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Abstract: High impact scientific applications processed in distributed data centers often involve big data. To avoid
the intolerable delays due to huge data movements across data centers during processing, the concept of moving tasks to
data was introduced in the last decade. Even after the realization of this concept termed as data locality, the expected
quality of service was not achieved. Later, data colocality was introduced where data groupings were identified and
then data chunks were placed wisely. However, the aspect of the expected data traffic during run time is generally not
considered while placing data. To identify the expected data traffic, the knowledge of the history of data movements
is useful. In this work, this knowledge is utilized and an approach to intelligently select the nodes for placing data
groups to ensure the least possible data movements is proposed. Systematic scrutiny of log files is conducted and a gain
matrix is generated based on maximum likelihood estimation of data movements. Formally, the gain matrix is inversely
proportional to the expected data traffic inside the data center. It reflects the performance gain obtained by assigning
a block to a node with the lowest possible future data movements. To identify the optimal placement, a many-to-one
assignment problem-based algorithm is presented. By experimental analysis, it is observed that the movement of data
is significantly reduced by the proposed approach. It is also found that the performance has improved considerably.
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1. Introduction
In this information age, various researchers and industrial pioneers have joined hands to create economic and
social value from big data. An increasing demand for quick insights from raw data has urged the research
community to focus on introducing fundamentally new approaches in terms of architecture, tools, and techniques.
Proper data management is critical for efficiently processing large datasets. Improper data organization and
management will lead to high data traffic in the processing infrastructure. This affects the performance that
directly impacts the business. Thus, data traffic is a critical bottleneck that needs to be minimized. To handle
this issue, data scientists introduced the concept of data locality. The idea was to move tasks to the content
servers where processing happens, rather than bringing data to the processing nodes. It was a major paradigm
shift that made it possible to process big data in virtualized servers.

Later, in practical scientific and engineering applications, an interesting property called ‘interest locality’
was identified. Interest locality revealed that data scientists usually sweep data sets only as specific parts and
not as a whole. And, the frequency of accessing one particular group of datasets is more likely than others.
According to this property, ‘data groupings’ played an important role while placing data in a server. This
was termed as data colocality in the literature. In the past few years, data colocality based data placement
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techniques have gained a lot of attention. Researchers across the globe applied multiple variants of the data
colocality based data placement schemes and have shown performance improvements. However, the knowledge
based on history of data movements across data centers is not explored yet.

In Google’s PageRank, the performance of matrix-vector multiplication is critical. This algorithm is best
solved using the MapReduce framework as the inputs are practically very large. In this algorithm, the vector
is assumed to fit in the main memory of the node in which the large sparse matrix is split and processed. This
necessitates that the vector needs to be moved to the mapper node to be multiplied with the matrix. This data
movement happens for every input split that has been assigned a specific mapper leading to numerous data
block movements. Such critical cases when data dependencies give rise to data movements need to be addressed.
Many popular applications including genome analysis and indexing, weather simulations, climate, atmospheric
modeling etc. have instances where data dependencies lead to data movements across data centers. Hence, a
strategy that is based on the knowledge of data movements will be of great value.

In this work, considering historic data movement information, an attempt to model a decision-making
system that decides on which node a particular data block has to reside is made. Hence, this work is termed as
‘migration aware data placement’ (MAD-placement) strategy. Here, ‘migration’ refers to the data movements
during run-time. In this strategy, the ‘gain matrix’ is introduced to represent the gain obtained by assigning a
data block to a particular node subject to the least number of data migrations. Utilizing the historic information,
the gain matrix is generated based on maximum likelihood estimation during build-stage. Then the data
groupings are identified based on the data colocality concept. These data groups are then placed in the nodes
by systematically evaluating the gain matrix. Thus, this problem drills down to a many-to-one assignment
problem which is handled using linear programming. This results in optimal data placement that ensures
minimum data movement during run-time.

The rest of this paper is organized as mentioned below: Section 2 deals with the related work. The design
of the proposed system is given in Section 3. It is followed by the grouped assignment based algorithm. The
experimental setup and the analysis conducted is discussed in Section 4. The concluding remarks are given in
Section 5.

