be determined where the state variable should be designed to follow the desired trajectory in
joint coordinates for any bounded disturbances. The second one is adjusting to determine switching gain that
should be larger than bounded unknown disturbance and dynamic parameters [12]. SMC is highly robust against
system uncertainties that are unknown in the real world. During the sliding phase, the control signal switches
fastly to handle the disturbance effect. However, the error occurs on the path tracked by the manipulator during
the reaching phase. Terminal sliding mode (TSM) control is designed to estimate uncertainties that improve
the transient response such as faster convergence to equilibrium and better robustness when comparing with
SMC [13, 14]. However, the singularity problem still exists to be observed in control inputs. In [15], a global
nonsingular terminal sliding mode (NTSM) control is designed to cope with singularity problem of nonlinear
dynamical systems. In [16], the two phases described as reaching and sliding are adjusted by applying TSM to
achieve global finite-time stability. In TSM and conventional SMC, both the stability and tracking performance
is not robust under the disturbances caused by uncertainties of the parameters of the dynamic system during the
reaching phase. Integral sliding mode (ISM) control approach is designed to obtain robust trajectory tracking
performance [17]. Besides, fast terminal sliding mode (FTSM) control is proposed that the controller satisfies
fast transient convergence under single-input single-output transition mode [18].

As mentioned above, various types of sliding mode controller have been proposed to satisfy robust
tracking. However, the well-known chattering phenomena that leads to accuracy reduction and inefficient
control performance is still a big challenge. The main reasons for the chattering in the nonlinear control system
are high-frequency switching leading to the control of the signal oscillation, discontinuity of input signal and
damaging in the physical system. When the nonlinear system is controlled by a sliding approach under the
uncertainty, high-frequency control signal oscillations can be adjusted that lead to robust control. However,
the chattering effect cannot be fully eliminated. To perform high precision tracking performance under the
chattering effect, adaptive control techniques combined with sliding mode control have been developed [19–21].
Combining these two techniques is effective enough to eliminate unknown disturbances and dynamic parameters
but not exactly handle the chattering effect. In [22], global adaptive sliding mode control approach is proposed.
According to the study, the chattering problem is considerably diminished and steady state error approximates
very small values under the uncertainty and nonlinearity of the dynamical system. Since unknown dynamic
parameters and external disturbances are not completely modeled in the real application, chattering effect
cannot be fully eliminated and the chattering free sliding mode control model is not obtained. It is necessary
to apply smooth a control signal to the system. Among other studies in the literature, various ISM control and
high order sliding mode (HOSM) algorithms are presented to perform a robust position control strategy for the
robotic manipulator to reduce the chattering effect [23, 24]. Increasing the degree of the designed sliding mode
manifold with integrators, it is possible to obtain smooth control signal. There is another approach proposed
in [25], upper and lower boundaries of the switching surface are used for diminishing the chattering effect.

In the last past decade, artificial intelligence and machine learning approaches have been adapted in a
nonlinear controller to overestimate the switching gains that reduce the chattering effect [26–28]. Neural network
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and fuzzy-based algorithms are widely investigated in order to approximate the nonlinear dynamic parameters
for different types of manipulator such as rigid and flexible manipulator [27, 29]. The neural network algorithm
is capable of approximating any nonlinear continuous function which is used in the manipulator controllers.
On the other hand, computational time increases significantly as increasing the number of the sample in the
neural network in the nonlinear system to estimate the upper bound uncertainties. In [30], adaptive radial
basis function (RBF) neural network control is proposed to learn the unknown upper bound uncertainties
without the prior knowledge of the system. The integrated fuzzy neural network is applied to a nonlinear
dynamical system which has fast learning capability to approximate unknown parameters [31]. In most control
system, the outputs, such as position or velocity, or two of them, are measured directly. On the other hand,
external disturbance parameter cannot be measured directly. The fundamental issue here is that it is necessary
to estimate unmeasured states from measurable variables in order to achieve exponential stability. Several
disturbance observer design methods based on SMC have been proposed to eliminate unmeasured external
disturbances and chattering phenomenon [32–35].

