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Abstract: Object classification using late-time resonant scattering electromagnetic signals is a significant problem found
in different areas of application. Due to their unique properties, spherical objects play an essential role in this field both
as a challenging target and a resource of analytical late-time resonant scattering electromagnetic signals. Although many
studies focus on their detailed analysis, the challenges associated with target classification by resonant late-time resonant
scattering electromagnetic signals from multilayer spheres have not been investigated in detail. Moreover, existing studies
made the simplifying assumption that the objects having (one or more) layers constitute equal permeability values at the
core and coatings. However, especially for metamaterials, magneto-dielectric inclusions require consideration of magnetic
properties as well as dielectric ones. In this respect, this study shows that the utilization late-time resonant scattering
electromagnetic signals of magnetic spheres provide diverse information and features, which result in superior object
classification performance. For this purpose, first, time-domain late-time resonant scattering electromagnetic signals are
generated numerically for single and multilayer radially symmetrical dielectric and magnetic spheres. Then, by using
emerging deep learning tools, particularly convolutional neural networks trained with spheres having different material
properties, a high multilayer object classification performance is achieved. Furthermore, by incorporating the frequency
characteristics of the late-time resonant scattering electromagnetic signals to the classification process through Fourier
transform and convolutional neural network layers for feature extraction, a convolutional neural network with long short
term memory algorithm is developed. The outcome of the proposed algorithm design is shown to be particularly successful
even in the case of limited available data on challenging targets. This extended strategy is also shown to outperform
modern data augmentation and transfer learning techniques in terms of accuracy as well as the computational cost.
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1. Introduction
The importance of the scattering of electromagnetic radiation from a single sphere enables continuous research
activities due to its emerging use in a broad range of applications, including but not limited to nanotechnology
[1], meta-materials [2] and optics [3]. Despite its simple geometry, the sphere is a complicated target geometry
due to its complex exterior and interior resonating modes, especially for late-time target recognition studies [4].
Accordingly, spherical objects are occasionally being used as a test-bed for new approaches [5].

Although detailed characteristics and analytical solutions supported by simulations are reported for many
∗Correspondence: tugcetoprak.eee@gmail.com
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cases and studies discussed in detail at Section 2 (i.e. Related work), up to our knowledge, there exists no study
so far dealing with object identification or classification by using the scattered signals from multilayered spherical
targets containing magnetic materials. Existing literature on object classification mostly made the simplifying
assumptions that the permeability remains the same throughout the core and coating layers. However, especially
for meta-material production, magneto-dielectric inclusions play an essential role, and therefore the analysis of
magnetic properties gains higher value both in theory and practice [6].

In the last decade, there has been outstanding accomplishments on target classification performance using
machine learning due to the advancement of deep learning strategies. Deep models have achieved state-of-the-
art results in various fields including but not limited to medical imaging [7], industrial image processing [8],
transportation [9–11], and other diverse applications of signal and information processing [12]. However, as
discussed in the next section, they have limited applications in target recognition from 1-D signals.

In this study, first, single and multilayer spherical targets having varying dielectric and magnetic proper-
ties are modeled, and their LARSESs are generated. Newly produced LARSESs for multilayer magnetic spheres
complement those provided by dielectric ones enabling extended diverse features. It is shown that superior
multilayer object classification is achieved through the proposed CNN based strategy utilizing these diverse
features. Finally, the proposed classification strategy is extended to measured signals through data augmenta-
tion and transfer learning (TL) techniques. The results show that LARSESs of magnetic spheres also provide
improved performance for more complex targets such as aircraft models. Furthermore, as a second contribution,
CNN-LSTM approach is developed to overcome the need for the vast number of initial training data, optimistic
bias (i.e. peeking), and high operational cost due to multiple model usage.

It is observed that the training of LSTMs by using a small amount of LARSESs of real targets requires
improved feature extraction for better classification. Accordingly, the frequency components of LARSESs are
incorporated via Fourier transform, and the distinctive features of LARSESs are revealed. Finally, CNN-
LSTM algorithm is trained with this extended feature set, and the results show that the application of proposed
CNN-LSTM architecture provides improved complex target classification performance without the shortcomings
mentioned above.