2. Related work
Several researchers have exploited data grouping and semantics and have come up with wise strategies for data
organization and placement. Being the era of big data, data placement strategies have evolved effectively over
the time. It started by placing data in the nodes in a random fashion. Then, the effects of placing similar or
frequently accessed data groups together were studied. This led to colocality, an idea of placing similar data
blocks together in a single node. Data colocality suggests aggregation of data and placing in the appropriate
nodes. The importance of aggregation of data for improving the overall performance is given in [1–3]. Generally,
groups of data were aggregated and placed together. But, in the work by Wang, Xiao, Yin and Shang [4],
to improve the parallelism, highly affinitive groups of data blocks were placed at different nodes. The affinity
among the data blocks were identified using the log information usually available in the master node of the
cluster. In the case of Apache Hadoop, the log information is available in the name node. Identifying the
affinity using bond energy algorithm [5] shows how data block and task mappings are derived from logs and
how they are converted into history of data access graphs (HDAG). To improve disk-write throughput and
memory-write throughput, a two-level data layout approach is presented in the work by Hao, Jin and Yue [6].
Here, the groups of data are initially stored in a distributed memory file system (DMFS) on top of the Hadoop
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distributed file system (HDFS) before storing the data directly in the HDFS. Once the smaller data are merged
to result in a larger file, they are flushed to the HDFS. This two-level data layout approach was implemented
and tested by clustering data from various sensors. This rationale works well at a file-level. But, considering
the data intensive computing frameworks, it is desirable to group the data at block-level rather than file-level.

The strategy by Mahdi Ebrahami, Aravind Mohan, Andrey Kashlev and Shiyong Lu [7] involved a
metaheuristic-based optimization algorithm that places data optimally while minimizing scientific workflow
communication among the nodes. A data interdependency matrix was generated to identify which pairs of data
blocks were highly dependent. Then, every possible and legal data placement was evaluated and their heuristic
values were computed. After applying several iterations of genetic algorithm operators, such as selection,
crossover and mutation, the best placement was identified. A similar data placement scheme based on a genetic
algorithm was presented by Xu, Xu and Wang [8]. However, in these metaheuristic-based strategies, the time
taken to reach at a global optima after the several iterations involved is quite high.

Research by Zhang, Chen, Lou and Song [9] presented an operations research model that solves the
data placement problem. A location aware placement strategy was modeled as a mixed integer programming
problem and then solved. Another strategy by Runqun Xiong, Junzhou Luo and Dong [10] was to place data in
a snake-like manner across the nodes according to what they term as ‘hotness’ of data. This work showed that
the snake-like placement is energy-efficient and uses less storage. This snake like placement sometimes result in
‘confliction’. A situation when the placement suffers a confliction and a queue mechanism for rescue of homeless
blocks is given. Although the above technique is energy and space-efficient, it does not consider data locality
and the overhead incurred due to the data movements during execution.

As it is well-known, there are two types of data placement strategies: the one which places data in bulk
and the other one which adaptively places streaming data. One such adaptive data distribution strategy was
presented by Juan M. Tirado, Daniel Higuero, Javier Garcia Blas, Florin Isaila, and Jesus Carretero [11].
Here, an adaptive prediction and data grouping technique was systematically studied and implemented. Several
factors like, server utilization, load balance, and data locality were compared to show the efficiency of the
adaptive framework. Workload heterogeneity is one such factor that is critical while dealing with adaptive
frameworks. However, the framework does not consider this factor with respect to adaptive data grouping and
system sizing. Also, the effect and cost incurred due to the data movements during execution is not studied in
this work.

Based on the above research works, it is evident that the research and development and, the industry
sector are constantly in search of an optimal data placement strategy. The existing data placement strategies
basically involve huge computations as they apply metaheuristics. Also, critical scientific computations involve
huge data movements which affects the system performance. Hence, a simple data placement strategy that
strongly supports lesser data movements during run-time is valuable.

