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Abstract: In this paper, a low communication parallel distributed adaptive signal processing (LC-PDASP) architecture
for a group of computationally incapable and inexpensive small platforms is introduced. The proposed architecture
is capable of running computationally high adaptive filtering algorithms parallely with minimally low communication
overhead. A recursive least square (RLS) adaptive algorithm based on the application of multiple-input multiple-output
(MIMO) channel estimation is implemented on the proposed LC-PDASP architecture. Complexity and Communication
burden of proposed LC-PDASP architecture are compared with that of conventional PDASP architecture. The compar-
ative analysis shows that the proposed LC-PDASP architecture exhibits low computational complexity and provides an
improvement more than of 85% reduced communication burden than the conventional PDASP architecture. Moreover,
the proposed LC-PDASP architecture provides fast convergence performance in terms of mean square error (MSE) than
the PDASP architecture.
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1. Introduction
In order to reduce the extensive amount of processing over the centralized processor, a distributed adaptive
signal processing techniques provide an interactive solution for high definition adaptive filtering algorithms
though retaining the accuracy [1, 2]. The adaptive filters based on the distributed techniques are used in
many applications, such as military surveillance, factory and transportation instrumentation, environmental
parameters estimation and agriculture development [1–3].

One of the particular objectives is that the distributive adaptive solution has potentials to share the
bandwidth, computational complexity and power usage are thereby reduced as compared to the centralized
solution [1–4]. In [5–7], the consensus based distributed solution is presented. The consensus technique requires
two time scales while working on the estimation problem. During the initial time period, each node in the
distributed network produces the individual estimate; however, in consensus stage, all the nodes then combine
the local estimations and reaching towards the desire estimate. The consensus technique relies on network
topology and particular conditions which make its ruled out real time implementation. Furthermore, the
incremental distributed technique is introduced in [8–11]. In incremental strategy, all the network nodes use the
cyclic pattern to find the estimate of the unknown coefficients with minimum power requirements. Furthermore,
in the incremental network, each individual node performs local computations and then share the updated
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information towards the adjacent node. The number of nodes in the incremental network is dependent upon the
total iterations which are used to make possible for the convergence of the adaptive algorithm. As compared to
centralized solution, the incremental approach reduces the power requirements and improves the autonomy of the
network. However, in case of multiple-input multiple-output (MIMO) channel estimation scenario, the consensus
and incremental based network techniques facing high communication burden in sense of transferring of complex
MIMO channel matrices among the nodes of the network. Likewise, in [12, 13], low communication recursive
least square technique is introduced. In this technique, the communication burden reduced by initializing the
covariance matrix at each node in the distributed network; however, all the distributed nodes still entail the
complex computational complexity of the adaptive algorithm and each node in the network is being idle for
K − 1 iterations, where K is the total number of iterations required for the complete convergence of the
adaptive filtering algorithm. Furthermore, in [14], a novel processing-efficient parallel distributed adaptive
signal processing (PDASP) architecture is introduced. The PDASP architecture entails lesser computational
cost as compared to sequentially operated algorithms [15, 16]; however, the communication burden among the
participating nodes is very high which makes a very critical impact on overall execution time of adaptive filtering
algorithm.

In this paper, a low communication parallel distributed adaptive signal processing (LC-PDASP) archi-
tecture is introduced. In the proposed architecture, each node uses the collaborative strategy though requires
limited interaction with the other nodes. The proposed architecture utilizes only two nodes for the complete
communication setup which provides the best utilization of low cost devices than the proposed LC RLS scheme
[12, 13]. Furthermore, the proposed LC-PDASP scheme exhibits reduced multiplication complexity and commu-
nication burden than the conventional PDASP architecture [14]. Moreover, the proposed architecture provides
an improvement in mean square error (MSE) than the PDASP architecture. The convergence performance of
the proposed scheme tends to be almost equivalent as that of sequentially operated RLS algorithm.

The rest of the paper is organized as follows: In Section 2, the system model for multipath based
MIMO communication system is presented. In Section 3, the proposed LC-DDASP architecture is described.
Complexity analysis and communication burden are described in Sections 4 and 5, respectively. The mean
square error (MSE) performance is presented in Section 4, and Section 5 draws the conclusions.