The rest of the paper is organized as follows: In Section 2 the related work is presented. Section 3
introduces the generated scattering fields for data sets. The existing systems and their limitations are given in
Section 4. Section 5 describes the developed strategy. The application results are given in Section 6. Overall
evaluations and discussions are presented in the conclusion section.

2. Related work
Analysis of linearly polarized scattered electromagnetic plane waves from a homogeneous conductor or dielectric
sphere has been studied extensively [4]. Moreover, the utilization of those scattered signals is shown to be
effective on the classification of spherical targets even under low signal-to-noise ratio (SNR) conditions [13].
On the other hand, the analysis of multilayered spheres in terms of obtaining computational forms for their
scattered fields has recently been discussed in detail [6]. When the scattering from spherical targets is extended
to multilayered conditions, the variety of possibilities motivated further research studies on obtaining solutions
for more challenging cases such as uniaxial dielectric spheres [14], radially [15] and/or rotationally symmetric
inhomogeneous anisotropic spheres [16].

Besides the advancements on the material side, new object classification strategies, namely convolutional
neural networks (CNNs) have achieved great improvements. Being a member of the deep learning (DL)
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framework [17] they have been frequently used in 2-D electromagnetic tasks, which are dominated by synthetic
aperture radar (SAR) image classification [18]. However, they have limited applications in 1-D such as range
profiles [19], raw radar echoes [20], and time-frequency representations [21]. A recent application of CNN to
late-time resonant scattered electromagnetic signals (LARSESs) show their promising potential under correct
parameterization and architecture, but it is limited to dielectric objects [22].

Long short-term memory (LSTM) algorithms are effective tools when training with a sequence is the
matter. They are more feasible than CNNs in 1-D applications. In this respect, the high performance of LSTMs
in 1-D classification problems has been demonstrated in radar applications such as; target classification with
backscattering electromagnetic signals [23], automatic target recognition with radar cross-section [24] and SAR
[25]. Even though LSTMs have high performances, some applications require extended feature extraction to
represent targets in a better way [25]. In this regard, feature extraction for LSTM with convolution layers is a
new approach that combines CNNs and LSTMs (CNN-LSTM).

3. Generation of training and test LARSES sets

In this study, the performance of the object classification system is improved when targets with magnetic
materials are used for the training of CNNs. For this purpose, three target sets, which are in resonance (or
Mie) scattering region, are considered. Here, while the first target set is processed for initial training of deep
learning transfer in CNNs, the second and the third sets are used for both transfer learning and test sets through
cross-validation. Besides, to increase the flexibility and variety in the extraction of scattered fields, the fields of
the first target set are obtained by using analytical expressions, which enables several synthesized signals for the
training of CNNs to give better performance. On the other hand, the targets in second and third sets include
a low number of simulation and measurement scattered fields, respectively, to show that the proposed method
works well even the scattered signals of the test targets are with a limited number. Some of the spherical targets
in the first and second sets contain magnetic materials, and aircraft models used in the third set include some
magnetic materials such as iron or iron alloy. The details of the computational setup (Figure 1a), simulation
(Figure 1b), measurement setup (Figure 1c), train/target sets, and their properties are explained in detail as
follows.

3.1. Target set 1: magnetic/dielectric single layer spheres

Penetrable (dielectric, and magnetic) spheres are useful and challenging target geometries for classification
methods. Despite their simple geometry, the scattering mechanism from these objects are complex due to many
exterior and interior resonant modes (poles). On the other hand, the scattered field signals from these objects
can be analytically calculated in the frequency domain for a uniform plane wave excitation at any aspect angle
and polarization by using Mie expressions/formulas [4, 26]. For the geometry shown in Figure 1a, which is
considered for the extraction of scattered fields of the uniform single layer spheres, the scattered far fields are
equated as [26];

Es
θ ≃ jE0

e−jk0r

k0r
cosϕ

∞∑
n=1

jn
[
bn sin θP

′1
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sin θ

]
(1)
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Here, N =
√
ϵrµr is the index of refraction, k0 = 2π/λ0 is the free space wavenumber, and jn , h(2)

n and
P 1
n represents spherical Bessel, spherical Henkel (second kind) and associated Legendre (first kind) functions,

respectively. Finally, time-domain scattered fields can be obtained for any incident waveform (pulse) by using
frequency-to-time domain conversion.

