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Abstract: This paper investigates a multiple sensor fusion based drift compensation technique for a mecanum wheeled
mobile robot platform. The mobile robot is equipped with high-precision encoders integrated to the wheels and four
accelerometers placed on its chassis. The proposed algorithm combines the information from the encoders and the
acceleration sensors to estimate the total drift in the acceleration dimension. The inner loop controller is designed
utilizing a disturbance-observer-based acceleration control structure which is blind against the slipping motion of the
wheels. The estimated drift acceleration from the sensor fusion is then mapped back to the joint space of the robot and
used as additional compensation over the existing controllers. The proposed algorithm is tested on a series of experiments.
The results of the experiments are also compared with those of a recent study in order to provide a benchmark evaluation.
The enhanced tracking performance yielding towards smaller error magnitudes in the experiments illustrate the efficacy
and success of the proposed control architecture in attenuating the positioning drift of mecanum wheeled robots.
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1. Introduction
Precise positioning of mobile robots is among the most significant and difficult aspects of localization studies,
since the robot wheels drift on slippery ground [1]. Furthermore, the task of localizing mobile robots becomes less
feasible for holonomic mobile robots due to the specialized mecanum-type wheels [2]. The demand for mobile
robots with mecanum wheels increases in many sectors because of their easy maneuvering ability. Today,
these mecanum wheeled robots are used in factories and warehouses for tasks that require accurate and fast
conveying of objects [3] and for semiautonomous inspection and maintenance duties in hazardous environments
where humans cannot operate safely [4]. Besides navigation, manipulators attached to mobile robots with
mecanum wheels enable a wider range of possible configurations to execute more sophisticated tasks such as
haptic feedback generation [5] or intelligent manufacturing [6].

High-precision operation of mobile robots, on the other hand, is still among the most challenging problems
requiring sophisticated solutions. Traditional control methods are restricted to kinematic models and are proven
to be minimally efficient because they cannot model the drifting effects of the wheels [7]. Particularly in mobile
robots with mecanum wheels, discontinuities between the rollers lead to larger amounts of disturbances [8].
Slipping can significantly change the orientation of the robot, making it harder to control and perform a desired
task [9]. Addressing the disturbance problem due to wheel slip, several odometry-based control methods have
∗Correspondence: eray.baran@bilgi.edu.tr
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been studied in the literature. Among those methods, control methods using multiple ultrasonic distance sensors
[10] or stereo CCD cameras [11] can be counted. On the other hand, the limited range sensing ability of ultrasonic
sensors and the real-time computational requirements of visual odometry put certain limitations on the practical
implementation of these solutions. The methods with comparatively low computational requirements are mostly
based on the sensor sets like encoders, accelerometers, gyros, or inertial measurement units. On the other hand,
the employment of different sensor types comes with the problem of data reliability. As a solution to this
problem, sensor fusion techniques have been proposed for mobile robots in several studies [12, 13]. A variety of
inertial sensors were fused with either odometry and/or vision systems to estimate the robot position better.
However, inertial navigation sensors cannot be used alone due to their inherent random noise which results in
potential integration drifts. To compensate for the effect of the induced noise, estimation methods relying on
Kalman filter [14] or recursive online map generation [15] have been investigated.

Using multiple sensors of the same type was also proven to be an efficient approach in addition to serving
as an obstacle avoidance method as shown in [16] and [17]. Particularly, the study given in [17] shows the
mathematical derivations of a cost-effective solution where three ultrasonic sensors along with two receivers
were used to estimate the position and orientation of a robot accurately. In [18], realization of a sensor fusion
algorithm is shown for a mecanum wheeled mobile robot. This algorithm simply fuses two different inertial sensor
data in a Kalman filter to contribute to the prediction of the angle error and to correct it for a secondary Kalman
filter that estimates the robot position. Besides the sensor fusion, solutions based on mechanical improvements
and more sophisticated control algorithms also contribute to the positioning precision of mobile robots [19].
However, precise positioning of mecanum wheeled mobile robots without expensive absolute measurement
techniques like differential GPS seems to be a serious challenge for the practical implementations.

Addressing the positioning drift of mecanum wheeled mobile robots, in this paper, a sensor fusion
algorithm is presented making use of four analogue accelerometers and measurements of the wheel rotations
taken from the motor encoders. The algorithm relies on taking the differences of the robot center acceleration
vectors obtained from these two sensor sets. The center acceleration vectors are calculated by applying
the forward kinematics of the robot on double differentiated encoder measurements and by fusing the four
accelerometer measurements located at the corners of the platform, respectively. The difference in acceleration
vectors is then used to enforce the compensation torque of each wheel in order to minimize the drifting motion.
The inner loop reference position tracking of the wheels is enforced by a disturbance-observer-based robust
acceleration control scheme. The proposed algorithm is verified through a set of experiments making use
of different reference position trajectories. Meanwhile, the performance of the algorithm is verified with a
commercial mouse sensor attached to the bottom of the experimental platform to track the robot’s displacement
in X and Y axes.