3. Migration aware data placement

Here, we propose a data placement strategy that identifies the best possible node for groups of data blocks based
on run-time data movement history. The history of data access and the history of data movements are analyzed
based on which the best possible data placement is identified. The proposed strategy is built as an overarch of a
strategy which was termed as data grouping aware data (DRAW) placement scheme [4]. This strategy identifies
the history of data access. Based on this history, the data groups with a high chance of being accessed together
in the future are identified. Then, they are placed in different nodes to improve the parallelism. To achieve
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the complete success of implementing this existing data placement strategy, we propose to analyze the history
of data movements. Based on this history information, data block groups that are most likely to be moved to
a particular node for an upcoming user request are identified. This is captured as a gain matrix which gives
the relation between a block and a node. When the matrix value is higher, a future migration is least likely
to happen. Utilizing the gain matrix, for each of the data groups, an optimal node location is identified. To
ensure optimal data placement, a many-to-one assignment problem termed as grouped assignment problem is
presented.

The process of the migration aware data placement strategy consists of three major steps: gain matrix
generation, data grouping, and optimal assignment. These steps are discussed in the following sections.

3.1. Gain matrix generation
In the first step, knowledge based on history of data movements is exploited and the gain matrix is generated.
The values in the matrix represent the gain obtained by placing a data block in a node in terms of minimal
data movements. The gain matrix is generated based on the idea that, if the data block remains to stay in a
particular node during run-time, its gain relation with that node is higher. The gain of placing block i to node
j is directly proportional to the history of access of block i placed at node j and accessed by the node j. And,
the gain is proportional to the probability of not observing a future movement of block i from node j. The
probability of no future movement is expressed as (1-maximum likelihood of future data movement). Hence, it
is expressed as a function of the two terms as shown in (1).

Gij = f{accij ∗ (1− θ̂MLEij )} (1)

where Gij denotes the gain value of block i with respect to node j. accij is the history of access frequency of
data block i at node j by node j within a time slot ∆t expressed in (2).

accij = (nij/total) (2)

where, for a given duration ∆t, nij denotes the number of accesses of the data block i at node j by the node

j and total denotes the total number of accesses of the data block i. θ̂MLEij
gives the maximum likelihood

estimate [12] of future movement of block i which is expressed based on history of data movements as in (3).

θ̂MLEij
= argmaxθ∈Θ{(f(accij |θ))} (3)

The movement probability of ith block is expressed as f(accij |θ ) where θ denotes the vector of the
corresponding block movements during run-time obtained from the HDFS logs. The term f(accij |θ ) represents
the probability of observing the system logs and representing it as a function of θ . Specifically, in restricted
parameter space, θ = {θ : θ ∈ Rk, h(θ) = 0} where h(θ) = [h1(θ), h2(θ), . . . , hr(θ)] which is a vector valued
function mapping Rk to Rr . The procedure to maximize the above function by maximizing the products
obtained by the function is tedious. Hence, we use the sample analogue of the log likelihood. As logarithm is an
increasing function, it is widely used as an equivalent to maximizing the likelihood function. It is represented
below:

θ̂MLEij
=

n∑
i=1

{log (f(accij |θ))} (4)
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Consider the fact that we are interested to find the maximum likelihood estimate of a block movement
during run-time. Hence, our aim is to identify p , which is the probability of movement of ith data block.
Suppose, 80 tasks were executed in total within the duration ∆t. As each map task processes one data
block, there are 80 data blocks of interest. For the available sample, consider that we categorize blocks with
respect to a particular node whether it was moved as ’Y’ and not moved as ’N’. the sample would simply be
[X1 = Y,X2 = Y,X3 = N, . . . ,X80 = Y ] . From this, the count of number of movements ’Y’ is observed. This
implies that a probability of no future movements is 1− p ( where p is θ̂MLEij

as above). Suppose there were
51 movements and 29 in situ task executions, and suppose that the data block i with the probability of data
movement from node 1, 2 and 3 are observed as p = 1/3, 1/2 and 2/3 respectively, maximum likelihood estimate
can be found as given below: By using the probability mass function of the binomial distribution, with sample
size as 80,

p[X = ‘Y ′|p = 1/3] =

(
80

51

)
(1/3)51(1− 1/3)29 ≈ 0.000001 (5)

p[X = ‘Y ′|p = 1/2] =

(
80

51

)
(1/2)51(1− 1/2)29 ≈ 0.04316 (6)

p[X = ‘Y ′|p = 2/3] =

(
80

51

)
(2/3)51(1− 2/3)29 ≈ 0.07950 (7)

Therefore, the likelihood of movements is maximum when p = 2 / 3. i.e. when the data block i is placed
at node 3, the likelihood of future data movement is very high. This restricts the gain value of block i with
respect to node 3 when substituted in (1). Also, it is worth noting that, like in other similar applications, if
the observed parameter follows uniform distribution, the maximum likelihood estimate coincides with Bayes
estimator.

