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Abstract: Robot grippers are widely used in a variety of areas requiring automation, precision, and safety. The perfor-
mance of the grippers is directly associated with their design. In this study, four different multiobjective metaheuristic
algorithms including particle swarm optimization (MOPSO), artificial algae algorithm (MOAAA), grey wolf optimizer
(MOGWO) and nondominated sorting genetic algorithm (NSGA-II) were applied to two different configurations of highly
nonlinear and multimodal robot gripper design problem including two objective functions and a certain number of con-
straints. The first objective is to minimize the difference between minimum and maximum forces for the assumed range
in which the gripper ends are displaced. The second objective is force transmission rate that is the ratio of the actuator
force to the minimum holding force obtained at the gripper ends. The performance of the optimizers was examined
separately for each configuration by using pareto-front curves and hyper-volume (HV) metric. Performances of the op-
timizers on the specific problem were compared with results of previously proposed algorithms under equal conditions.
With respect to these comparisons, the best-known results of the configurations were obtained. Furthermore, the pareto
optimal solutions are thoroughly examined to present the relationship between design variables and objective functions.
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1. Introduction
Robot grippers are mechanisms that are used in place of human hands in various jobs and processes in line
with the requirements of efficiency, safety, sensitivity etc., which are again inspired and designed by human
[1]. Robot grippers are widely used in production lanes, in environments threatening human life and health,
in medical surgeries, and in the development of microelectromechanical systems [2]. The grippers, whose drive
mechanism can be hydraulic, pneumatic, or electric, placed on the wrist part of the robot arm [3].

Although the function of the grippers is usually to grasp and carry an object without damaging it, they
need to be designed and produced specifically for a job. Due to the complex structure of the grippers, their
designs have been the subject of various optimization studies. Osyczka et al. for the first time, devised and
formulated the design of grippers as a multiobjective continuous constraint optimization problem [4]. Osyczka
[5] extended the problem by formulating the robot gripper design into five different gripper configurations.
By applying multi objective genetic algorithm (MOGA) to the problem, he determined the optimal design
parameters of these five configurations.
∗Correspondence: umitatila@karabuk.edu.tr
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These configurations were generally accepted among the researchers and formed the basis of various
studies in this field [6–10]. In these studies, various nature-inspired metaheuristic multiobjective optimization
methods were used to solve the problem. Saravanan et al. [6] applied MOGA, nondominated sorting genetic
algorithm II (NSGA-II) and multiobjective differential evolution (MODE) to optimize the gripper configurations
described by Osyczka. Later, Datta and Deb [7] optimized the gripper configurations described by Osyczka
using NSGA-II and obtained better results than Osyczka. However, when these conducted studies are examined,
it is seen that some of the researchers did not obey the original configurations and made various modifications
on them. Furthermore, there are inconsistencies in the application of the optimizers to the problem and the
evaluation of their performance. Moreover, the computing resources used by these studies, which spread over
the last 3 decades, differ as well. This situation does not allow a comparison on the performance of the used
methods and the results of the studies.

In this study, we deal with the optimization of two robot gripper configurations originally described by
Osyczka [5]. Beside NSGA-II, which was also applied by Saravanan [6] and Datta and Deb [7] to the same
configurations before, we applied multi objective particle swarm optimization (MOPSO) and new generation
metaheuristics such as multi objective grey wolf optimizer (MOGWO) and multi objective artificial algae
algorithm (MOAAA) remaining loyal to the objectives of robot gripper problems described by Osyczka with
equal conditions. MOPSO, MOGWO and MOAAA were applied to the mentioned gripper configurations for
the first time in this study. As far as we know, the pareto fronts obtained by the MOAAA are the best ever
achieved in the literature and there is no other study in the literature where these gripper configurations are
optimized with current algorithms and analyzed with current performance metrics such as hyper volume.

The rest of this study is organized as follows. Section 2 presents the related studies on design optimization
of robot grippers. Section 3 outlines the optimization methods applied to the problem. Experimental results
and discussions were presented in Section 4. The paper is concluded in Section 5 with directions for future
studies.

2. A brief literature on optimization of robot grippers

The first study on the optimization of robotic grippers was carried out by Cutkosky [11] on the selection,
modeling, and design of the grasp on the grippers. In his study, Cutkosky developed an expert system to solve
grasping problems. Bicchi and Kumar [12] studied on robotic-grasping and discussed the problems encountered
on the design and control of robot grippers.

Osyczka et al. [4] considered gripper design optimization as a multiobjective problem and proposed a
new GA-based optimizer to solve the problem. Osyczka [5] described the mathematical models of five different
gripper configurations. Optimal design values are obtained by applying MOGA to each configuration.

