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Abstract: Fractional order PI controllers based on two different analytical design methods are applied to a magnetic
levitation system in this paper. The controller parameters are specified in order to fulfill specific frequency criteria. The
first design method utilizes a unity feedback reference model whose forward path includes Bode’s ideal loop transfer
function. The second method uses the reference model that has been obtained via delayed Bode’s ideal loop transfer
function. The achievement of these two controllers are contrasted with each other on the magnetic levitation system
using various criteria.
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1. Introduction
Fractional calculus has been a continuing subject for more than three centuries and its utilization in the field
of control system design is an up-to-date issue. The modeling and control of systems using fractional calculus
provides certain advantages and flexibility when compared with their integer-order counterparts [1]. There exist
three more cases with regard to the class of controllers and system models in the usage of fractional calculus,
i.e. integer-order control for fractional-order models [2] and fractional-order control for integer-order models
[3–7] and fractional-order models [8, 9].

The behavior of real-time systems are often expressed using higher-order differential equations. These
higher order models may be approximated to the low integer order with time delay models [10]. However,
these low-order models cannot represent the dynamics of the higher order systems accurately. Therefore,
the controllers developed using these low-order models exhibit inadequate closed loop performances. Their
fractional-order counterparts characterize the dynamic behavior of these systems more precisely because they
have an additional parameter (i.e. fractional order) [1, 11–13]. Therefore, integer-order or fractional-order
controllers developed based on these fractional-order models would be more realistic. Moreover, fractional-
order controllers would also be a good choice due to their some additional parameters (e.g., fractional integrator
or derivative orders). The fractional controller design methods are commonly based on frequency domain criteria
such as phase margin (ϕm ) and gain crossover frequency (ωc ). These methods are categorized into two parts:
numerical [13, 14] and analytical methods [8, 9, 15].

There exist various application areas in which fractional calculus is utilized in control and modeling of
systems. One of the most crucial application areas is magnetic levitation systems. Magnetic levitation systems
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are extensively employed in numerous areas such as magnetic levitation trains, rocket launch, artificial heart
pumps, and magnetic levitation-based fans [16, 17]. Since magnetic levitation systems possess intrinsically
nonlinear dynamics and unstable structure, the modeling and control of these systems are tough issues. Thus,
both linear and nonlinear techniques have been developed for various dynamics models [18–21].

Two fractional-order PI controllers which use two different analytical design methods [8, 9] are applied
to a magnetic levitation system in this study. In these analytical design methods, a type of fractional order
model is used. The parameters of controllers are designated in order to fulfill specific frequency domain criteria.
The first design method utilizes a unity feedback reference model whose forward path obtains Bode’s ideal loop
(BIL) transfer function [8]. In the second method, the reference model is obtained utilizing delayed BIL transfer
function in the forward path [9]. The success of these two controllers are examined on a magnetic levitation
system using various specifications. In this respect, we have shown that these two analytical controller design
methods could be implemented successfully on a highly nonlinear system.

The rest of this paper is constructed as follows: Two fractional PI controller design methods are offered
in Section 2. Section 3 gives the description and modeling of the magnetic levitation system. In Section 4, the
controllers’ design and their performance comparisons are included. Consequently, discussions and conclusions
are given in Section 5.

2. Fractional PI controllers’ design methods and their realizations

The unity feedback control system whose forward path includes L(s) is considered as Figure 1a illustrates. The
desired closed-loop transfer function might be described as follows:

Pref (s) =
L(s)

1 + L(s)
. (1)

R(s)
L(s)

Y(s)

(a)

-

R(s)
G(s)C(s)

Y(s)

(b)

-

Figure 1. (a) The reference system and (b) the control system block diagrams.

The transfer function of system (Pref (s)) given in (1) is used as a reference model for any classical control
system illustrated in Figure 1b with the transfer function P (s) of the overall system as follows:

P (s) =
C(s)G(s)

1 + C(s)G(s)
(2)

Here, G(s) and C(s) denote a system model and a controller, respectively. The controller C(s) is determined
in order that P (s) imitates Pref (s) as much as possible.

The dynamics of higher-order processes may be characterized by fractional order structures. A higher-
order transfer function might be represented by the fractional order model given as

G(s) =
Kf

τsβ + 1
e−θs. (3)
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In this manner, a higher-order process is expressed by only four system model parameters (Kf , τ, β, θ ). On the
other hand, the general transfer function of fractional order PI controller is described as

C(s) = H(s)Kp

(
1 +

1

Tisλ

)
(4)

where Kp , Ti , and λ denote the controller gain, time constant of integrator, and integrator order, respectively.
H(s) is the fractional filter.