3.2. Data grouping
The next step is to identify the data grouping information. Data groups are found as per the steps detailed
in the DRAW strategy. The various matrices computed one after the other to identify the data grouping are
discussed briefly as given below:

(i) Attribute usage matrix:
Attribute usage matrix is the matrix revealing the relationship between the two entities. Two entities
considered here are the tasks and the data blocks. From HDAG, information about the relationship
between data blocks and tasks are available in graphical form. Attribute usage matrix depicts the relation
between tasks and data blocks in a matrix format. If q is the task that is being considered, and i is the
data block referenced by q, then the usage matrix would have either a value 0 or 1. If q references the
data block, 1 is the value of the mapping, 0 if not referenced. Mathematically, this can be represented as
follows:

use(q, i) =

{
1, if q uses i
0, otherwise

(8)

(ii) Attribute affinity matrix:
For the calculation of the attribute affinity matrix, there are two inputs needed. One is the attribute usage
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matrix. Other one is the application frequencies. Application frequencies denote the number of times a
similar task is assigned to a particular VM or a site. From the HDAG, the data block task mapping table
is prepared. Attribute affinity matrix can be calculated using the formula: ref is the number of access
to data blocks block1 and block2 together for the execution of the task q. accj is the access frequency
measure of both the data blocks at node j.

aff(b1, b2) =
∑

∀nodesj

ref(b1, b2) ∗ acc(b1,b2)j (9)

(iii) Data grouping matrix (DGM):
Data grouping matrix (DGM) is a matrix indicating the relation between two data blocks. This relation
between data blocks is obtained from the HDAG. Task to data blocks mapping is converted to a table
with every data block and the task that uses this data block. So DGM would be an n*n matrix where n
is the number of data blocks that are being considered. The data grouping matrix indicates how likely
that one data block may be grouped to another data block.

(iv) Clustered data grouping matrix (CDGM):
Clustered data grouping matrix (CDGM) is a matrix derived from DGM. Bond energy algorithm (BEA)
is used with DGM as the input to derive CDGM. BEA clusters highly associated data and it saves time
by finding a suboptimal solution in less time. With this clustering, it is possible to derive a conclusion
indicating which data should be placed together. When data blocks are more than the number of nodes,
the process is repeated and a large number of clustering steps are involved.

(v) Optimal Submatrix (OSM):
Finally, high affinitive submatrices are identified as optimal submatrix (OSM) from the CDGM. These
submatrices reveal the data groupings.

3.3. Optimal assignment
In this final step, the optimal locations for the data blocks are identified. By utilizing the gain matrix and
the data groupings obtained using the previous steps, an optimal assignment is found. To find this, a suitable
assignment problem as per the linear programming approach is identified and applied. Generally, a classical
assignment problem deals with one-to-one mapping of tasks to resources while the objective is to minimize the
total cost (or maximize the total gain) of assignment. The mathematical model for classical cost minimization
problem is well-known:

Minimize

n∑
i=1

n∑
j=1

Cij ∗Xij (10)

Subject to:
n∑

i=1

Xij = 1, j = 1, . . . , n,

n∑
j=1

Xij = 1, i = 1, . . . , n,

Xij = 0 or 1
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In the above equation, Xij is assigned to 1 if and only if task i is mapped to resource j, else, assigned
as 0. Here, Cij denotes the cost of assigning task i to resource j which is to be minimized. The constraints
ensure that one-to-one cardinality is maintained. Many works with minor modifications to the basic assignment
problem are discussed elaborately in the work by Pentico [13].