(a) (b) (c)

Figure 1. The (a) computational, (b) simulation/CST, and (c) measurement setup.

Here, all parameters of the setup except the constitutive material parameters (permittivity and perme-
ability) of the spheres are kept constant for all single layer spheres taken into account. All spheres have radii
of 1.8 cm, and their scattered field analytical responses are generated at the frequency range of 0–12 GHz with
a frequency resolution of 10 MHz. By considering the dimensions of the spheres and frequency ranges, the
targets can be considered in the resonance scattering region. The observation point is selected as R = 72 cm
away from the center of the spheres, and ϕ -polarization (Eϕ in Equation 1) bistatic responses are collected
at ϕ = 90◦ plane (or yz plane) for several different θ values (from 0◦ to 179.9◦ with 0.1◦ resolution). Three
dielectric spheres with relative permittivity values of ϵr = 2, 3, 4 and constant relative permeability value of
µr = 1 , and three magnetic spheres with relative permeability values of µr = 100, 200, 300 and constant relative
permittivity value of ϵr = 1 are used in the first target set for the initial training. The relative permeability
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values for magnetic spheres are selected high enough to be consistent with realistic magnetic materials such as
nickel or magnetic iron. The frequency-domain responses are converted into time-domain responses by using
a 1% lowpass Gaussian window and inverse fast Fourier transform (FFT) and zero padding in order to obtain
signals with a time resolution of approximately 5 ps. All signals in this target set have 1500 time samples
giving a total time duration of about 7.5 ns. The sample time-domain scattered signals for single layer dielectric
spheres and magnetic spheres are demonstrated in Figures 2a and 2b, respectively.
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Figure 2. The time domain scattered signals at θ = 60o illustrating different characteristics of four (a) dielectric spheres
two having a single layer and two having multilayers, and (b) magnetic spheres two having single layer and two having
multilayers. (The time-span between (a) and (b) is different for better illustration of amplitude variations above a certain
threshold.)

3.2. Target set 2: magnetic/dielectric multilayer spheres

For the second target set, which is also the first “test” target set, multilayer penetrable spheres are utilized.
Multilayer and buried dielectric spheres are studied in many works [6–16, 27, 28]; however, multilayer magnetic
spheres are considered as targets for the first time in this study. Although Mie expressions can also be extended
to get the frequency-domain responses of multilayer spheres, time-domain scattered fields are generated from
the simulations carried out with CST Microwave Studio from which Figure 1b depicts the related configuration.
Here, the setup for the generation of scattered fields for single layer spheres is desired to be discriminated from
those for multilayer spheres as much as possible. For this purpose although the direction and polarization vector
for incident plane-wave are the same with the ones in single spheres; incident wave in CST has different incident
waveform (pulse) than the one used for the extraction of time-domain signals in Section 3.1. Thus, it is aimed
to show that the proposed method shows satisfactory performance regardless of the waveform (pulse) impinging
on targets.