Several studies have been conducted based on Osyczka’s configurations. Rao et al. [8] simplified the
problem of robot gripper design as a single-objective optimization problem and solved it with evolutionary
algorithms. Saravanan et al. [6] applied three optimization algorithms (MOGA, NSGA-II, and multi objective
differential evolution) to three different robot gripper configurations. Datta and Deb [7] applied NSGA-II to two
different conservative configurations of Osyczka and achieved more optimal results than Osyczka [5] obtained.
Furthermore, pareto-optimal solutions were extensively studied to establish a meaningful relationship between
objective functions and variable values. Datta et al. [9] discussed the limitation of the lack of actuator analysis
in Osyczka’s problem and the original problem was modified. In this modified version, an actuator was assumed
where the force was proportional to the actuator rigidity and applied voltage. Avder et al. [10] applied the
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strength pareto evolutionary algorithm II (SPEA-II) to the problem.
There are different studies in the literature that do not rely on Osyczka’s model. Lanni and Caccarelli

[13] proposed a two-finger robot gripper mechanism for the multiobjective optimum design model, efficiency,
acceleration, velocity, and four objective functions that were different in size were used. Li et al. [14] studied
the three-grip mechanism for heavy-forging robot grippers and optimized link lengths and link angles by using
multiobjective GA. The most important result of the study is the realization of small and large scale gripper
designs with the best known dimensional values. The study of Dao and Huang [15] involved the multiobjective
optimization of a gripper with two flexible elements to grasp objects. These flexible elements are the torsion
spring torque and tension of the torsion spring. In the study, where Fuzzy-Taguchi method was used, the best-
known values for the gripper mechanism horizontal and vertical force parameter values were found. Pahwa et al.
[16] studied the optimization of geometric parameters to investigate the effect of dimensional change on robot
gripper performance. In this study, it was determined that the performance of electro-thermal micro-grippers
would be pretty much affected by dimensional changes.

In Zitar’s [17] single-objective ant colony (ACO) algorithm, however, the optimization objective was to
achieve a minimum holding force; the researchers determined the optimum finger force values to grasp hard
objects, and it was also discovered that the most appropriate set of parameters for ACO’s applicability to the
problem was independent of the number of ants in each location. Ciocarlie et al. [18] studied the optimal
design of a robotic gripper that performed fingertip and envelope grasping. In their study, the parameters of
the course of active tendon and springs providing passive extension forces were optimized. As a result of the
study, they achieved the best-known design with the combination of the dimensions of the optimized tendons
and the activation parameters.

2.1. Osyczka’s gripper configurations

Osyczka’s [5] configurations contain two conflicting objective functions. One of them is the difference between
the minimum and maximum forces (Eq. 18), and the other is the ratio of force transmission (Eq. 19). The aim
of the optimization problem is to obtain the optimal link lengths of the robot gripper and the joint angles of
the links by taking geometry and force constraints into account.

2.1.1. Configuration design of Gripper I
The schematic of Osyczka’s Gripper I configuration is given in Figure 1. The configuration consists of seven
design variables and eight nonlinear constraints. Six design variables (Eq. 1) consisting of joint lengths and
joint angles with the range of values are shown by the (Eq. 2–8).

x = (a, b, c, e, f, l, δ)
T (1)

10 ≤ a ≤ 250 (2)

10 ≤ b ≤ 250 (3)

100 ≤ c ≤ 300 (4)

0 ≤ e ≤ 50 (5)
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Figure 1. Gripper I mechanism scheme.

10 ≤ f ≤ 250 (6)

100 ≤ l ≤ 300 (7)

1.0 ≤ δ ≤ 3.14 (8)

where, design vector is shown as x = (a, b, c, e, f, l, δ)
T . Here; while a ,b ,c ,e ,f , and l denote link lengths,

δ denotes the angle between links b and c [5].
Geometrical dependencies of Gripper I are given in Eq. 9–14 (Figure ??).

g =

√
(l − z)

2
+ e2 (9)

b2 = a2 + g2 − 2.α.g. cos (α− φ) (10)

α = arccos

(
α2 + g2 − b2

2.α.g

)
+ φ (11)

a2 = b2 + g2 − 2.b.g. cos (β + φ) (12)

β = arccos

(
b2 + g2 − α2

2.b.g

)
− φ (13)

φ = arctan

(
e

l − z

)
(14)

The free body diagram showing the force distributions of the Gripper I mechanism is shown in Figure ??.
The equations for force distributions are shown in Eq. 15–17.

R sin (α+ β) b = Fkc (15)

R =
P

2. cosα
(16)
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Fk =
P.b. sin (α+ β)

2. cosα
(17)

where, R denotes the reaction force on the link a , P indicates the force applied from the left side of the
robot gripper mechanism for operation.

(a) (b)

Figure 2. Gripper I mechanism (a) geometrical dependencies (b) force distribution.

The first objective function (Eq. 18) defined for Gripper I is to minimize the difference between minimum
and maximum forces for the assumed range in which the gripper ends are displaced. Thus, the fluctuation in
the holding force is minimized and the grip object is held in a fixed manner [5].

f1(x) = maxzFk (x, z)−minzFk (x, z) (18)

The second important element for the gripper mechanism is the holding force obtained for the actuator
force applied to the mechanism. The higher the minimum holding force, the more efficient the mechanism.
Therefore, the second objective function given in Eq. 19 is the ratio of force transmission that is the ratio of the
actuator force P to the minimum holding force obtained at the link c end. Minimizing this objective function
ensures that the holding force obtained at the link c end is at the highest possible value.

f2(x) =
P

minz.Fk (x, z)
(19)

Both f1 and f2 depend on the distance z , which is a continuous value. Therefore, in order to find the
values of f1 and f2 functions by using the given vector x , z values between 0 and Zmax , which provide the
minimum Fk (x, z) and maximum Fk (x, z) values should be determined.