2. System model
The block diagram of N × N MIMO communication system is shown in Figure 1. In MIMO communication
system, the input signal is divided into N subblocks and then all the sublocks are transmitted separately
through the use of multiple antennas. Due to the parallel interference [17] as shown in Figure 2, the received
signal yk can be expressed as

yk = HH
k xk + ϑk, (1)

where

Hk =


h11 h12 · · · h1N

h21 h22 · · · h2N

...
... . . . ...

hN1 hN2 · · · hNN


is N×N channel matrix, xk = [x1,k x2,k · · · xN,k]

T is the transmitted signal vector and ϑn = [ϑ1,k ϑ2,k · · · ϑN,k]
T
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Figure 1. MIMO system model.
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Figure 2. 2× 2 MIMO communication system.

is the white noise with variance σϑ2 . In case of diffused components, receiver induces a crucial impact on the
size of the matrix. Therefore, the channel matrix H̃k becomes an N × N(C + 1) matrix [18] that can be

expressed as on the next page, where C shows the diffused components. The dimensions of H̃k are not only
dependent on the number of antennas but it also depends upon the diffused components, as shown in Figure 3.

Furthermore, for multipath fading environment, xk changes to x̃k = [x1,k · · · x1,k−(L−1) x2,k · · · x2,k−(L−1)

· · · xN,k−(L−1)]
T which is a transmitted signal vector. The time other than the current time index k provides

ISI.

3. Conventional PDASP architecture
The flow diagram of conventional PDASP architecture is shown in Figure 4. The PDASP architecture consists
of four processing nodes, namely M1 , M2 , M3 and M4 which carry the information regarding error covariance
matrix Ψk , Kalman gain gk , error vector ek and filter weights matrix Wk , respectively. The processing
nodes M1 and M4 are interlinked with M2 and M3 , respectively. Likewise, the node M2 is linked with M1

and M4 and the node M3 is linked only with the node M4 . The PDASP architecture provides an average
improvement of 94.97% in sense of decreased processing time then the sequential RLS algorithm. However, this
improvement in decreased processing time is on behalf of high communication burden which provides time lag
in the execution time of the adaptive filter [19]. Moreover, the communication burden varies for both the LoS
and diffused components. In case of LoS communication, the dimensions of the filter weight matrix Wk and
error covariance matrix Ψk are the same which implies the PDASP architecture follows the totally balancing
communication procedure. In this procedure, first of all the update information of Kalman gain gk is transmitted
from node M2 towards M1 and M4 then the nodes M1 and M4 capable to send the updated information of
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H̃k =


h11(0) · · · h11(C) h21(0) · · · hN1(C)

h12(0) · · · h12(C) h22(0) · · · hN2(C)

...
...

... . . . ...
h1N(0) · · · h1N(C) h2N(0) · · · hNN(C)



T
1 

T
2 

R
1 

R
2 

Transmitter  

Array 

Receiver 

Array  

h11(0) 

h12(0) 

h22(0) 

h 21(0) 
h 22(1) 

h 12(1) 

h21(1) 

h11(1) 

Figure 3. Frequency selective channel model for 2× 2 MIMO communication system.

error covariance matrix Ψk and filter weight matrix Wk towards M2 and M3 , respectively. Likewise, the nodes
M2 and M3 send the information of ak and ek towards M1 and M4 , respectively. However, in case of diffused
components, the dimensions of filter weight matrix Wk and error covariance matrix Ψk are varies and depend
upon the number of transmitting and receiving antennas as well as on the number of diffused components. The
dimensions of error covariance matrix Ψk , filter weight matrix Wk and Kalman gain gk for 4 × 4 MIMO
communication system with LoS and diffused components are shown in Table 1, where it can be visualized
that the error covariance matrix Ψk may provides overwhelm transmission delay in the communication link
as compared to the other elements. Furthermore, the per iteration PDASP based maximum communication
burden for the transmission of data elements with LoS and diffused components is shown in Table 2. It can be
seen that the communication burden provided by the PDASP architecture for diffused components provides a
time lag on the execution time of adaptive algorithm.