In this work, a suitable many-to-one assignment problem is identified and is termed as Grouped Assign-
ment problem (GrAP). GrAP considers an m × n pregrouped gain matrix G = [gij ] and an integer k. k is the
cardinality measure that is either m or n, whichever is minimum. The idea is to assign k grouped columns to k
rows such that the sum of the corresponding gain is a maximum. Thereby, this problem becomes a many-to-one
scenario where a group of highly affinitive data blocks are mapped to a particular node. Motivation for using
the cardinality measure k is obtained from the work by Dell’Amico and Martello [14]. Formally,

Maximize

n∑
i=1

m∑
j=1

Gij ∗Xij (11)

Subject to:
n∑

i=1

Xij <= 1, j = 1, . . . ,m,

m∑
j=1

Xij <= 1, i = 1, . . . , n,

n∑
i=1

m∑
j=1

Xij = k

In (11), Xij is assigned to 1 if and only if data block i is assigned to VM j that has maximum gain value.
The implementation of the optimal assignment problem based on GrAP is given as Algorithm 1.

3.4. System architecture
The above three steps form the basis of designing the architecture of the proposed system. The system
architecture for predicting data movements and placing data appropriately is given in Figure 1. It consists of the
physical components and the virtual components. The physical components available in the data centers such
as servers and storage devices are virtualized and then multiple virtual machines (VM) are configured. Virtual
machines act as the servers that hold multiple processing elements. The virtual machine manager (VMM) is
responsible for a multitude of data center-wide decisions such as data distribution, task scheduling, and load
balancing. One of the virtual Machines is termed as the master node and the rest are considered to be the slave
nodes. The master node acts as the cluster head and is configured to maintain data distribution information
and job tracking information. The slave nodes are the nodes where the data blocks are available. The jobs
are subdivided into tasks and scheduled to the data nodes for processing. During build time, the framework
accepts random data placement and identifies data grouping and movement information. These observations
are translated into data access graphs which are vital for successful prediction and placement. The prediction
component has two interacting modules: i) gain matrix prediction module, to systematically scrutinize log
information and compute the gain matrix for a given data distribution; ii) the change detector module, that
monitors the accuracy of gain prediction and changes the likelihood estimation parameters based on service-level
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Algorithm 1: Optimal assignment based on GrAP.
Input: DblkPair[p][2] (p - no. of pairs)
Gain Matrix GM[nBlk][nslave]
(nSlave- no. of slave nodes; nblk - no. of data blocks of interest)
Output: Data Placement matrix DP[p][nslave]

1 Read GM
/* Generate IntSet[p:no. of pairs][nSlaves:no of slave nodes] */
/* For each col in GM */

2 for each col in GM[nBlk][nslave] do
3 for each row in DblkPair[p][2] do
4 if DblkPair[p][0]==GM.ColIndex then

/* Build comma separated groups */
5 IntSet[nSlave][p] .append(,)
6 IntSet[nSlave][p] .append(GM [nSlave][nblk])

/* Apply GrAP */
7 for each row Ri in IntSet do
8 for each column Cj from IntSet do
9 IntSet[nSlave][p] .add(M[,][Ci ])

/* add all comma separated items in col Ci */

10 Solve using Hungarian method
11 Return DP matrix

agreements. The placement component consists of three modules: i) the data grouping module employs DRAW
based data grouping method based on which the highly affinitive data block pairs are identified; ii) the candidate
node identification module checks for nodes that are most suitable for a given set of data block pairs. Such
potential nodes are marked as candidate nodes; iii) finally, for a given data block pair, the grouped assignment
module, evaluates and finds the best node from the candidate set of nodes. The framework is connected as a
loop so that the updated configuration is reflected in future placements.

3.4.1. Prediction component

(i) Gain matrix prediction:
The gain matrix is derived out of the logs maintained by the master node. It represents the relation
between the data blocks and the virtual machine. Logs are analyzed and a high value of gain is given to
the data block and VM pair that has been migrated less.

(ii) Change detector module:
This module constantly monitors changes in the workload patterns. These changes are to be refitted or
updated in the system so that the changes are accounted for. The accuracy of the predictions severely
affects the performance of the system. Hence, when the changes are not incorporated, it results in
inaccurate gain matrices and hence a nonoptimal data placement. In this module, minor workload
fluctuations are neglected whereas, major variations in the patterns are taken note of. These variations,
when found to be persistent, are utilized for model redefinition. The change detection algorithm that is
given in [11], is suitable for the proposed framework.
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Figure 1. System architecture for predicting the movements and placing the datablocks.