Besides, the bistatic responses are obtained with an E-field probe oriented in θ direction for θ -polarized
scattered fields at ϕ = 0◦ plane (or xz plane) in the frequency range of 0-8 GHz with 1 MHz frequency resolution,
all of which are different from the ones given for the single spheres. Thus, it is also aimed to demonstrate that
the method is insensitive to the changes in aspect angle, polarization and frequency band. Having a thickness
of 0.9 cm for each two uniform layers, total radius of two-layer spheres is again taken as 1.8 cm. Two multilayer
dielectric spheres (one has inner and outer relative permittivity values of ϵr1 = 2 and ϵr2 = 4 , respectively, and
the other has ϵr1 = 4 and ϵr2 = 2) and two multilayer magnetic (one has inner and outer relative permeability
values of µr1 = 100 and µr2 = 200 , respectively, and the other has µr1 = 200 and µr2 = 100 .) are used for
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this target set. The other relevant parameters set in CST simulations are: solver = time domain, mesh type
= hexahedral, cells per wavelength = 25 (maximum cell both for near to model and far to model), minimum
cell = 25 (fraction of maximum cell near to model), refinement around edge = 20 (fraction of maximum cell
near to model), additional cell around edge = 20, boundary = open (add space) in all directions, settings for
PML boundary = λ0/4 @4GHz (automatic minimum distance to structure). LARSESs for these targets are
gathered for fewer number of θ values of 0◦ to 180◦ with 5◦ resolution (where a sample case of θ = 60◦ is
shown in Figure 1b) as compared to number of scattered fields for single layer spheres in Section 3.1 (Figure
3). All signals in this target set have total time duration of about 11.5 ns.
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Figure 3. The scattered signals at different bistatic elevation angles from multilayered (a) dielectric sphere (inner layer
with ϵr1 = 2 , outer layer of ϵr2 = 4), and (b) magnetic sphere (inner layer µr1 = 100 , outer layer µr2 = 200).

3.3. Target set 3: real targets–small-scale airplane models

The third target set contains three small-scale models of real airplanes, which are Boeing 747, Boeing 767, and
DC-10. All targets are 1/500 scaled models such that the body, wing, and tail lengths are 14.5, 12.7, and 4.8 cm
for Boeing 747; 12.48, 12.54, and 5 cm for Boeing 767; and 12.7, 11.4, and 5.25 cm for DC-10, respectively. The
LARSESs of these targets are obtained with a measurement setup consisting of an HP8720D two-port vector
network analyzer and two wideband (1-12 GHz) double-ridge horn antennas (Figure 1c). The centers of airplane
models are 95 cm away from aperture centers of both antennas such that a small bistatic angle of 10 degrees
is formed between target and horn antennas. Therefore, these measurements might be evaluated as almost
monostatic scattered responses. VV polarization measurements are made in the frequency range of 1–12 GHz
with 13.75 GHz resolution that the targets again fall into the resonance region. The frequency responses with
Kaiser–Bessel frequency window implemented in network analyzer are measured for different angular positions
of airplane models (from θ = 0◦ to θ = 180◦ with 10◦ resolution as shown in Figure 1c) by rotating them over
H-plane [4]. Finally, time-domain signals, where sample measured scattered signals are given in Figure 4, are
obtained with inverse FFT and zero padding with a time resolution of approximately 5 ps. All signals in this
target set have 1024 time samples giving a total time duration of about 5.1 ns.
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Figure 4. The measured scattered signals (a) from different type of small-scale aircraft models at θ = 100◦ , and (b)
from Boeing 747 model at different elevation angles.

4. Existing two-stage deep system employing data augmentation and transfer learning

This section provides an overview of the previous study [22], which uses simulated or analytic solutions of simple
targets providing an excessive amount of scattered signals. The extensive number of data allows end-to-end
training of deep models. Then, the last layers of these initially trained models are adapted to complex targets
using transfer learning via measured signals. This approach was previously applied using only conductor and
dielectric spheres as the base target set [22]. In this study, the approach has been extended with magnetic
spheres, and it is shown to provide higher accuracy as well as complementary information, which can be used
to obtain higher detection performance. The following subsection delivers the details of the abovementioned
methodology.

4.1. Stage 1: generating CNN models using synthetic data

One of the very first implementation and application of 1-D CNNs is performed for electrocardiographic (ECG)
data processing in [29], in which their foundations are given in detail. Based on those analyses, here, only the
main design parameters of the utilized models are given without explicit representation of their formulation.

Stage 1 starts with preprocessing by normalization, which significantly increases stabilization (preventing
divergence) and decreases the training time. Normalization enables the signals to have zero mean and unity
standard deviation. Then, zero padding is applied to avoid size mismatch between scattered signals of different
targets. The input layers are designed to receive complete normalized signals.