Using the geometry of the gripper problem, nonlinear constraints given below are derived [5]:

g1(x) = Ymin − y (x,Zmax) ≥ 0 (20)

g2(x) = y (x,Zmax) ≥ 0 (21)

g3(x) = y (x, 0)− Ymax ≥ 0 (22)

g4(x) = YG − y (x, 0) ≥ 0 (23)
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g5(x) = (a+ b)
2 − l2 − e2 ≥ 0 (24)

g6(x) = (l − Zmax)
2 − (a− e)

2 − b2 ≥ 0 (25)

g7(x) = l − Zmax ≥ 0 (26)

g8(x) = minFk (x, z)− FG ≥ 0 (27)

where, g1(x) constricts the fact that the distance between the gripping ends is smaller than the maximum
size of the object being gripped for maximum displacement of the actuator; g2(x) constricts the distance between
the gripping ends corresponding to Zmax ; g3(x) constricts the distance between the gripping ends that do not
correspond to the actuator displacement; g4(x) constricts the minimum displacement range of the gripping
ends. With g5(x) and g6(x) , geometrical features of the gripper are maintained (Figure 3). Based on the
geometry of the Gripper, the constraint g7(x) is obtained. At the grippers, the minimum grasping force in
terms of g8(x) should be equal or greater than the limit of the grasping force selected.

Figure 3. Graphical representation of g5(x) (left) and g6(x) (right) constraints.

y(x, z) shown in Eq. 20–23 expresses the distance between the gripper’s grasping ends and is calculated
through Eq. 28. Ymin and Ymax show the minimum and maximum sizes of the gripper mechanism, respectively.
Y G expresses the maximum distance between the gripper’s grasping ends; Zmax expresses maximum distance
of the actuator of the gripper; FG expresses the minimum default gripper force.

y(x, z) = 2 [e+ f + c sin (β + δ)] (28)

Geometric parameters of the gripper mechanism are given below:

Ymin = 50mm , Ymax = 100mm , Y G = 150mm , Zmax = 50mm , P = 100N , FG = 50mm .

2.1.2. Configuration design of Gripper II
The design vector, x , of the Gripper II configuration whose diagram is given in Figure ?? consists of five
variables (Eq. 29).

x = (a, b, c, d, l)
T (29)
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10 ≤ a ≤ 250 (30)

10 ≤ b ≤ 250 (31)

100 ≤ c ≤ 250 (32)

100 ≤ d ≤ 250 (33)

100 ≤ l ≤ 250 (34)

where, a , b , c , d , and l indicate link lengths with the range of values and are shown by the Eq. 30–34.
Geometrical dependencies of the Gripper II mechanism are expressed in Eq. 35–38 (Figure ??).

g =

√
(l + z)

2
+ d2 (35)

α = arccos

(
α2 + g2 − b2

2.α.g

)
+ φ (36)

β = arccos

(
b2 + g2 − α2

2.b.g

)
− φ (37)

φ = arctan

(
d

l + z

)
(38)

Dependencies between the forces of Gripper II are given in Eq. 39–41.

R.b. sin (α+ β) = F. (b+ c) (39)

R =
P

2. cosα
(40)

Fk =
P.b. sin (α+ β)

2. (b+ c) . cosα
(41)

Objective functions used for the mechanism of the Gripper II are the same as those used for Gripper I.
g1 , g2 , g3 , g4 defined for Gripper I in Eq. 20–23 are applicable for Gripper II, as well. Other constraints used
for Gripper II are as follows [5]:

g5(x) = c− Ymax − a ≥ 0 (42)

g6(x) = (a+ b)
2 − d2 − (l + z)

2 ≥ 0 (43)

g7(x) = α ≤ π

2
∀ z ∈ (0, Zmax) (44)
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where, y(x, z) defined with Eq. 45 is the distance between the grasping ends of the gripper and Zmax ,
Ymin , Ymax , Y G are the same as ones given for Gripper I.

y(x, z) = 2. (d+ (b+ c)) . sin (β) (45)

In solving of the Robot Gripper problem, minimum Fk(x, z) and maximum Fk(x, z) must be determined
for possible different z values between 0 and Zmax with constraints provided. For this, the value of z between
0 and Zmax was increased by 0.5 step value and the minimum and maximum values of the objective function
were determined. When the z value providing the constraints could not be determined, the existence of the
current solution in the population was terminated with a high penalty score.

(a) (b)

Figure 4. (a) Gripper II mechanism (b) Geometrical dependencies of Gripper II.

3. Optimization methods applied on the problem

The optimizers used in this study are multiobjective versions of popular metaheuristic algorithms. Genetic
algorithm (GA), particle swarm optimization (PSO), grey wolf Optimizer (GWO) and artificial algae algorithm
(AAA) are used to solve single objective optimization problems. These single-objective optimizers are developed
into multiobjective versions by means of common additional methods.