3.4.2. Placement component
This component dynamically identifies data grouping and placement information for a time frame ∆t based on
the discrete results obtained from the prediction component. The data grouping information is identified using
matrix-based mathematical computations. A candidate set of suitable VMs that could hold the data groups is
found. Then, the optimal assignment algorithm based on GrAP is executed. This assigns data groups to nodes
in a many-to-one fashion with the least possible future data movements.

(i) Data grouping module:
This module is designed as per the existing DRAW strategy. The log information from the master node
reveals history of data access which forms the basis of developing history of data access graphs (HDAG).
A set of matrix computations as discussed in Section 3.2 is done in this module.

(ii) Candidate node identification:
This module keeps track of nodes that are most suitable for a given set of data block pairs. Such potential
nodes are marked as candidate nodes. The candidate set of nodes are separately maintained for a given
data block. This acts like a cache that is looked up to quickly check if the node will be the best location
for the data block. If there is not any candidate node for a given block, the complete node list is traversed
to identify the best match. The implementation of this module is purely to speed up the lookup process.

(iii) Grouped assignment module:
After data block pairing, the gain matrix is checked for maximum value for both data blocks. Maximum
among the sum of the gain matrix values for both data blocks gives the VM id where the data blocks have
to be placed. The data blocks are then placed in the corresponding VM (as per Section 3.3).
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4. Performance analysis

For performance analysis of the proposed system, a series of simulations followed by the execution of two
real-time applications are conducted. For simulation purposes, the prediction and placement components are
developed in the CloudSim framework. The workload with task lengths measured in terms of million instructions
(MI) is generated following Poisson arrival distribution as in [15]. The performance metrics such as the response
time and the migration counts are considered. The system performance with a varied number of processing
nodes in an elastic architecture is evaluated. Also, the sensitivity of the system to a varied number of input
data blocks is studied.

4.1. Simulation environment
The simulation parameters are tabulated in Table 1. To compare the performance of the proposed MADP, the
existing DRAW system is implemented and the metrics are noted. The analysis details are explained in detail
in the following sections.

Table 1. Parameters of simulation.

Cloud entity Quantity
Data center 1
Hosts in DC 500
Host RAM capacity 16/32 GB
VM processing capacity 174/247/355 MIPS
VM 10 to 200 in steps of 10
VM RAM capacity 1920 MB
VM manager Xen
Processing elements (PE) 4/8
PE processing capacity 90/120/150/225 MIPS
Task length/instructions 500000 to 200000000 MI
Data blocks 100 to 500 in steps of 50
Data nodes 1 VM per worker node
Namenode 1 VM for master node

4.1.1. Response time: performance in an elastic architecture

In Figure 2a, the number of VMs is varied from 10 to 200 in steps of 10 whose processing capacities are specified
using million instructions per second (MIPS). The number of data blocks and the number of cloudlets (tasks)
are maintained as 300 and 200 respectively. These constants are arrived based on multiple simulation runs
conducted and based on general high performance computing (HPC) application requirements. When using
DRAW, the input is provided without the gain matrix values. For MADP, the input is provided with the
computed gain matrix values. Each cloudlet gets submitted to the data center broker. The service start time
of the cloudlet is noted. After completion of the task, the finish time is noted. The time taken to service
the cloudlet gives the response time. The average response time of the system is then identified by taking the
statistical average of all the response times for a given set of cloudlets. As seen in Figure 2a, a hike in the
response time of MADP was seen at a 70–90 range of VMs. Then, MADP attains a steady state after 120 VMs
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and is in decreasing order of response time. As we know, in cloud data centers, the number of VMs are typically
very large. Hence, decreasing order of response time for a large number of VMs is valuable.