2.1. The method based on Bode’s ideal loop transfer function

Here, we first consider the method presented in [8], which will be referred to as Method I hereafter. This
structure relies on internal model control (IMC). It is asserted in the literature that an IMC structure requires
fewer parameters than other classical structures. In this respect, L(s) given in Figure 1a is offered as BIL
transfer function [22] as follows:

L(s) =
K

sγ
(5)

where γ ∈ R and K are the fractional order and the gain of system, respectively. BIL transfer function in Eq.
(5) for γ > 0 and γ < 0 , respectively, describes fractional-order integrator and differentiator.

The controller C(s) in Figure 1b has to fulfill the following four specifications:

1. Gain crossover frequency (ωc ): |C(jωc)G(jωc| = 1 .

2. Phase margin (ϕm ): Arg(C(jωc)G(jωc)) = −π + ϕm .

3. Elimination of the steady-state error (SSE): SSE is eliminated by using fractional-order integrator.

4. Flat phase: The open loop system phase is flat around ωc . It is employed for robustness purposes.

dC(jω)G(jω)

dω
|ω=ωc = 0.

Note that SSE specification is met in case of γ ≥ 1 . When γ < 1 , BIL transfer function is implemented as
Ks1−γ

s to eliminate steady-state error.
When ωc and ϕm are given, γ and K in Eq. (5) are determined via the formulas below:

γ =
π − ϕm

π/2
(6)

and
K = ωγ

c (7)

The internal model control(IMC) structure illustrated in Figure 2 is utilized to design a controller. In
this figure, CIMC(s) and G(s) denote internal model controller and system model, respectively. The IMC
controller is easily transformed into classical controller in Figure 1b using the following formula:

C(s) =
CIMC(s)

1− CIMC(s)G(s)
. (8)

The design of IMC controller consists of two stages:

100



YUMUK et al./Turk J Elec Eng & Comp Sci

• Stage 1: The model is separated into two parts:

G(s) = Gmp(s)Gnmp(s). (9)

Here, Gmp(s) and Gnmp(s) denote minimum phase and nonminimum phase parts of model, respectively.
Moreover, Gnmp(s) has a steady-state gain of one.

• Stage 2: The controller is found using the following formula:

CIMC(s) =
M(s)

Gmp(s)
. (10)

Here, M(s) is a reference model with unity gain.

In this case, when the following process model and reference model are utilized:

G(s) =
Kf

τsβ + 1︸ ︷︷ ︸
Gmp(s)

e−θs︸︷︷︸
Gnmp(s)

, M(s) =
K

sγ +K
, (11)

the following IMC-type controller (CIMC(s)) is obtained:

CIMC(s) =
K(τsβ + 1)

Kf (sγ +K)
. (12)

The controller can be rewritten for the classical control system with unity feedback using Eq. 8 and the Taylor
approximation of the time delay of model:

C1(s) =
K(τsβ + 1)

Kf (sγ +Kθs)
(13)

This controller may be organized in the following form:

C1(s) =
sβ−1

1 + (1/Kθ)sγ−1︸ ︷︷ ︸
fractionalfilter

τ

Kfθ

(
1 +

1

τsβ

)
︸ ︷︷ ︸

PIβ

(14)

R(s)

G(s)

IMCC       (s)

m

U(s) Y(s)

Y  (s)

Real
System

–

–

Figure 2. Block diagram of internal model control.
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2.2. The method based on Bode’s ideal loop transfer function plus time delay

Secondly, we consider another method presented in [9], which will be referred to as Method II thereon after. In
this method, L(s) given in Figure 1a is offered as delayed BIL transfer function as the following:

L(s) =
K

sγ
e−θs. (15)

Here, θ denotes the model’s time delay in (3).
The following three criteria met by the controller C(s) in Figure 1b are selected:

1. Gain crossover frequency (ωc ): |C(jωc)G(jωc| = 1 .

2. Phase margin (ϕm ): Arg(C(jωc)G(jωc)) = −π + ϕm .

3. Elimination of the steady-state error: SSE is eliminated using fractional order integrator again.

When ωc and ϕm are selected, and also θ is taken from fractional model, γ and K in (15) are respectively
calculated via the following formulas:

γ =
π − ϕm − ωcθ

π/2
(16)

and
K = ωγ

c . (17)

SSE specification is again satisfied in case of γ ≥ 1 . When the integrator order is less than 1, it is
eliminated as in the previous method.