Convolutional layers of the CNNs include 16 filters, all of which have a 3-by-3 kernel size. They are
followed by nonlinear activation functions chosen as rectified linear units. Padding is used to ensure the same
size at the output and the input layers. Next, three fully connected layers (FCLs), which are connected to all
the neurons in the preceding layers, are used. In this way, all the features learned by the previous layers to are
combined to identify the larger patterns. The first two FCLs are designed to have 384 hidden neurons. The
size of the last FCL is set to be equal to the number of targets (i.e. four for multilayer spheres and three for
aircraft models).

The output of the FCL is normalized by the softmax activation function, which provides positive numbers
that sum to one and is utilized to derive the output probabilities of the classification layer that uses the calculated
probabilities to assign the input to one of the mutually exclusive target classes and computes the loss. Each
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network is trained by stochastic gradient descent with momentum using an initial learning rate of 0.01 and
mini-batch size as 128 for 20 maximum number of epochs.

4.2. Stage 2: fine-tuning the CNNs to real targets by TL

In stage 2, the generic models generated at stage 1 are adapted to the actual targets (multilayer spheres and
aircraft models) by using TL applied to the last three layers (FCL, softmax, and classification), which are
retrained using the small number of measured scattered signals [22]. The features extracted at the initial layers
of generic CNN cover general resembling characteristics of the scattered signals (e.g., damping oscillations).
Hence, the weights of the initial layers until the last FCL are used from pretrained CNN.

TL ensures a systematic approach to improving the reduced performance of the generic CNNs at the
classification of real targets due to the mismatch between the training and the test sets. Thus, the lack
of adaptation between elementary and real targets is compensated at this stage by taking advantage of the
correlation between the LARSESs data sets. The effects of increasing training samples for TL are tested by
various data augmentation techniques. After extensive experimentation and simulations, two techniques are
employed: 1) Adding varying levels of Gaussian noise to the signals. Particularly, two SNR levels are used (i.e.
10 dB, 20 dB). 2) Scaling the scattered signal amplitudes by factors of 0.5, 0.9, 1.1, and 1.5.

4.3. Limitations and shortcomings of two-stage system

Although the abovementioned model generation strategy can provide improved target classification performance,
it requires an ensemble of multiple models to achieve state-of-the-art results, as discussed in [22]. Such a strategy
relies on the resemblance of the LARSESs between base target sets (i.e. spheres) and the actual targets (i.e.
airplanes), which might not be available for all kinds of complex targets. In the lack of this resemblance, it
might be difficult to construct a base target set having similar properties to the LARSESs of actual targets.
Thus, a system that would only use the data of actual targets and process it from multiple perspectives can be
more self-sufficient. Another critical shortcoming occurs due to combining multiple models with an ensemble
when only limited data is available. The individual target classifiers (i.e. ensemble members) are already tested
with measured data causing dependency between train and test data of the ensemble, a phenomenon referred
to as ”peeking” [20]. In other words, since the individual classifiers are already tuned to achieve high scores,
the ensemble result might be optimistically biased. Last but not least, a major drawback is the operational
cost of multiple deep models, which would require significant computational power to achieve desired real time
performance. To overcome these limitations, a new system is developed and described in the following section.

5. Proposed CNN-LSTM system

5.1. Feature extraction by using Fourier transform

The significant problems of the target classification from scattered signals are the strong dependency of signals
on the frequency, polarization, and aspect angles [30]. The measurement setup mentioned in the previous section
is designed to overcome the difficulties originated from these dependencies. Although the design procedure is
presented to achieve higher performance of classification, the amplitudes of LARSESs of the small-scale airplane
models are measured very close to each other and small to be classified as can be seen from Figure 4. Even though
this small amplitude problem can be handled by scaling, this is not preferred as a preprocessing technique since
the scattered signals obtained from different airplanes have very similar characteristics at different angles. Thus,
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the airplane classification process requires further feature extraction to represent LARSESs’ characteristics in
the best manner.