3.1. Genetic Algorithm

GA is an evolutionary search and optimization method developed by Holland in 1975 based on genetic and
natural selection principles [19]. GA starts with the randomly creation of an initial population that consists
of N number of solutions called chromosomes (Eq. 46). Chromosomes denoted by Xi = xi1, xi2, , xid , each
containing one of the candidate solutions, are formed by the combination of significant genes [20].

xij = lij + r(uij − lij) (46)

where i = 1, 2, ..., N , j = 1, 2, ..., d; d expresses the dimension of the numeric function, lij and uij express
the upper and lower bounds of the dimension j ; r expresses a random uniformly distributed number between
[0, 1] .

Traditionally, genetic processes are performed with crossover and mutation operators. The crossover
operator combines the genetic materials of two chromosomes, called parents, to produce new individuals called
offspring. Individuals with good characteristics that are likely to be selected are chosen to be parents of the
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next generation and pass their genes to the next generation. The mutation alters one or more randomly selected
genes of the chromosomes. Mutations add genetic diversity to the population [20].

The population is evolved towards the best solution by crossover and mutation operators throughout
iterations (Figure 5). The first step of an iteration begins with the calculation of the fitness values of each chro-
mosome in the population. Then, parents selected for reproduction are replaced by crossover and transformed
with mutation to create offspring chromosomes. Parent chromosomes that are not passed through crossover or
mutation and newly generated child chromosomes form a new population. This new population creation process
is repeated for the specified number of times or until the time that no better chromosomes are generated [21].

START
Generate Initial

Population (t = 0)
 Evaluation ST OP END

SelectionCrossoverMutation

t = t+1

Y

N

(next generation)

Figure 5. Steps of Genetic Algorithm

3.2. Particle swarm optimization

PSO, a swarm-based optimization algorithm, was proposed by Kennedy et al. in 1995 [22]. A global optimum
solution is searched in PSO by considering the position and speed of each particle forming the swarm. In the
first stage of the method, the position Xi = xi1, xi2, , xid and the velocity vector Vi = vi1, vi2, , vid are randomly
generated in accordance with the method in Eq. (46) to form the initial population for N number of solutions.
Then the position Xi ’ and vector Vi ’ values of each particle in the next iteration are updated as per Eq.s (47,
48).

Vi
′ = wVi + c1r1(pbesti −Xi) + c2r2(gbest−Xi) (47)

Xi
′ = XiVi

′ (48)

where, pbesti expresses the best position that the particle i has ever achieved; gbest , the best position the swarm
has ever achieved; c1 and c2 express the two constants representing acceleration coefficients, which generally
take the value of 2.0; r1 and r2 express a number randomly distributed between [0, 1]; and w expresses the
linearly decreasing inertia weight in the range of [0.9, 0.4] during iterations. The algorithm repeats this cycle
until it reaches the predetermined criteria of dismissal.

3.3. Grey wolf optimizer

GWO, proposed by Mirjalili et al. in 2014 is a metaheuristic optimization method inspired by the behavior of
the grey wolves in nature and the hierarchical structure within the flock [23]. The wolves in the flock can have
one of four different roles. The first three fittest individuals are defined as α, β , and δ , respectively. These
three individuals lead the other individuals in the flock defined as w .
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In the first stage of the method, the position Xi = xi1, xi2, , xid is randomly generated in accordance
with the method in Eq. (46) to form the initial population for N number of solutions. The next position of
each wolf is determined by Eq.s (49,50).

Di = |CXp −Xi| (49)

X ′
i = |Xp −ADi| (50)

In the Eq. (49), Xp is the position vector of the prey, Xi is the position of the ith wolf in the flock, Di is the
distance between Xp and Xi . A and C are the coefficient factors and calculated with the help of Eq.s (51,
52):

A = 2ar1 − a (51)

C = 2r2 (52)

While a decreases linearly in the range of [2.0, 0.0] during iterations; r1 and r2 are random values
between [0, 1]. The next positions of the solutions are calculated through Eq.s (53-55) with respect to the
positions of α, β , and δ , the fittest three in the pack, since the position of the prey is not known.

Dα = C1Xα −Xi, Dβ = C2Xβ −Xi, Dσ = C3Xσ −Xi (53)

X1 = Xα −A1Dα, X2 = Xβ −A2Dβ , X3 = Xσ −A3Dσ, (54)

X ′
i =

X1 +X2 +X3

3
(55)

The algorithm repeats this cycle until it reaches the predetermined criteria of dismissal.

3.4. Artificial algae algorithm
AAA is a swarm-based heuristic optimization algorithm, which is inspired by the behavior of algae in accessing
the substances they need to produce food [24]. In this method, a possible solution is represented by the position
of an algal colony, and its fitness value is represented by the nutrient concentration of the colony.