The organization of the paper is as follows: In Section 2, a general overview of the system under
consideration is given where the kinematics of the system is derived and the details of the experimental
platform is explained. In Section 3, the methods used for the sensor fusion and the estimation of drifting
motion are explained. Section 4 is reserved for the derivation of the drift compensation algorithm where the
robust acceleration control method is also summarized. In Section 5, the illustrations and comparative numerical
evaluations of the experiment results are given. Finally in Section 6, concluding remarks are presented.
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2. System description
2.1. Design
The mobile robot used in this study is composed of four mecanum wheels to provide omnidirectional motion
with holonomic constraints. In order to provide a deeper insight about this structure, a schematic drawing is
provided in Figure 1. In this figure, symmetrically positioned accelerometers measuring the X -axis and Y -axis
accelerations are shown. Here, rn = [rn,x, rn,y]

T ∈ R2×1 represents the vector from the center of the robot
chassis to the nth accelerometer center for n = {1, 2, 3, 4} . Furthermore, the variables Ax , Ay , α , and ω

respectively stand for the linear accelerations of the robot chassis center along the x and y axes, the angular
acceleration of the robot and the angular velocity of the robot, all being computed from the accelerometer
measurements. These variables will be used throughout the derivation shown in the following sections.

Figure 1. Schematic representation of the mobile robot

2.2. Setup
The mobile robot platform used for the validation of the proposed algorithm is shown in Figure 2. The setup
contains four actuators from Faulhaber 3242 -G -012 -BX series brushless DC motor systems. Each motor is
equipped with an incremental encoder having 1000 lines/rev. resolution. The motors are connected to the
wheels with planetary gearboxes having a 1 :19 reduction ratio. Driving of the motors are made in torque
control mode using Faulhaber MCBL -3006 -S driver systems. The accelerometers are selected from ADXL -
335 series which provide an analogue output with a measurement range of ±3 g. All four accelerometers are
positioned on the chassis with distances rn,x = 147 mm and rn,y = 194 mm. The mecanum wheels have
0.05 -m radius containing a total of 9 rollers per wheel. The control algorithm is executed on a real-time control
board from Dynomotion KFlop+KAnalog series with implementation being done by coding in C language.
The algorithm is finally verified with an optical mouse sensor that was detached from a Logitech M185 series
commercial wireless mouse. The optoelectronic sensor of the mouse is mounted on the chassis of the mecanum
wheeled robot and has a resolution of 800 dots per inch (dpi) which is scaled to meters by an open-source
program called MouseTester . The optoelectronic sensor can provide measurements with a sampling frequency
of 125 Hz. During the tests prior to the implementation of the proposed algorithm, the error margin of the
optoelectronic sensor is measured to be ±0.5% on flat ground. The 2.4 GHz wireless communication interface of
the optoelectronic sensor leads to a measurement delay of approximately 100 ms. However, as this measurement
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is only used for validation purpose and is not used in the feedback loop, the measurement delay does not create
any problem during the implementation. The overall weight of the robotic platform is measured to be 8.2 kg
including the batteries while the dimensions of the system are measured as 415.8 mm × 436.4 mm × 158.3

mm for the length, width, and height, respectively. In order to better illustrate the implementation details of
the real-time algorithm, a block diagram depicting the signal flow between the components of the system is
shown in Figure 3.

(A) (B)

Figure 2. Mobile robot setup: accelerometers (red boxes), motors (yellos boxes), motor drivers (green boxes), control
board (blue box), optoelectronic position sensor (purple box). Top view (a) and side view (b).

Figure 3. Signal flow between the components of the robot.

2.3. Kinematics
The kinematic analysis of mobile robots are usually different than that of robot manipulators. Since the mobile
platform does not have any solid linkage with the earth, the notion of absolute motion does not make much
sense. Hence, in mobile robots, usually the velocity level kinematics is taken into consideration. The kinematic
relationship of the holonomic mobile robot under consideration has been well studied in many papers [20, 21].
Here, in order to give a complete framework, we summarize these results referring to the variables shown in
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Figure 1. The relationship between the wheel velocities (i.e. joint space) and the robot chassis velocity (i.e.
task space) can be given with the following formula:

Φ̇ = ΨΛ̇ (1)

where Φ̇ =
[
ϕ̇1 ϕ̇2 ϕ̇3 ϕ̇4

]T ∈ R4×1 represents the vector of joint space velocities with ϕ̇i being the

angular speed of the ith wheel and Λ̇ =
[
ẋ ẏ θ̇

]T ∈ R3×1 stands for the vector of task space velocities
(i.e. the derivatives of the actual states of the robot). In (2), the term Ψ ∈ R4×3 has the following content:

Ψ =
1

R


−1 1 (b+ a)
−1 −1 (b+ a)
1 −1 (b+ a)
1 1 (b+ a)

 (2)