The feature extraction technique used in this study utilizes the Fourier transform (FT) to construct the
LARSESs of small-scale airplane models in the frequency domain. FT decomposes a signal into its frequency
components and enables overcoming the waveform similarity problems in the time domain. Even though signals
from Boeing 747 at 90o and DC10 at 100o , and also signals from Boeing 747 at 60o and Boeing 767 at 100o

have similar characteristics Figure 4, their frequency components are different from each other Figure 5. Hence,
feature extraction by using FT commits better classification in comparison with raw or scaled data classification.
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5.2. CNN-LSTM algorithm for classification

Traditional CNN algorithms are generally designed for classification or detection from images since their convo-
lutional layers are two dimensional. On the other hand, LSTM algorithms are appropriate for the classification
of sequences. Hence, LARSESs are more suitable to be classified with LSTM algorithms. However, raw data or
its extracted features might not provide enough information to achieve higher classification performance with
LSTMs. At this step, the feature extraction process of convolutional layers on CNN can be embedded to LSTM
algorithm. That modification makes LSTM to be trained with the output of convolutional layers Figure 6.
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Figure 6. Layer scheme of CNN-LSTM algorithm.

The CNN part of the proposed hybrid algorithm includes convolutional, normalization and rectified
linear unit (ReLu) layers. Convolutional layer has 16 channels which contain 3×3×1 convolution kernel as given
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in Table 1. The kernel connects to small part of input data from previous layer. The connection weights (i.e.
convolutional kernel) of every channel in convolutional layer evolves with training. The output of the convolution
layer will be an input of the ReLu to reduce the linearity, after the normalization. In this application, the
convolutional layer reflects the spacial information of the input data as an output.

Table 1. Analysis of each layer of CNN-LSTM network given in Figure 7.

Name Properties Type Activations Learnables
Sequence input layer

input with 100×1×1 Sequence 1000×1×1 -
dimensions input

fold Sequence folding Sequence Out 1000×1×1 -
folding Mini-batch size 1

16 3×3×1 convolutions
conv with stride [1 1] Convolution 1000×1×6 Weights 3×3×1×16

and padding ’same’ Bias 1×1×16
bn Batch normalization Batch 1000×1×16 Offset 1×1×16

with 16 channels normalization Scale 1×1×16
relu ReLu ReLu 1000×1×16 -
unfold Sequence unfolding Sequence 1000×1×16 -

unfolding
flatten Flatten Flatten 16000 -

Input weights 800×16000
lstm LSTM with LSTM 200 Recurrent weights 800×200

200 hidden units Bias 800×1
fc 3 fully connected Fully 3 Weights 3×200

layers connected Bias 3×1
softmax Softmax Softmax 3 -
classification Crossentropyex with Classification - -

’1’ and 2 other classes output

LSTM is one of the most used recurrent neural networks (RNNs). The LSTM uses 4-gate mechanism
selectively which passes/drops information from the sequential input data. The dependency of the elements in
the sequence can be preserved with that mechanism. The LSTM have two sets of parameters, which are called
the cell and hidden states. An element fed into the mechanism comes through the forget-gate first. The inputs
of the forget-gate are the element of the sequence and previous hidden state. It gives a temporary output called
as ft , where t represents current state. The second one is input-gate, which takes same inputs as the forget-gate
and gives two temporary variables: it and C̃t . To update the current cell state, the previous cell state Ct−1

and all temporary variables ft , it and C̃t are fed into the updating gate. Finally, for calculating the current
hidden state ht , the output gate takes the previous hidden state ht−1 , the current element of sequence and the
current cell state.

CNN-LSTM algorithms have two important layers that do not exist in traditional LSTMs and CNNs.
One of them is called as “sequence folding layer” which is responsible for converting sequence input to the two-
dimensional input of the convolutional layer. Inversely, the other one, “sequence unfolding layer” is responsible
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for converting two-dimensional features to sequence input of LSTM layer.
The connection analysis of the trained CNN-LSTM network is given in Figure 7 and Table 1. Figure

7 clearly shows the layer connection difference of CNN-LSTM network with respect to traditional CNNs.
Additionally, the details of each layer (i.e. activations and learnables) are given in Table 1.
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Figure 7. Layer connections of CNN-LSTM network given in Figure 6.