4.1.2. Response time: sensitivity to the number of data blocks
In Figure 2b, the number of data blocks is varied from 100 to 500 in steps of 50. The number of virtual machines
and the number of tasks are maintained at 60 and 100, respectively. It is inferred that the average response
time of MADP is significantly improved w.r.t that of DRAW in many instances. To account for instances when
MADP is not at par with DRAW, it is further analyzed in terms of the number of migrations which is discussed
in the following subsections 4.1.3 and 4.1.4.
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Figure 2. Response time comparison (a) when nDatablocks = 300, nTasks = 200, and the nVMs = {10, 20, 30,...,200},
(b) when nVMs = 60, nTasks = 600, and the nDatablocks = {100, 150, 200,...,500}.

4.1.3. Migration analysis: performance in an elastic architecture
It is important to quantify the performance improvement in HPC systems using a benchmarked index. Data
availability is one such key metric [16]. Intuitively, data availability is indirectly proportional to the average
number of data migrations when HPC applications are executed in cloud systems. Hence, we delve into analyzing
the average number of migrations that happen during task execution. In Figure 3a, the numbers of VMs are
varied from 10 to 100 in steps of 10 while the number of data blocks and tasks are maintained at 300 and 200,
respectively. Migration is the difference between the number of data blocks required by the cloudlet and the
number of data blocks available in the VM to which the task is assigned. The average number of migrations
is noted and the graph is plotted. It is inferred from the graph that it tends to significantly decrease as the
number of VMs utilized is greater than 120. Interestingly, this confers with the inference from Figure 2a.

4.1.4. Migration analysis: sensitivity to the number of data blocks
In Figure 3b, the number of data blocks is varied from 100 to 500 in steps of 50 while the available number of
VMs were considered to be 60 and 100 tasks were initiated. The average number of migrations were then noted.
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It is evident that, for MADP, the number of migrations is considerably lesser than that of DRAW placement.
A trend analysis is conducted on the graph given in Figure 3b and the resultant linear trends for MADP and
DRAW are obtained. R2 corresponding to the DRAW curve is found to be 0.9924. Whereas, for MADP, R2

is found to be 0.9935. It is well-known that the higher the R-squared value, the better the model fits the data.
So, it is inferred that the linear trend best fits the MADP strategy and the forecast function will yield a similar
trend for a higher number of data blocks. y = 25.211x + 27.976 and y = 22.769x + 27.511 are the line equations
corresponding to the trendline of the DRAW curve and MADP, respectively. Further, the variance analysis on
the number of data migrations is conducted on the available data from Figure 3b and the resultant variance
percentages show that there is a minimum of 2.10% improvement due to MADP strategy when compared with
DRAW. An improvement of up to 18.96% is obtained in terms of the number of data migrations during run-time.
From the above graphs, it can be inferred that MADP performs well in many practically relevant instances.
Further, to execute real-world applications and identify the performance improvements, an Apache Hadoop
cluster is built.
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Figure 3. Migrations analysis (a) when nDatablocks = 300, nTasks = 200, and the nVMs = {10, 20, 30,...,200}, (b)
when nVMs = 60, nTasks = 600, and the nDatablocks = {100, 150, 200,...,500}.

4.2. Hadoop environment
Commodity clusters are widely used for large scale scientific computations. In this work, Hadoop environment
is created and scientific applications are executed in the cluster to evaluate the performance of the proposed
scheme. Apache Hadoop is installed in the given set of nodes and thereby a storage and processing cluster is
created. Public datasets such as literary works and weather forecasting and modeling datasets are used. The
datasets were initially uploaded in the cluster using a bulk upload procedure. The applications to analyze
literary work and model weather data were developed. These applications were executed on the cluster and
the name node logs were analyzed. The logs revealed an HDAG formation which in turn was used to identify
data block groups and also the gain matrix. The applications were executed to note down the vital metrics
of the map-reduce tasks. Then, data blocks were wiped off the cluster. With the knowledge of HDAG and
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data movement history, the MAD-placement was employed to upload the datasets into the cluster. Then, the
applications were executed to note down the metrics for the MADP strategy.