In this study, we design an adaptive fast sliding neural control (AFSNC) for robot manipulator to handle
the external bounded uncertainties which is revised from the model [36]. Motivation of the paper is to achieve
robust tracking performance on reference trajectories as fast as possible. It is modified that the global fast sliding
surface presented in [18] and [37] is combined with an adaptive neural network that satisfies asymptotically stable
for any initial condition. Radial basis function is used to estimate nonlinear function in the designed neural
network [38]. It is proved that the tracking errors asymptotically converge to zero. Experimental results show
that our proposed approach has good performance for trajectory tracking. It is worth to point out that the
designed controller achieves to compensate external disturbances and reduces chattering effect [39].In order to
demonstrate the effectiveness of the AFSNC, it is compared with the conventional SMC, sliding mode control
based on radial basis function neural network (NNSMC) [38] and neural network-based sliding mode adaptive
control (NNSMAC) [39].

The rest of this paper is organized as follows: Problem formulation including the dynamic model of
the manipulator, proposed controller design approaches, brief theories, and their proofs are given in Section 2.
Numerical experimental results on two-link manipulator simulation are illustrated and discussed in Section 3.
Section 4 concludes this paper and gives the future direction of our studies.

2. Problem definition
Let us consider the n -link manipulator that the general dynamic model is described by following equation [36]

D(q)q̈+C(q, q̇)q̇+ F(q̇) + g + λd = λ, (1)

where q is position, q̇ is velocity and q̈ is acceleration of the joints ∈ Rn . D(q) ∈ Rnxn , C(q, q̇) ∈ Rnxn ,
λd ,g ∈ Rnx1 and λ ∈ Rnx1 respectively refers to the positive definite symmetric inertia matrix, the coriolis
matrix, the bounded disturbance, the gravity torque and the input torque vector. F(q̇) is the friction term
described by the following equation:

F (q̇) = Fv q̇ + Fd, (2)

where Fv is the viscous friction coefficient and Fd is the Coulomb friction torque.
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Property 1 D(q) is assumed to satisfy upper and lower boundaries represented as

µ1 <∥ D(q) ∥< µ2, (3)

where µ1 and µ2 are positive constant and ∥ . ∥ denotes the induced matrix norm of D(q) matrix.
Property 2 Coriolis C(q, q̇) matrix in q̇ variable satisfies following equation

xT ( ˙D(q)− 2C(q, q̇))x = 0, (4)

where (Ḋ− 2C(q, q̇)) is skew symmetric matrix and it is bounded as ∥ C ∥≤ υb , where υb is positive
constant.

Property 3 The gravitational torque ∥ g ∥≤ ρ is bounded where 0 < ρ <∞
Remark 1: The disturbance torque is considered as norm-bounded described as

∥ λd ∥≤ λ0 <∞. (5)

It is noticed that the disturbance parameter λ can be either measurable or not.

2.1. Controller design
In this section, as shown in Figure 1, we present a modified controller consisting of global fast sliding mode
control combined with an adaptive and neural network for n -link robot manipulator. The main strategy of
designing the controller is that the joint position of robot manipulator q follows to the joint reference position
qd in a stable manner where the tracking error converges to zero. The dynamic equation of the manipulator is
assumed to be known and joints position and velocity are measurable.

Figure 1. The proposed adaptive fast sliding neural control model (AFSNC). The system model is revised from the
model in [36, 39]. Modified control parameters is represented in gray box.

2.1.1. Fast sliding surface design

Designing sliding surface, which is one of the contribution modified from [39], is most important part of achieving
robust control in nonlinear system. The tracking error is described as e = qd − q where qd is the desired joint
reference position. The fast sliding surface [37] s is defined as

s = ė+ φ1e+ φ2diag(|e1|, ..., |en|)rsgn(e) = 0, (6)
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where φ1 = diag(φ11, φ12, ..., φ1n) ∈ Rnxn and φ2 = diag(φ21, φ22, ..., φ2n) ∈ Rnxn are positive definite
matrices, r = κ1/κ2 , error vector is e = [e1, ..., en]

T ∈ Rn with 0 ≤ |ei| ≤ a where upper bound a > 0

, κ1 and κ2 are positive odd integers and κ2 is greater than κ1 . According to the theory [37], when the
system state moves away from the equilibrium point, the linear term φ1e is dominated. When the system
state approaches to equilibrium point, the power term φ2e