Each iteration of AAA consists of three main phases: helical motion, evolutionary process, and adaptation.
In the first stage of the method, the position Xi = xi1, xi2, , xid is randomly generated in accordance with the
method in Eq. (46) to form the initial population for N number of solutions. Xi represents an algal colony,
and xij represents an algal cell that belongs to that colony. The position of each colony in the next iteration
(X ′

i ) is then updated as per the Eq.s (56-61), where the helical motion is modeled.

x′
im = xim + (xjm − xim)(∆− τ(xi))p (56)

x′
ik = xik + (xjk − xik)(∆− τ(xi))cosα (57)

x′
iz = xiz + (xjz − xiz)(∆− τ(xi))sinα (58)
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τ(xi) = 2π(
3

√
3Gi

4π
) (59)

G′
i = Gi + µiGi (60)

µi =
µmaxf(xi)
Gi

2 + f(xi)
(61)

where xim , xik , and xiz are three algae cells randomly selected from the ith algal colony (mth , kth , and
zth cells), xjm , xjk , xjz are algae cells in selected sizes of a different algae cell in the population determined
as the light source, α, β ∈ [0, 2π] c; p ∈ [−1, 1] , ∆ is the coefficient of cutting force. τ(xi) , however, is the
friction coefficient of the ith algal colony at time t ; Gi is the size of this colony, i is the growth rate of the
colony, µmax is the maximum growth rate which is considered to be 1 , and f(xi) is the fitness value.

In the evolutionary process, in the place of a randomly selected cell of the smallest algal colony, a cell of
a same size within the largest colony is copied. In this process, an algal colony, which has not been able to grow
sufficiently in its environment, tries to resemble the largest colony in the same environment to survive during
the adaptation stage. The algal colony with the highest starving level is subjected to adaptation after a helical
motion cycle.

3.5. Adaptation of the single objective algorithms to the multi-objective ones
There is a set of solutions, called pareto solutions, in multiobjective optimization instead of a single optimal
solution. All pareto solutions are equally important in terms of objective functions. Thus, it is difficult to
define both the best and worst solutions and to compare two solutions. Therefore, additional modifications
are required to solve multiobjective optimization problems with single objective optimizers. However, these
modifications are made with a strategy that algorithms use when comparing the two solutions, not with the one
in the algorithms’ own solution update mechanisms. The pseudo-code of the method used for the conversion of
a single objective optimizer into a multiobjective optimizer is given in Algorithm 1.

Algorithm 1 Pseudo code for adopting metaheuristic algorithms to multiobjective
1: Initialize P0 randomly in S and evaluate F for P0

2: Sort P0 based on nondominated sort method
3: Find NDR and fronts
4: Compute CRD for each front
5: Get updated solutions (Pj ) using Metaheuristic Algorithm
6: Merge P0 and Pj in Pi ( Pi = P0 ∪ Pj )
7: For Pi perform Step 2
8: Sort Pi based on NDR and CRD
9: Replace P0 with first Npop members of Pi

, where Npop is the population size and S is the feasible solution set. An initial population P0 is created
from S randomly. Objective function values are calculated for each solution in P0 and the values are assigned
to the F vectors of the solutions. In the next step, the computations of nondominated sorting and crowding
distance are performed on P0 . The single-objective version of the optimizer is performed on P0 to obtain new
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population Pj . Pi is obtained by merged P0 and Pj . The solutions in Pi are ranked according to the values
of non-dominated ranking (NDR) and crowding-distance (CRD). P0 is updated by replacing its solutions with
the best N solutions in the ranked Pi . These processes are repeated until the maximum number of iterations is
reached [25].

The values of NDR, calculating by fast nondominated sorting method, and CRD, calculating by crowding-
distance methods, are used to compare between the existing and the current solutions. If the NDR value of the
current solution is better than the NDR of the existing solution, current solution is considered as the better
solution. If the NDR values of the solutions are equal, the solution with a better CRD value is considered as the
better. The solution with the best NDR value and CRD values is considered the best solution in a population.
Conversely, the worst solution is the one with the worst values of NDR and CRD [25, 26].

Each solution is compared to the other ones in the population according to the roles of pareto domination
in Fast non-dominated sorting method. Non-dominated solutions form the first non-dominated front and NDR
values of these solutions are equal to 1. The remaining non-dominated solutions in the population are selected
to form the second front and NDR values of these solutions are equal to 2. Likewise, the remaining solutions
are placed to the fronts according to their non-domination ranks. Thus, all solutions are placed to the fronts
by sorting according to their nondomination levels [25, 26].

Crowding-distance is an approach to protect diversity in the population. CRD value of a solution is
calculated with the help of two nearest neighbors of it and extreme solutions at the same degree of the solution.
The solutions on the related front are ranked increasingly according to objective function values. CDR values of
the first and the last solutions on the ordered front are set to infinity in order to protect the extreme solutions
of each objective in the population. CRD values of the other solutions on the front are calculated by Eq. (62)
[26].

CRDj
i =

objF i+1
j − objF i−1

j

objFN
j − objF 1

j

(62)

, where j is the index of the objectives in the problem, i is the index of the solutions on the front, N is
the total number of solutions. CRD values are calculated as the number of objective functions for each solution
on the front. Ultimate CRD value of a solution on the front calculated by adding up the CRD values for the
objectives of the solution [26].