Figure 4. Implementation of MIMO RLS adaptive algorithm on PDASP architecture with nonaligned time indexes [14].
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Table 1. Dimensions occupied by error covariance matrix, channel matrix and Kalman gain for 4 × 4 MIMO system
with line-of-sight (LoS) and diffused components.

Diffused
components

Error covariance
matrix, Ψk

Filter weight
matrix, Wk

Kalman gain,
gk

L = 0 4× 4 4× 4 1× 4

L = 1 8× 8 4× 8 1× 8

L = 2 12× 12 4× 12 1× 12

L = 3 16× 16 4× 16 1× 16

Table 2. Maximum communication burden specified for one complete iteration with LoS and diffused components.

LoS/diffused components 2× 2
MIMO

3× 3
MIMO

4× 4
MIMO

LoS component 10 18 24
One diffused component 28 54 88
Two diffused components 54 108 180

4. Proposed low complexity PDASP (LC-PDASP) architecture

In the proposed LC-PDASP architecture, each node uses the collaborative strategy though requires limited
interaction with the other nodes in the distributed network. In this context, the individual computational
complexity of all the nodes, M1 · · ·M4 , in PDASP architecture is shown in Table 3; whereas, N shows the
MIMO system order and L shows the diffused components. Fuethermore, in Table 3, it can be seen that the
individual multiplication and addition complexity of the nodes M1 and M2 is greater than both the nodes M3

and M4 , respectively. Therefore, if we combine the computational complexity of the nodes M3 and M4 that
would be less or equal than the individual complexity of the nodes M1 and M2 , respectively. Furthermore,
it can be realized that multiplication complexity implies by the node M1 is greater than all the other nodes
in the PDASP architecture. Likewise, the error covariance matrix in node M1 provides high communication
burden as compared to the other nodes in the PDASP architecture which is clearly envisioned in Table 1.
The communication burden provided by the error covariance matrix Ψk can be reduced by initializing the
covariance matrix at node M2 [12, 13]; therefore, for every iteration, the node M2 uses the initialized error
covariance matrix and finds the value of Kalman gain gk . In this way, the node M1 has no need to operate in
the distributed network. The flow diagram of the proposed LC-PDASP architecture is shown in Figure 5.

The proposed LC-PDASP architecture consists of only two low cost processing nodes, namely M12 and
M34 , which are used for the complete communication setup. The processing node M12 carries the expression
of Kalman gain; likewise, the node M34 carries the information regarding error vector and filter weight matrix.
By using the nonaligned time indexes, the proposed LC-PDASP architecture runs in parallel fashion. Let
the processing time taken by Kalman gain gn and channel matrix Hn be Tg and TH , respectively. In case of
diffused components, the computational cost provided by the node M12 is greater than the node M34 ; therefore,
the strict and sufficient condition in terms of low processing time can be written as

TH ≪ Tg. (2)
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Table 3. Individual node by node computational complexity of PDASP with diffused components.

Node 1 Node 2 Node 3 Node 4
Multiplication 2(N +NL)2 (N +NL)2+ N2(L+ 1) N2(L+ 1)

complexity 2N(L+ 1)

2× 2 with L = 1 32 24 8 8
2× 2 with L = 2 72 48 12 12
3× 3 with L = 1 72 48 18 18
3× 3 with L = 2 162 99 27 27

Addition (N +NL)2 (N +NL)2 N2(L+ 1) N2(L+ 1)

complexity
2× 2 with L = 1 16 16 8 8
2× 2 with L = 2 36 36 12 12
3× 3 with L = 1 36 36 18 18
3× 3 with L = 2 81 81 27 27

Figure 5. An RLS based proposed LC-PDASP architecture for MIMO communication system.

Likewise,

Tg ≪ TmaxPDASP ≪ TseqRLS , (3)

where TmaxPDASP is the maximum processing time taken by the conventional PDASP architecture and
TseqRLS is the time taken by the RLS algorithm when it operates sequentially.