κ1/κ2 term is dominated that improves the system
convergence. Therefore, the sliding surface converges to zero for any given initial condition in finite definite
time tc at the equilibrium point defined as [37]

tc =
κ1

∥φ1∥(κ1 − κ2)
ln

∥φ1∥q0(0)(r−1)
+ ∥φ2∥

∥φ2∥
, (7)

where ∥.∥ is the induced matrix norm. For any given initial condition such that q0(0) ̸= 0 , the system
converges to zero in finite time tc . The time derivative of the sliding surface is calculated as

ṡ = ë+ φ1ė+ φ2rdiag(|e1|r−1, ..., |en|r−1)ė. (8)

Let us consider second order nonlinear system that ẋ1 = x2 and ẋ2 = z(x)+ c(x)u+λd where z(x) and
c(x) is the smooth function, λd is the bounded uncertainties and x1 = e [38]. The fast sliding mode controller
is described as follows:

u(t) = − 1

c(x)
(z(x) + ė+ φ1e+ φ2diag(|e1|r, ..., |en|r)sgn(e) + ψs+ γsr). (9)

The equation (8) is rewritten as

ṡ = z(x) + c(x)u+ λd + φ1ė+ φ2rdiag(|e1|r−1, ..., |en|r−1)ė. (10)

Then, we obtain,
ṡ = −ψs− γsr. (11)

Consider Lyapunov function candidate selected as below

V =
1

2
sT s. (12)

The differentiation V with respect to time is

V̇ = sT ṡ

= −sTφ1s− sTφ2diag(|s1|r−1, ..., |sn|
r−1

)sgn(s)

= −sTφ1s− sgn(sT )φ2diag(|s1|r−1, ..., |sn|
r−1

)sgn(s)

≤ −νmin{φ1}∥s∥2 − νmin{φ2}sgn(sT )diag(|s1|r−1, ..., |sn|
r−1

)sgn(s)

≤ −νmin{φ1}∥s∥2 − νmin{φ2}∥s∥l1

≤ −ψ∥s∥2 − γ∥s∥l1

(13)

where ψ > 0 , 1 < γ < 2 and ∥.∥l1 is the induced l1 norm of s.
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2.1.2. Adaptive fast sliding mode neuro controller design

From Equations (1) and (8), the arm dynamic can be described on the fast sliding surface as

D(q)ṡ = Cs − λd + λ+ f(x), (14)

where the nonlinear function f(x) due to uncertainties is obtained as

f(x) =D(q)[q̈d + φ1ė+ φ2
d(eκ1/κ2)

dt
] +C[q̇d + φ1e+ φ2e

κ1/κ2 ] + F(q̇) + g, (15)

where the vector x is the states of the system described as x = [qT , q̇T , qTd , q̇d
T , q̈d

T ]T ∈ R5n . The

estimated nonlinear function of ˜f(x) = Rl ↔ Rm is given as

f̃(x) = W̃Tϕ(x), (16)

where W̃ = [w1, ..., wb] ∈ Rmxb are the estimated RBF NN weight matrices and ϕ(x) = [ϕ1(x), ..., ϕb(x)]

is selected as Gaussian Radial Basis Function defined as

ϕi(x) = exp
1

2σ2
i

(x−µi)
T (x−µi)

i = 1, ...., b (17)

where µi = [µi1, ..., µil] is the mean vector and σi is the variance of the Gaussian function. The dynamic
equation can be rewritten as

D(q)ṡ = −Cs + W̃ϕ(x) + Ŵϕ(x) + λd + λ, (18)

where Ŵ = W∗ − W̃ and W∗ represents the ideal weight matrices [39].
Theorem-1 Consider the system shown in Figure 1, the input torque of the manipulator λ is designed

as

λ = λs + λa + λnn, (19)

where λs , λa , λnn denotes sliding mode control, adaptive control and neural control inputs of the
manipulator, respectively.

The sliding controller input [36, 38] is defined as

λs = −k1s− k2sgn(s), (20)

where k1 and k2 is greater than 0 and for any initial state the trajectory will reach on sliding surface
s = 0 in finite time.

Remark 2: In fact, determining the effective control input is difficult due to unknowns in actual system
parameters and unmodeled dynamics uncertainties. We have added an adaptive term in the proposed system
to reduce the effect of uncertainties.

The adaptive control input λa is defined as [39]

λa = ξs, (21)

where ξ > 0 is the variable of adaptive law.
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Remark 3: Chattering due to discontinuous sgn function of sliding mode controller leads to instability
of the system. RBF Neural networks with suitable adaptive law is used to reduce the chattering problem.