4. Results and Discussion

Robot gripper design optimization problem was solved with NSGA-II, MOGWO, MOAAA, and MOPSO. For
comparison, the results of Osyczka [5] obtained with MOGA were directly taken from his study and described as
“original” in our study. As Datta and Deb [7] did not include the numerical results of NSGA-II method in their
own studies, in order to make a robust comparison, NSGA-II method was reapplied to the problem following
the same parameters in the study. The performance of each optimizer was examined separately by using pareto-
front curves and hypervolume metric (HV) [27,28]. In addition, the characteristics of the design variables were
revealed through analysis of the obtained optimal solutions. The algorithms were run on a computer with Intel
Core ™ i7 and 2.6 GHz CPU and 8GB RAM, using MATLAB 2016b software (MathWorks, Inc., Natick, MA,
USA) on 64-bit Windows 10 operating system.
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4.1. Experimental settings and parameter tuning

For fair performance comparison, the population size was selected as 100 for all algorithms. Number of function
evaluation was used as stopping criterion and set to 10e4 . All algorithms were run 30 times with random seeds.
The front size value of the algorithms was selected as 200 for pareto-front analysis.

Besides these general conditions, metaheuristic algorithms have their own parameters. The performance
of these algorithms varies according to the values selected for the parameters. For this reason, proper parameter
value selection is necessary to reach optimal solutions.

Since evolutionary and adaptation processes of AAA reduce diversity and convergence, MOAAA uses
polynomial mutation method instead. NSGA-II also uses polynomial mutation and for both MOAAA and
NSGA-II, probability of simulated binary crossover (SBX) was selected as 0.9 and mutation probability was
selected as 0.1. For real-variable SBX and real-variable mutation, distribution indexes were selected as 20 and
100, respectively.

For MOGWO, number of grids per each dimension was selected as 20 and gamma value was set as 2.
For MOPSO, number of grids per each dimension was selected as 7, inertia weight was selected as 0.5, inertia
weight dumping rate as 0.99, personal learning coefficient as 1, global learning coefficient as 2, gamma value as
2 and mutation rate as 0.1.

In addition, parameter tuning was performed to determine the appropriate values of the two parameters
of MOAAA, MOGWO and MOPSO used in solving Gripper I and Gripper II problems. In this context, cutting
force(∆) and energy loss (e) parameters were selected for MOAAA, grid inflation (α) and leader selection
pressure (β ) were selected for MOGWO, and MOPSO. Each algorithm was run 30 times with the defined
parameter values in the scheme and the average HV values were calculated and presented in Table 1 and
Table 2. The most suitable parameter values found for the algorithms were summarized in Table 3.

4.2. Results for Gripper I
The pareto optimal curves of solutions, obtained by the applied optimizers to the problem were presented in
Figure 6. At the end of optimization, it was aimed to store 200 solutions, but number of solutions found by
MOGWO and MOPSO was much lower than those found by other algorithms and was in range between 5
and 20. While the results obtained by MOAAA dominated the results obtained by NSGA-II, the results were
slightly better than the solutions obtained by MOGA. In addition, the performance of MOPSO and MOGWO
algorithms was lower compared to other algorithms.

The performance of the optimizers applied to the problem was also examined in terms of hypervolume
(HV) indicator. Because the problem had two objectives, hypervolume indicator was computed as hyper area
[28]. By running each algorithm 30 times, the HV values of the solutions obtained in pareto-front curves were
calculated. Maximum f1, f2 points in the nondominant solution set of algorithms were selected as the reference
point in the calculations. Statistical evaluation of the obtained results was given in Table 4.

NSGA-II achieved the best HV value, which was the maximum one of the obtained scores. However,
in terms of minimum and mean HV values, MOAAA was more successful. Although MOGWO seemed more
stable with a lower standard deviation than other optimizers, this was because MOGWO found very few results.
Similarly, the number of solutions found by MOPSO was also much lower than those found by other algorithms.
When we compare MOAAA and NSGA-II in terms of stability, MOAAA worked more stable with a small
difference. Following results presented in this subsection were based on MOAAA since it obtained the best
mean performance.
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Table 1. HV values obtained with parameter scheme for Gripper I.

MOAAA
e / ∆ 0.1 0.2 0.3 0.4 0.5
1 0.198864 0.188713 0.212175 0.458474 0.286629
2 0.736424 0.239787 0.162109 0.150434 0.150589
3 1.762455 0.188714 0.181339 0.231712 0.426979
4 0.199148 0.723451 0.348524 0.944471 0.904897

MOGWO
α / β 0.1 0.2 0.3 0.4 0.5
1 1.019515 0.721256 6.60703 1.417709 1.13278
2 1.470648 1.890653 1.070068 1.669965 3.420685
3 0.838014 3.901131 0.829132 5.596999 1.1427
4 2.803807 0.335991 0.79851 1.133351 1.688593

MOPSO
α / β 0.1 0.2 0.3 0.4 0.5
1 6.211303 0.555267 1.530974 0.565418 2.136324
2 0.470426 1.324686 1.764479 1.292824 1.961765
3 1.181807 1.523437 1.552609 0.65545 1.090087
4 3.139487 0.931006 3.769469 1.172927 0.973215

Table 2. HV values obtained with parameter scheme for Gripper II.