By utilizing the inverse of the fractional model in (3) without time delay in addition to BIL transfer
function, the controller is designed as follows:

C2(s) =
K(τsβ + 1)

Kfsγ
(18)

C2(s) may be rewritten in the following form:

C2(s) = sβ−γ︸ ︷︷ ︸
fractionalfilter

Kτ

Kf

(
1 +

1

τsβ

)
︸ ︷︷ ︸

PIβ

(19)

2.3. Realization of fractional order operator

Oustaloup filter approximation is used to implement fractional operator in this study, which is given by:

sα ≈ O(sα) = K ′
N∏

k=1

s+ ω′
k

s+ ωk
. (20)
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Here N and α ∈ (0, 1) denote the order of the filter and the fractional order, respectively. Moreover, the
gain(K ′ ), zeros(ω′

k ) and the poles(ωk ) of the filter are found by the following formulas:

K ′ = ωα
h .

ω′
k = ωl

(
ωh

ωl

) 2k−1−α
2N

, (21)

ωk = ωl

(
ωh

ωl

) 2k−1+α
2N

.

Here ωl and ωh denote the lower and upper frequency bound values, respectively. Throughout the study, the
order and frequency interval in the Oustaloup approximation are chosen as 11 and [103 , 10−3] . These order
and frequency interval values are considered to be adequate for a sufficient approximation of fractional order
operator [25].

3. Magnetic levitation system
3.1. Description of magnetic levitation plant

Figure 3 illustrates the magnetic levitation plant (MAGLEV). The aim of this plant is to control a one-inch solid
ball levitating in its magnetic field in the desired location. The MAGLEV is composed of three distinct parts.
The upper part consists of a solenoid coil with a steel core, i.e. an electromagnet. The middle part contains a
cell in which the magnetic ball is suspended in the gap. One of the poles of the electromagnet faces the top of a
black post with a steel ball on it. The position of the ball is measured by a photo-sensitive sensor. The distance
between the electromagnet pole face and the ball’s top hemisphere is 14 mm. Finally, in the bottom part of
the plant, the required system’s conditioning circuitry is located. For example, gain and offset potentiometers,
which belong to the ball position sensor, are situated to calibrate properly. It also includes a current resistor
to measure the coil current.

3.2. Magnetic levitation system stabilization
MAGLEV is a single input-single output unstable plant. However, the methods given in the previous section
are all applicable to stable systems. For this reason, unstable MAGLEV plant has to be stabilized in order to
apply these methods. In this respect, a state feedback controller with integrator and a feed-forward structure
is utilized. The control system block diagram is illustrated in Figure 4.

3.3. Fractional order modeling of stabilized magnetic levitation system
The step input ranging from 6.7 to 8.7 mm are applied to the system for system identification in time domain.
The maximum overshoot (δ ) and the rise time (Tp ) of the system response are found as 0.18% and 0.121 s,
respectively. The model parameters (Kf , τ , and β ) in (3) are calculated by means of the rule extracted for
time domain characteristics in [23]. There, maximum overshoot (δ ) and rise time (Tp ) are given as a function

of fractional order β and crossover frequency ωc . When ωc = τ
1
β , these formulas are obtained as

δ = 0.8(β − 1)(β − 0.75) (22)

Tp =
1.106(β − 0.255)2τ

1
β

β − 0.921
(23)
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Figure 3. Magnetic levitation system [24].
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Figure 4. Magnetic levitation control system block diagram.

In that respect, the identified fractional model is as follows:

G(s) =
1

0.012s1.37 + 1
e−0.2s. (24)

Normalized root mean square error (NRMSE) between the output of the stabilized system in Figure 4 and the
identified fractional model in (24) is calculated as 0.9323, which means very good fit since it is close to 1.
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4. Design of fractional PI controllers
4.1. Controller parameters
Controllers are designed according to the following three different specifications set:

• Case I: ωc = 2 rad/s, ϕm = 30◦

• Case II: ωc = 4 rad/s, ϕm = 30◦

• Case III: ωc = 2 rad/s, ϕm = 60◦

Case I and Case II show how gain crossover frequency affects the closed-loop system performance while
Case I and Case III demonstrate the effect of phase margin on the control system performance. Method I uses
Eqs. (6) and (7) to calculate reference model coefficients in (5) while Method II utilizes Eqs. (16) and (17)
to calculate reference model coefficients in (15), respectively. The calculated reference model parameters and
designed controllers for each case are given in Table 1.

Table 1. Reference model and controller parameters.