The RBF neural network controller λnn is described in (16) as f̂(x) with unknown parameters [39]
defined as

˙̂
f(x) = − ˙̂

WTϕ(x) + ϵ, (22)

where Ŵ is the weight estimated error matrices and ϵ is the variable of approximation error is bounded
that satisfies following equations

∥ϵ∥ ≤ ∥f(x) +WTϕ(x)∥. (23)

It is assumed that weights tunning can be described as

˙̂W = Qϕ(x)s, (24)

where Q is a positive definite matrix. The tracking errors e and ė approaches to zero on the sliding
surface, that is the nonlinear system is asymptotically stable.

Proof : The candidate Lyapunov function [36, 38, 39] is described as

L =
1

2
sTD(q)s+

1

2
tr{W̃Q−1W̃}+ ξ̃s, (25)

where ξ̃T = ξ − ξd and tr(.) is the trace of a matrix. The differentiation of L with respect to time is
calculated by

L̇ = sTD(q)ṡ+
1

2
sT ˙D(q)s+ tr{W̃Q−1 ˙̃W}+ ˙̃

ξs

= −k1sT s− k2s
T sgn(s) + sTQϕ(x)s− sT ξs+ sT (ϵ̇+ λ̇d)

+
1

2
sT (M(q̇)− 2C)s+ tr{W̃Q−1 ˙̃W}+ ˙̃

ξs

(26)

where ˙̃
ξ = 1

∥s∥2+ρ
with ρ is bounded constant that satisfies

∫∞
0
ρdt <∞ and approximation error [39]. It

assumed that approximation error and disturbance is bounded, then derivation terms goes to zero. Since D(q)

is the skew symmetric positive definite matrix and from Equations (11), (13) and (24), the following equation
is obtained:

L̇ ≤ −k1min∥s∥
2 − k2|s|+ φ0∥s∥2

,
(27)

where φ0 = 1/ξ is the positive constant. By integrating the differential Equation (27) from t = 0 to T

as below:

|L(T )− T (0)| ≤
∫

| − k1min∥s∥
2 − k2|s|+ φ0∥s∥2|dt. (28)
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For t ∈ [0, T ] , L(T ) ≥ 0 and there exists

lim
t→∞

sup
t

∫ T

0

∥s∥2dt ≤ lim
t→∞

(
1

k1
+

1

k2
+ φ0)L(0)

= 0

(29)

then every solution for candidate Lyapunov function L , it implies that the tracking error e and ė

converges to zero as s→ 0 based on Equations (6) and (22), and the system is asymptotically stable.

3. Simulation results
The proposed AFSNC is tested by applying numerical simulations on the two link planar manipulator. The
numerical parameters of the simulation are assumed as the mass of the joints m1 =m2 = 1kg , the length
of the links l1 = l2 = 1m , the gravity term g = 9.8m/s2 . The initial values of state vector is chosen as
x(0) = [0.9, 0.4, 0.5, 3.0, 0.5, 0]T . The fast sliding surface parameters are assumed as κ1 = 2.5 , κ2 = 1.5 ,
φ1 = diag{20, 20} , φ2 = diag{3000, 3000} . The bound uncertainty parameters such as external disturbances
and unknown dynamic parameter of the system in (5) is assumed to be 0 < λdi < 1 where i = 1, 2 . The desired
trajectory is given as qd1(t) = 0.1cos(0.5t) and qd2(t) = 0.1sin(0.5t) . The initial NN weights W are set to zero.
The number of hidden layer is determined by heuristically evaluating from 5 to 15 and then is set to 12 . The
input vector of the NN is defined as Equation (15). The control parameters are set as follows: Q=diag{20,20}
and C = diag{15, 15} [38]. The Gaussian radial basis function is set to zero mean and σ1 = σ2 =

√
2 variance.

Since RBF neural network is expressed as linearly parameterized form, candidate Lyapunov function given in
Equation (25) is selected and then updated laws for unknown parameters is estimated. The NN weights are
updated online by Equation (24) in order to satisfy the trajectory tracking. The adaptation law ξ is selected
as 10 in our proposed method. The sampling period is chosen 5 ms.