MOAAA
e / ∆ 0.1 0.2 0.3 0.4 0.5
1 1721.235 1576.286 1666.635 1842.619 1508.368
2 1486.26 1490.54 1487.691 1495.513 1490.809
3 1476.103 1475.07 1463.23 1453.479 1457.599
4 1447.984 1442.858 1466.505 1467.927 1460.512

MOGWO
α / β 0.1 0.2 0.3 0.4 0.5
1 1348.758 795.0987 410.6486 377.0293 584.2573
2 1151.249 473.981 730.0036 1221.415 662.7884
3 422.7638 2355.98 640.6975 1161.351 433.8639
4 374.6938 942.4351 620.3936 826.2959 1775.361

MOPSO
α / β 0.1 0.2 0.3 0.4 0.5
1 2876.173 993.5168 1876.043 1202.197 895.4167
2 10969 1401.511 1738.941 6319.743 1211.569
3 41828.03 2370.034 1480.112 1033.176 2481.02
4 6471.683 1733.632 2727.489 1241.717 1122.926
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Table 3. Best configurations for set of selected parameters

Gripper I Gripper II
e/α ∆/β e/α ∆/β

MOAAA 0.1 3 0.4 1
MOPSO 0.1 1 0.1 3
MOGWO 0.3 1 0.1 3
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Figure 6. Pareto optimal curves of the solutions.

Table 4. Comparison of optimizers for Gripper I based on HV metric.

Optimizer Minimum Maximum Mean Std. Dev
MOPSO 0.412628 21.0656 6.556675 5.166969
MOGWO 0.173416 18.20551 5.560682 4.380597
MOAAA 0.835446 22.74119 7.771376 5.605863
NSGAII 0.563397 23.1578 7.712539 5.704334

Five representative solutions from the pareto set of MOAAA for the Gripper I mechanism were presented.
in Table 5. The exemplary designs given here do not have any superiority over the others. They are all examples
of optimal designs. As can be seen from Table 5, it is enough to adjust the design variables c , f and δ to obtain
different optimal designs in Gripper I. Other parameters have similar values in all optimal designs. Figure 7
demonstrates how design variables change with respect to the second objective function (force transmission
ratio - f2 ).

As it can be seen from the graphs, the variable a was 250, its upper limit value; the variables b , e and
l were fixed at 229, 13, 216, respectively. Design variables that made the difference between optimal designs
were variables c , f and δ . Here, the variable c (gripper link length) changed as monotonous to the force
transmission ratio (f2) as shown in Figure 7c and the relationship between them can be expressed linearly as
c = 189.312×f2 .

The results obtained in the study showed that the length of link c should be larger for higher force
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Table 5. Some nondominated solutions for Gripper I.

f1(x) f2(x) a b c e f l δ

1 0.467 1.48 250 229.2489139 288.8811795 13.17761212 32.07097718 216.2533262 1.968850801
2 0.544 1.271 250 229.2489139 248.0335479 13.16949941 25.72711831 216.2621674 1.943711437
3 0.559 1.236 250 229.2489139 241.2300885 13.17112009 29.52630403 216.2621674 1.963142144
4 0.655 1.0589 250 229.2489139 206.6813311 13.18285929 26.09867465 216.1365434 1.955990015
5 0.656 1.053 250 229.2489139 205.5625523 13.16749119 25.29606726 216.2685968 1.955461294
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Figure 7. Variations of link length for Gripper I: (a) a with f2 (b) b with f2 (c) c with f2 (d) δ with f2 (e) e with
f2 (f) f with f2 (g) l with f2 .

transmission ratio and smaller for lower force transmission ratio. Thus, selecting the link length of c high will
cause f2 value to be high. In addition, while the other design variable, f , showed an irregular distribution
between 10 and 35, the variable δ varied between 1.89 and 2.04. There was no monotonous relationship between
these two variables and f2 . The results showed that for a better gripper design, it was not enough to select
only the link length of c . In addition, the appropriate values should also have been selected for the variables f

and δ . Datta and Deb [7] stated in his study that only the variable c had a monotonous relationship with f2 ,
and the other variables took constant values. However, it was observed that the results obtained by Datta and
Deb for Gripper-I design did not meet the g1(x) and g3(x) constraints according to the values of the presented
solutions. Consequently, the relationships between the design variables and f2 in [7] were not verified.

4.3. Results for Gripper II

The pareto optimal curves of algorithms obtained for Gripper II configuration were presented in Figure 8. At
the end of optimization, it was aimed to store 200 solutions, but average number of solutions found by MOGWO
and MOPSO was around 50, almost a quarter of other algorithms. As shown in Figure 8, the fronts obtained by
MOAAA and NSGA-II were very close to each other and slightly dominated the results obtained by MOGWO
and MOPSO. Finally, quality of solutions obtained by MOGA algorithm was far behind compared to other
algorithms.

The performances of the optimizers calculated in terms of HV metric for Gripper II configuration were
presented in Table 6. It was observed that MOAAA achieved the best score compared to other algorithms.
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Figure 8. Pareto optimal curves of the solutions.