6. Applications and results

The methods described in detail at previous sections are implemented by using MATLAB 2019b. For both
multilayer spheres, and aircraft target sets two generic CNN models, which are initially trained with dielectric
(CNNdiel.) and magnetic (CNNmag.) single layer spheres individually, are used. The model parameters, such
as sphere radii and ϵr , are chosen to be compatible with earlier well-established strategies [i.e. MUSIC,
ESPRIT, Wigner–Ville, and min-norm and waveform classification (WFC)] to compare the performance [13, 22].
The performance is measured and analyzed by accuracy (CC = TP/(TP + FP + FN)), sensitivity (SE =

TN/(TN + FP )), and specificity (SP = (TP/(TP + FP ))), where TP, TN, FP, and FN correspond to true
and false positive/negative counts, respectively. The training and testing procedures are implemented using the
k-fold cross-validation method, which is described below. Test sets used in k-fold are chosen to be completely
different from the training sets (i.e. not used in training). The accuracy, sensitivity, and specificity values are
determined for each fold, and the mean values for each of these performance metrics is obtained by averaging all
results at the end of the process. Table 2 presents the description and characteristics of the target sets followed
by associated quantitative information and the applied methods for each one.

For multilayer sphere classification tests, which have LARSESs at 37 aspect angles resulting in 148 signals,
21-fold cross-validation is utilized. Twenty folds (140 signals) are used for TL at Stage 2, and the remaining
fold (8 signals) is used for the test. After repeating the process 20 times, the average results show that the
multilayered target can be classified with 99% accuracy by both models (CNNdiel. and CNNmag.) proving that
the deep models trained with synthetic data can converge and perform reasonably well even when the small
sample size is compensated adequately with TL and data augmentation.

For aircraft model classification tests, measurements were performed for 19 aspect angles resulting in 57
signals having 14 dB SNR on average. Due to the limited number of samples, 19-fold cross-validation is used.
Eighteen folds (54 signals) are used for TL at Stage 2, and the remaining fold (3 signals) is used for the test.
The procedure continues until each fold is tested. The average results are presented in Table 3 after repeating
the process 20 times.

As shown in Table 3, the use of magnetic spheres through CNNmag. has achieved the best results compared
to other algorithms. Considering the relatively poor performance of CNNdiel. model, which is significantly lower
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Table 2. Details of the target data sets, utilized models and training strategies.

All data Training set Test set
Target set Relative Relative (Number (Number of (Number Applied method

permittivity permeability of signals) signals) of signals)
Magnetic single µr1 = 100 CNN from
layer spheres 1 µr2 = 200 1800 1600 200 scratch
(target set 1) µr3 = 300 (stage 1)
Dielectric single ϵr1 = 2 CNN from
layer spheres ϵr2 = 3 1 1800 1600 200 scratch
(target set 1) ϵr3 = 4 (stage 1)
Magnetic (µr1,inner = 100 TL with
multilayer 1 µr2,outer = 200) 74 70 4 21-fold
spheres (µr1,inner = 200 cross-validation
(target set 2) µr2,outer = 100) (stage 2)
Dielectric (ϵr1,inner = 2 TL with
multilayer ϵr2,outer = 4) 1 74 70 4 21-fold
spheres (ϵr1,inner = 4 cross-validation
(target set 2) ϵr2,outer = 2) (stage 2)
Small scale TL (19-fold cross-
airplane Unknown Unknown 57 54 3 validation - stage 2)
models (Real targets) (Real targets) proposed CNN-LSTM
(target set 3) (19-fold cross-val.)

Table 3. Classification results (%) of measured scattered signals.

Target models Boeing 747 DC 10 Boeing 767
CC SE SP CC SE SP CC SE SP

ESPRIT 88.2 88.5 90.9 90.6 91.4 93.5 89.9 92.4 95.5
Wigner–Wille 86.4 87.8 92.1 91.2 91.7 92.2 90.2 88.9 93.7
Min-norm 88.1 88.7 91.3 91.4 90.3 90.6 92.2 90.9 92.6
MUSIC 89.1 88.9 91.6 92.3 92.5 94.1 91.0 93.1 96.9
WFC [4] 93.3 91.1 94.4 93.3 87.8 96.1 94.1 92.2 95.0
CNNdiel. 66.6 80.1 87.7 74.5 84.0 90.3 74.3 84.9 90.0
CNNmag. 79.7 88.4 94.5 94.6 97.1 98.5 95.5 97.6 98.8
CNN-TL [22] 94.9 98.5 98.1 98.6 99.3 99.2 97.9 99.5 99.5
CNN-LSTMRaw 50.8 31.6 48.2 55.2 42.1 56.1 65.8 57.9 48.2
CNN-LSTMScaled 50.9 31.5 49.2 57.0 47.2 48.3 64.4 52.6 42.3
CNN-LSTMFT 97.4 94.7 98.2 99.2 99.5 99.4 96.8 95.7 98.5