Method types Parameters Controllers
Case I Method I γ = 1.667 and K = 3.174 0.06s0.37

1+1.575s0.667

(
1 + 83.33

s1.37

)
Method II γ = 1.412 and K = 2.661 0.03193s−0.042

(
1 + 83.33

s1.37

)
Case II Method I γ = 1.667 and K = 10.080 0.06s0.37

1+0.496s0.667

(
1 + 83.33

s1.37

)
Method II γ = 1.1574 and K = 4.975 0.0597s0.2126

(
1 + 83.33

s1.37

)
)

Case III Method I γ = 1.333 and K = 2.520 0.06s0.37

1+1.9843s0.333

(
1 + 83.33

s1.37

)
Method II γ = 1.0787 and K = 2.112 0.02534s0.2913

(
1 + 83.33

s1.37

)

4.2. Frequency responses of the controlled systems
The sinusoidal input signals are applied to the control system to acquire open-loop frequency response. The
corresponding output signals of the closed-loop system are analyzed using fast Fourier transform. Then, the
following formula are utilized to obtain the open-loop frequency response:

G(jω)C(jω) =
T (jω)

1− T (jω)
(25)

where T (jω) and C(jω)G(jω) are the frequency responses of the closed and open loop systems.
These frequency responses of control systems for Case I, II, and III are given in Figures 5a–5c, respectively.

The corresponding frequency domain characteristics for these cases are given in Table 2. It could easily be
observed that the frequency specifications are met better by Method II for all cases.

4.3. Time domain responses of the controlled systems
Figures 6a, 7a and 8a depict respectively the step time domain responses of the controlled systems for Case I, II,
and III. Furthermore, the corresponding control signals are illustrated in Figures 6b, 7b, and 8b. Furthermore,
Table 2 gives the corresponding time domain characteristics for all cases. It can be simply observed from these
figures and the table that the control systems designed using Method II have less settling time, less rise time,
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Figure 5. The controlled systems’ frequency responses at (a) ωc = 2 rad/s,ϕm = 30◦ , (b)ωc = 4 rad/s,ϕm = 30◦ , (c)
ωc = 2 rad/s,ϕm = 60◦ .

Table 2. Frequency and time domain characteristics of control systems.

ωc (rad/s) ϕm Mp ts(s) tr (s)
Case I Method I 1.712 22.7◦ 63.3 7.344 0.630
ωc = 2 rad, ϕ = 30◦ Method II 1.981 24.9◦ 63.6 5.098 0.461
Case II Method I 2.837 20.7◦ 64.05 5.428 0.301
ωc = 4 rad, ϕ = 30◦ Method II 3.905 22.0◦ 68.21 4.538 0.235
Case III Method I 1.550 45.3◦ 26.7 3.056 0.698
ωc = 2 rad, ϕ = 60◦ Method II 1.975 54.7◦ 15.0 2.160 0.491

and less or equal overshoot than the corresponding control system designed using Method I in terms of time
domain characteristics. In addition, it can be said that the overshoot is dependent more on phase margin, rise
time depends more on cut-off frequency, and settling time relies on both specifications.

106



YUMUK et al./Turk J Elec Eng & Comp Sci

0                                    5                                  10                                 15
Time (s)

6

7

8

9

10

B
al

l p
o

si
ti

o
n

 (
m

m
)

reference signal

system response using Method I

system response using Method II

(a)

0                                    5                                  10                                 15
Time (s)

-20

0

20

40

60

V
o

lt
ag

e 
(V

)

control signal using Method I

control signal using Method II

(b)

Figure 6. (a)The output responses and (b) control signals for (ωc = 2 rad/s,ϕm = 30◦ ).
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Figure 7. (a) The output responses and (b) control signals for (ωc = 4 rad/s,ϕm = 30◦ )

5. Conclusion

In this study, we have shown the practicality of two different fractional order PI controllers based on basically
BIL transfer function. These controllers are applied to a magnetic levitation system, which is intrinsically
unstable. To apply these controllers, firstly, a state feedback is applied for stabilization. The consequent
stabilized system with measurement delays is more adequate for modeling in a special fractional order form.
Three frequency domain specifications are chosen to specify the controller design parameters. The outcoming
controllers are applied to the real-time system and their performance in meeting the specifications are compared
with each other. It is observed that the design specifications are satisfied much better by Method II. In terms
of their time domain characteristics, the control systems designed using Method II have less settling time, less
rise time, and less or equal overshoot than the corresponding control system designed using Method I.
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Figure 8. (a) The output responses and (b) control signals for (ωc = 2 rad/s,ϕm = 60◦ )
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