The numerical simulation results are shown in Figures 2–6. The actual and corresponding to the desired
position of joint trajectories are depicted in Figure 2 where the conventional SMC, NNSMC, NNSMAC, and
proposed AFSNC controller applied. It is indicated in the figures that conventional SMC has a slower response
and more chattering than the other methods. NNSMC and NNNSMAC have better robust performance than
conventional SMC in the presence of unknown parameters due to NN structure. The proposed controller
successfully tracks the reference trajectory within less time and the minimum-maximum overshoot is obtained
for both two joints when compared with all other algorithms to the sliding surface design. Figure 3 shows
the actual and desired angular velocity of joint trajectories. From the spectrum of velocity, it is verified that
the proposed method converge to desired velocity trajectory faster than the other methods within minimum
fluctuations.

Figure 4 depicts the control inputs λ1 , λ2 generated by SMC, NNSMC, NNSMAC, and proposed AFSNC
controller. As it is expected that the biggest chattering is observed in SMC from the initial moment of movement
to the reaching phase. The control input pattern of NNSMC and NNSMAC is almost the same and reduces
the chattering when compared with SMC. As seen from the figure that the proposed AFSNC method has a
significant effect on reducing chattering among all control algorithms. This is particularly because that the
neural network with adaptation law is applied to approximate unknown parameters that adapt the switching
gain. The control input of the proposed method reaches to target values less than 2 s that shows the best
performance among the other methods. Adaptation law ξ is important to chattering reduction that affects
trajectory performance. If ξ is selected very small value, we observed a huge amount of chattering.
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Figure 2. The actual position tracking performance of joint 1 and joint 2. The reference positions qdi for each joints
i ∈ {1, 2} are compared with the results of proposed AFSNC method and the other SMC, NNSMC [38] and NNSMAC
[39] methods. (a) joint 1 (b) joint 2.
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Figure 3. The angular velocity tracking performance of joint 1 and joint 2. The reference angular velocities q̇di for
each joints i ∈ {1, 2} are compared with the results of proposed AFSNC method and the other SMC, NNSMC [38] and
NNSMAC [39] methods. (a) joint 1 (b) joint 2.

The tracking error is caused by uncertainties, bounded disturbance and chattering effects. Figure 5 shows
the convergence of tracking error for each two links after applying conventional SMC, NNSMC, NNSMAC, and
proposed AFSNC controller. It is indicated that tracking errors asymptotically converge to zero for all methods
in case the initial tracking error value is same. In our proposed method, tracking error converges at 1.6 s which is
faster than the other methods. The reason is neural network weights converge to finite value much faster in our
result and adaptive law guarantees asymptotic stability of error. To compare the results more accurately, root
mean squared (RMS) values for both two joints are given in Table. As it is expected, trajectory performance
as shown in Figure 1 is improved that leads to successfully follow the desired qd position trajectory.

As shown in Figure 6, compared with NNSMC and NNSMAC, the estimated RBF neural network function
defined as f(x)̂ converges to f(x) less than 2 s in proposed method. While the estimated weights Ŵ converge
to its true value, the tracking error converges to zero as shown in Figure 5. NN structure provides self learning

3162



ÖZYER/Turk J Elec Eng & Comp Sci

0 2 4 6 8 10 12 14 16 18 20

time (s)

-10

-5

0

5

10

15

20

co
n
tr

o
l 

in
p
u
t 

o
f 

jo
in

t 
2

SMC

NNSMC

NNSMAC

AFSNC

7 7.5 8
4

5

6

0 2 4 6 8 10 12 14 16 18 20

time (s)

-20

0

20

40

60

80

co
n
tr

o
l 

in
p
u
t 

o
f 

jo
in

t 
1

SMC

NNSMC

NNSMAC

AFSNC

5 5.5 6
32

34

36

38

(a) Control input torque λ
1
 for joint 1
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Figure 4. The comparison control input performance of proposed AFSNC method with SMC, NNSMC [38] and
NNSMAC [39] methods. (a) joint 1 (b) joint 2.

Table . RMS values of the tracking error.