The complete details and analyses are given below: The Hadoop cluster was built with a single master
node and 4 data nodes with Hadoop 1.x version installed. The cluster and node configurations are shown in
the Table 2. The master node was configured to be the NameNode and the JobTracker, while the 4 slave nodes
were configured as the DataNodes and TaskTrackers. The storage capacities of the data nodes were configured
keeping in mind the huge dataset that is to be processed. Two widely used analytics applications such as literary
data analytics and weather data analytics were implemented. Literary data sets 1 and weather data sets 2 were
obtained from online repositories. Based on standard recommendations, the average block size was configured
as 128 MB and the replication factor was configured as 3 in the single rack testbed. On the initial bulk upload
of the two data sets, the data blocks were distributed randomly. At this stage, the workload is assigned and the
applications were executed in the cluster. From the system logs, the gain matrix and the data groupings were
generated, based on which the optimal data placements were identified.

Table 2. Apache Hadoop cluster setup.

Master node - NameNode/JobTracker Slave nodes - DataNode/TaskTracker
Model Dell PowerEdge Model Dell PowerEdge
CPU cores 8 CPU cores 8
RAM speed 7.7 GBps RAM Speed 3.7 GBps
Hard disk drive 688.5 GB Hard disk drive 666.4 GB
Network interface Intel Pro NIC Network interface Intel Pro NIC
Operating system Ubuntu 10.4 Operating system Ubuntu 10.4

Cluster network
Switch model - BayStack Gigabit Switch

4.2.1. Completion time analysis
Map-reduce task execution analysis of weather and literary data analytics application is shown in the Table
3. It is inferred that in both the applications, the number of map-reduce tasks initiated in the MADP based
Hadoop framework is lesser when compared to that of DRAW. Further analyses showed improvements in the
completion time of map-reduce executions. The graph of percentage of completion of map and reduce tasks for
weather and literary applications are shown in Figures 4a and 4b, respectively.

Table 3. Comparison of map-reduce executions.

Analytics application Placement strategy Mappers Reducers Total tasks

(a) Weather data analytics On DRAW 62 23 85
On MADP 55 16 71

(b) Literary data analytics On DRAW 52 25 77
On MADP 55 14 69

1Free eBooks (2015). Project Gutenberg [online]. Website https://www.gutenberg.org/ [accessed 04 June 2020].
2NOAA (2015). National Centers for Environmental Information [online]. Website https://www.ncdc.noaa.gov/ [accessed 04

June 2020]
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Figure 4. Completion time analysis of map-reduce applications on DRAW and MADP based Hadoop frameworks.

As time progresses, the percentage of completion of the map and reduce tasks are noted from the
JobTracker module. The solid lines denote map tasks and dashed ones denote reduce tasks. A speed up
in the execution of applications in MADP based framework is visible when compared to that of the DRAW
framework. There is an improvement of 10.58% concerning mapper and 4.85% concerning reducer when weather
analytics application is run on reorganized data as per MADP as compared with DRAW. For literary analytics,
an improvement of 16.07% and 15.55% in the map and in the reduce phase was observed. This improvement
is achieved by applying the knowledge of data movements and by optimally placing the data blocks. Based
on these analyses, for larger datasets and larger processing infrastructures, it is expected that the benefit of
applying the proposed approach will be high. It is noted that the initial random bulk upload of data incurs
overhead. This overhead is acceptable as this methodology learns adaptively and improves over time.

5. Concluding remarks

In this work, a novel data placement strategy that aims to reduce the data movements during run-time is
presented. This strategy termed as the MAD-placement is based on maximum likelihood estimation that
predicts the likelihood of a data block being moved during application execution. MADP is demonstrated
successfully by following a three-step process. First, MADP generates the gain matrix that is based on the
likelihood estimation. Then, it captures run-time data block groupings from the system logs. Finally, by
applying the many-to-one assignment problem, the data blocks are optimally placed in the data nodes. The
system is evaluated under varying conditions and application scenarios. It is inferred that the proposed system
performs well in terms of the response time and the number of block migrations. Currently, the load balance
among the nodes on implementing the proposed strategy and also the possible effect of varying the replica
factors is being analyzed. In the future, the proposed work can be extended by placing the data blocks not as
pairs but in groups of more than two blocks per group. Further, the proposed strategy can be used beyond
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the initial application area, and it can be applied to estimate task migrations and thereby schedule tasks to
resources with the least possible future migrations.
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