Moreover, MOAAA obtained better mean score than other algorithms. NSGA-II took the second place and was
closest one to MOAAA in terms of mean score. In terms of standard deviation, it can be said that MOGWO and
MOPSO worked slightly more stable than MOAAA and NSGA-II. Following results presented in this subsection
were based on MOAAA since it obtained the best mean performance.

Five representative solutions from the pareto set of MOAAA for the Gripper II mechanism were presented
in Table 7. As can be seen from Table 7, it is enough to adjust the design variables b and d to achieve different
optimal designs in Gripper II. Other parameters have similar values in all optimal designs.

Figure 9 illustrates how the design variables change with respect to the second objective function (force
transmission ratio).

As it can be seen from the graphs, while the variable a was fixed at 150, variables c and l were fixed
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Table 6. Comparison of optimizers for Gripper II based on HV metric

Optimizer Minimum Maximum Mean Std. Dev
MOPSO 1657.26 180128.69 16992.70 34415.12
MOGWO 1619.445 168466.91 16258.019 32461.36
MOAAA 1741.50 202905.05 18494.86 38379.54
NSGAII 1745.85 196981.69 18053.02 37305.26

Table 7. Some nondominated solutions for Gripper II.

f1(x) f2(x) a b c d l

1 47.681 3.380 149.865 207.448 249.948 116.379 249.078
2 94.532 2.367 149.974 224.698 250 121.221 249.042
3 455.748 1.623 149.915 243.646 249.949 129.460 249.948
4 653.587 1.557 149.572 245.280 249.659 129.460 249.619
5 749.612 1.532 149.974 246.224 250 130.197 249.995
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Figure 9. Variations of link length for Gripper II: (a) a with f2 (b) b with f2 (c) c with f2 (d) d with f2 (e) l with
f2 .

at 250, which was the upper limit in all solutions. Design variables that made the difference between optimal
designs were the variables b and d . Here, the relationship between the link length b and force transmission
ratio (f2) can be expressed as b = 282.789×f−0.298

2 . The relationship between the other link length d and force
transmission ratio (f2) can be expressed as d = 142.631 × f−0.184

2 . Although the design variables b and d in
Gripper II varied within a small region of their variable range, they had the effect of creating a conflict between
the two objective functions involved in the problem. With the increase in f2 , the variable value b decreased.
This can be explained by the fact that the variables b and c behaved as an equilibrium in proportion to the
end forces P and Fk . This is because f2 = P/Fk and for a constant c , f2 is inversely proportional to b .
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4.4. Comparison of gripper I and II

Choosing a better design in terms of the objective functions used for Gripper I and II designs is an important
concern for end users. Even though the designs are similar, there are operational differences between them.
Compared to Gripper I, Gripper II has less connections. Moreover, while Gripper-I closes tips when the actuator
is moved to the right, the Gripper-II closes tips when it is moved to the left. Minimizing the first objective,
which is the difference between maximum and minimum gripping forces, ensures that the gripping force does
not change much over the entire operating range of the gripper. As seen in Figure 6 and Figure 8, the changes
in gripping force Fk are higher than in Gripper II. In addition, Gripper I has a better force transmission ratio.
Thus, when comparing the pareto-optimal solution curves of the gripper designs given in Figure 10, it can be
said that Gripper I is generally a better design compared to Gripper II. As seen in Figure 10, Gripper I achieves
better force transmission ratio compared to Gripper II.
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Figure 10. Comparison of pareto-optimal solution curves of two gripper designs.

When Gripper I configuration is considered, it is seen that the problem has 7 design variables and 8
constraints. As can be seen in Fig 6, the MOAAA algorithm achieves the most successful results for this
configuration, while the results are close to the MOGA algorithm. NSGA II achieves a slightly worse pareto
front curve than these two methods. On the other hand, MOGWO and MOPSO algorithms achieves a limited
number of pareto curves with solutions and stand behind other algorithms. The Gripper II configuration contains
fewer decision variables and constraints than Gripper I. There are 5 decision variables and 7 constraints in this
configuration. As can be seen in Fig 8, MOAAA and NSGA-II presents the best pareto curves in Gripper II
configuration with slightly better solutions than MOGWO and MOPSO. Contrary to its performance in the
Gripper I problem, the MOGA shows much lower performance in Gripper II problem and is far behind other
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algorithms.

5. Conclusion
In this study, the optimization of two configurations of robot gripper design is discussed. Analysis of the problem
is carried out to determine the design principles. When the pareto-optimal results are examined: c , f and δ

values of Gripper I and b , and d values of Gripper II are changed; the other parameters has a fixed value. In
addition, the problem specific performances of multiobjective optimizers applied to the problem are compared
under equal conditions. MOAAA comes to the fore as the only method to obtain the best pareto-front curves
for both Gripper I and Gripper II problems. These solutions are also the best-known results in the literature.
The results of this study will be guiding for designers and researchers in use of metaheuristic algorithms for
gripper design optimization. In future studies, it is planned to reformulate the robot gripper design problem by
removing the remaining design variables from the configurations.
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