Control methods Joint 1 Joint 2
SMC 0.0185 0.0082
NNSMC 0.0150 0.0078
NNSMAC 0.0128 0.0066
AFSNC(proposed) 0.0087 0.0045

ability to the controller. The approximation function depends on the initial state variables and gaussian function
parameters that are selected as experimentally. The main issue here is that neural network weights are updated
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Figure 5. The comparison position tracking error (e = q − qd ) performance under uncertainties, bounded disturbance
and chattering effects between proposed AFSNC method with SMC, NNSMC [38] and NNSMAC [39] methods. (a) joint
1 (b) joint 2.

by considering the tracking error. Compared to other methods, our proposed RBF neural network with selected
adaption law has better learning performance and efficient tracking performance. We can conclude that the
numerical simulation results verify the theoretical approximation.
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Figure 6. The nonlinear function f(x) and the estimated radial basis neural network nonlinear function f̂(x) under
NNSMC, NNSMAC and proposed AFSNC methods. The proposed AFSNC estimated function converges to f(x) function
less than 2 s.

4. Conclusion
In this paper, a new AFSNC controller is proposed for achieving robust trajectory tracking. The proposed
approach basically contains a fast sliding surface design that is combined with adaptive neural network algo-
rithms. RBF neural network with a new adaptation law is used for reducing the chattering effect. In addition,
unmodeled uncertainties are eliminated. The stability condition of the sliding surface proved that sliding surface
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converges to zero for any initial condition. Thus, it is proved by the Lyapunov theorem that the nonlinear system
is asymptotically stable. We conducted several numerical simulation experiments using reference trajectories
to validate the performance of the AFSNC controller. To verify and test the effectiveness of our approaches,
AFSNC is compared with SMC, NNSMC, and NNSMAC methods. It is clearly observed that the proposed AF-
SNC converges to the desired trajectory in less time than the other methods. The robust tracking performance
under disturbances with bounded error is obtained and the chattering problem is significantly reduced.

The load on a gripper is another issue that effects the robustness of trajectory tracking. As a future
work, physical interaction and force feedback from the environment is considered based on trajectory tracking.
In addition, the performance of proposed approach is going to be tested on real robots.
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Appendix
Dynamic model equations of two link manipulator

The general form of the dynamic model of the two link robotic manipulator given in Equation (4) [36] is
described as

D(q)q̈ + C(q, q̇)q̇ + g = λ,

where the positive definite inertia matrix D(q) ∈ R2x2 and the coriolis matrix C(q, q̇) ∈ R2x2 is defined
as

D(q) =

[
D11 D12

D21 D22

]
C(q, q̇) =

[
C11 C12

C21 C22

]

D11=(m1 +m2)l
2
1 +m2l

2
2 + 2m2l1l2cos(θ2)

D22=m2l
2
2

D12= D21 =m2l
2
2 +m2l1l2cos(θ2)

C11 = −θ̇2m2l1l2sin(θ2) C12 = −(θ̇1 + θ̇2)m2l1l2sin(θ2)

C21 = θ̇1m2l1l2sin(θ2) C22 = 0

where θ1 and θ2 are joint angles, θ̇1 and θ̇2 joint velocities, m1 and m2 are masses, l1 and l2 are the
lengths of the link 1 and 2 . The gravity matrix g ∈ R2x1 is defined as

G11 = (m1 +m2)gl1cos(θ1) +m2gl2cos(θ1 + θ2)

, G21 = m2gl2cos(θ1 + θ2).

Preliminaries of fast sliding mode control

The sliding surface is designed based on the following formulations. The signum function sgn(x) of the
real variable x ∈ (−∞,∞) is defined as

sgn(x) =


1 , x > 0
0 , x = 0
−1 , x < 0

Based on this definition, we can write a real vector x ∈ Rn over the real number field R ∈ (−∞,∞) as
follows:

x= [|x1|sgn(x1), |x2|sgn(x2), ..., |xn|sgn(xn)]T

= diag(|x1|, |x2|, ..., |xn|)sgn(x),

where sgn(x) ∈ Rn is the component wise signum vector function. The component wise power real
vector function xr of the real vector x with any positive real number r ∈ (0,∞) is defined as

1
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xr = [|x1|rsgn(x1), |x2|rsgn(x2), ..., |xn|rsign(xn)]T

= diag(|x1|, |x2|, ..., |xn|)rsgn(x)

= diag(|x1|r, |x2|r, ..., |xn|r)sgn(x) ∈ Rn.

So, we have n -dimensional real vector with components any positive power function xr
i = |xi|rsgn(xi)

for i = {1, 2, ..., n} to be integrable bounded real function passing through state space origin.
The derivative of the sgn(x)r is defined as follows:

d

dt
(sgn(x)r) = r|x|r−1ẋ.
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