than the existing methods, CNNmag. contributes much more information to the learning process. These results
also show that the adaptation to real target via TL can generate individual models having high performance if
magnetic properties are utilized.

Based on these results, the use of ensembles, which would combine the outcomes of CNNdiel. and CNNmag.,
are considered and applied. However, the initial results show that the simple fusion of these models does not
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significantly improve the overall performance. Thus, a detailed analysis of the models with diversity metrics
and ensemble learning strategies are needed.

For aircraft target sets, three types [trained with i) raw, ii) scaled, and iii) FT data] of CNN-LSTM
models are used. Scaling and application of FT are used as preprocessing steps for CNN-LSTMScaled and CNN-
LSTMFT models, respectively. The scaling process is utilized by multiplying each signal with 104 . On the other
hand, in CNN-LSTMFT model, the absolute values of FT results of LARSESs are processed instead of using
the only real or imaginary part of FT.

Measurements for aircraft model classification were performed for 19 aspect angles resulting in 57 signals
having 14 dB SNR on average. Due to the limited number of samples, 19-fold cross-validation is utilized for
all types of CNN-LSTM applications. Eighteen folds (54 signals) are used for training of the model, and the
remaining fold (3 signals) is used for the test. The procedure continues until each fold is tested.

The average results are presented in Table 3 after the repetition of the folding process with the network,
which has given properties, 20 times.

As shown in Table 3 and Figure 8, the use of FT as a preprocessing method through CNN-LSTMFT has
achieved the best results compared to other algorithms. Notably, it has outperformed the recent state-of-the-
art performance of [22]. Considering the relatively poor performances of CNN-LSTMRaw and CNN-LSTMScaled

models, which are significantly lower than all the methods, CNN-LSTMFT contributes much more information
to the learning process. These results also show that even the small amount of data, CNN-LSTM model with
useful features, can achieve high performance.
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Figure 8. ROC curves for (a) CNN-LSTMRaw, (b) CNN-LSTMScaled, and (c) CNN-LSTMFT.

7. Conclusion
This study presents two main contributions to the field of target classification. First, the use of LARSESs
obtained from magnetic spheres for target classification for the first time in literature. The results show that
magnetic spheres can resemble the waveform structures, features, and variations characterizing complex targets
(i.e. multilayer spheres and aircraft models) more effectively compared to the dielectric ones. CNNs, which
intrinsically and hierarchically extract both low and high-level features through its layers, are used. These
generic CNNs, which are initially trained with synthetic LARSESs data, are adapted to the actual target
domain via TL. Augmentation is used to compensate for the small sample size of the measured data. The fine-
tuning step is shown to be more impactful when magnetic spheres are used. This outcome shows the importance
of LARSESs from magnetic objects on obtaining improved classification performance. This initial study with
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multilayer magnetic spheres shows that research on increasing the accuracy in case of multiple targets and very
low SNR conditions are promising future topics.

Although improved target classification performance can be achieved by the abovementioned strategy, the
requirement of multiple model usage has certain drawbacks such as the creation of a base target set resembling
the actual target characteristics, a significant amount of additional training data to prevent peeking of an
ensemble, and excessive computational power to provide real time operation. Hence, as a second contribution,
a CNN-LSTM based target classification system is proposed. The advantages of the system can be summarized
as obtaining high mean accuracy even in the case of a small amount of measured scattered data and less
operational costs. On the other hand, as an unavoidable drawback, the deviation from the mean accuracy
affects the sensitivity and the specificity of the system performance.
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