5. Complexity analysis
In this section, the complexity analysis among the sequential RLS, PDASP and proposed LC-PDASP archi-
tecture is presented. The computational complexity of the sequential RLS algorithm requires 3(N + NC)2 +

2N2(C + 1) + 2N(C + 1) + 2 multiplications and 2(N + NC)2 + 2N2(C + 1) additions per iteration; where
C shows the number of multipath components and N shows the dimensions of filter order. Furthermore,
the conventional PDASP based RLS algorithm entiais 2(N +NC)2 multiplications/divisions and (N +NC)2
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additions/subtractions per iteration at maximum. On the other hand, RLS algorithm based on LC-PDASP
architecture provides (N+NC)2+2N(C+1) multiplications/divisions and (N+NC)2 additions/subtractions.
The multiplication complexity comparisons among sequential RLS, PDASP and proposed LC-PDASP for C = 1

and C = 2 diffused components are shown in Figures 6 and 7, respectively. It can be seen that the proposed
LC-PDASP architecture thus provides much lesser multiplication complexity than the conventional PDASP
and sequential RLS algorithms.
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Figure 6. Multiplication complexity comparison among sequential and distributed techniques with one diffused com-
ponent (L = 1) .
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Figure 7. Multiplication complexity comparison among sequential and distributed techniques with two diffused com-
ponents (L = 2) .

6. Communication burden analysis

In this section, the communication burden analysis is presented. The communication burden provided by the
proposed LC-PDASP technique is much lesser than the conventional PDASP architecture. The communication
burden comparison for different MIMO systems with diffused components is shown in Table 4. It can be observed
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that LC-PDASP architecture entails N(C + 1) communication load; where N shows the MIMO system order
and L shows the number of diffused components. Furthermore, the proposed scheme provides an improvement
of more than of 85% in sense of decreased communication burden which provides a significant impact on the
overall execution time of the algorithm.

Table 4. Communication burden comparison between conventional PDASP and proposed LC-PDASP architectures
with diffused components (DCs).

System order Conventional
PDASP

Proposed
LC-PDASP

% difference

2 × 2 MIMO
with L = 1

28 4 85.71%

2 × 2 MIMO
with L = 2

54 6 88.88%

3 × 3 MIMO
with L = 1

54 6 88.88%

3 × 3 MIMO
with L = 2

108 9 91.66%

4 × 4 MIMO
with L = 1t

88 8 90.90%

4 × 4 MIMO
with L = 2

180 12 93.33%

7. Mean square performance

The Monte Carlo simulations are performed on 4 × 4 MIMO communications system with binary phase shift
keying (BPSK). The forgetting parameter λ is set as 0.98 for all the simulation setup. The MSE of MIMO RLS
based proposed LC-PDASP technique is then compared with conventional PDASP architecture and sequential
RLS algorithm. Figures 8 and 9 show the MSE comparison at low and high doppler rate, respectively. It can be
seen that the convergence performance of the proposed LC-PDASP technique tends to be almost same as that
of sequential RLS algorithm. This improved performance of the proposed technique for both the low and high
doppler rates is due to the less involvement of time nonalignments as compared to the PDASP architecture.

8. Conclusion
In this paper, a new MIMO RLS based proposed LC-PDASP architecture for a group of computationally
incapable and incapable small platforms has been proposed. The proposed architecture with the implementation
of MIMO RLS algorithm has been capable to run computationally expensive procedures parallely. The proposed
LC-PDASP architecture uses collaborative strategy though requires limited interaction with other nodes in the
distributed network. It has been observed that MIMO RLS based the proposed LC-PDASP architecture entails
lesser multiplication/division complexity as compared to PDASP and sequentially operated RLS algorithms.
Furthermore, the communication burden which has been provided by the proposed LC-PDASP architecture is
much lesser than the PDASP architecture. Moreover, the mean square error (MSE) provided by the proposed
architecture tends to be the lesser and almost same as compared to PDASP and sequential RLS algorithms,
respectively.
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Figure 8. Mean square error (MSE) performance for 4× 4 MIMO communication system when fDT = 10−6 .
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Figure 9. Mean square error (MSE) performance for 4× 4 MIMO communication system when fDT = 10−3 .
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