Here, variables a and b represent the distance from the robot chassis center to the center of each wheel in the
vertical and horizontal directions, respectively. Further, the variable R represents the radius of the mecanum
wheels. Using (1) and (2), the kinematic Jacobian (J ∈ R3×4 ) for the velocity mapping of the system under
consideration can then be obtained using the following pseudoinverse operation:

J =
(
ΨTΨ

)−1
ΨT (3)

which yields:

J =
R

4

 −1 −1 1 1
1 −1 −1 1
1

(b+a)
1

(b+a)
1

(b+a)
1

(b+a)

 (4)

Having formulated the kinematic Jacobian, one can finally obtain the mappings between the configuration space
and the operational space respectively for the velocity and the acceleration levels as:

Λ̇ = JΦ̇ (5)

Λ̈ = JΦ̈ (6)

It is important to recall here that the term J̇Φ̇ that should naturally exist in equation (6) after differentiation
is ignored since the kinematic Jacobian has constant parameters resulting in J̇ = 0 .

3. Sensor fusion and drift estimation
3.1. Accelerometer data fusion
As also mentioned in the preceding sections, the platform under consideration is equipped with 4 accelerometers
each of which gives 3 -axis measurements. Here, a summary of accelerometer data fusion algorithm is provided
from which the accelerations and the angular speed of the mobile robot platform is extracted in the control
loop. The derivations are made using the dimensions and descriptions given in Figure 1. Originating from the
rigid body dynamics, one can write the generalized acceleration vector a ∈ R3×1 at any specific point as:

a = A0 + ω × (ω × r) +α× r (7)
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Here, A0 = [Ax, Ay, 0]
T ∈ R3×1 , ω = [0, 0, ω]

T ∈ R3×1 , α = [0, 0, α]
T ∈ R3×1 , and r = [rx, ry, 0]

T ∈ R3×1

stand for the linear acceleration of the center of the robot chassis, the angular velocity of the robot, the angular
acceleration of the robot, and the vector from the center of the robot to the selected point, respectively.
The operator × represents the cross product in (7). Expanding equation (7) for the nth accelerometer
(n ∈ {1, 2, 3, 4}), one can obtain:

ax,ni+ ay,nj = Axi+Ayj + ωk × (ωk × (rx,ni+ ry,nj))

+αk (rx,ni+ ry,nj) (8)

with i , j , and k standing for the unit vectors in x , y , and z axes, respectively. Decoupling (8), the identities
relating the center acceleration of the robot chassis to the accelerometer measurements can be calculated as:

an,x = Ax − ω2rn,x − αrn,y (9)

an,y = Ay − ω2rn,y + αrn,x (10)

Using the symmetry of the system given in Figure 1, it is possible to write down rn,x = {−rx, rx, rx,−rx} and
rn,y = {−ry,−ry, ry, ry} for n = {1, 2, 3, 4} , respectively. Combining the equations (9) and (10) for all four
accelerometers, it is possible to formulate the following identity:

1 0 −rx −ry
0 1 −ry rx
1 0 rx −ry
0 1 −ry −rx
1 0 rx ry
0 1 ry −rx
1 0 −rx ry
0 1 ry rx




Ax

Ay

ω2

α

 =



a1,x
a1,y
a2,x
a2,y
a3,x
a3,y
a4,x
a4,y


(11)

Solution of this linear system yields the acquisition of the accelerations of the robot chassis along with its
angular velocity. The identity given in (11) provides a natural sensor fusion structure with certain benefits.
Since (11) has an overdetermined structure, its solution attenuates the effect of noise in the measurement and
provides a more reliable information compared to individual sensor measurements.

3.2. Estimation of the drifting motion

Equations (6) and (11) provide two different ways to estimate the acceleration of the mobile robot. The first
one is obtained from the joint space position measurements via the encoder data. The encoders provide an
exact measurement of the angular positions of each wheel. Calculation of the task space acceleration is then
made by proper differentiation of these wheel positions and kinematics transformation (6) applied on the wheel
angular accelerations. On the other hand, the task space accelerations are also gathered using the fusion of
accelerometer data (11) as explained in the preceding section. Among those two acceleration measurements,
the one obtained from the encoders is blind against the wheel drift while the later one is affected by the slipping
motion of the robot as it is based on direct accelerometer data. The drift of the robot in the acceleration
dimension can be acquired from the difference of these two measurements as:

δΛ̈ = As − Λ̈ (12)
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where δΛ̈ =
[
δẍ δÿ δθ̈

]T ∈ R3×1 , Λ̈ =
[
ẍ ÿ θ̈

]T ∈ R3×1 , and As =
[
Ax Ay α

]T ∈ R3×1 stand
for the vectors showing the drift in acceleration dimension, the accelerations computed from the encoders, and
the accelerations obtained from the accelerometer measurements, respectively. This difference is induced from
slippage where the encoders may sense a change in position even though no change in its physical location occurs.
In the following subsection, the drift compensation algorithm will be derived using the acceleration measurement
error given in (12). In order to provide further insight about this acceleration difference, measurements
taken from the mobile robot used in this study are illustrated in Figure 4a. In this figure, the acceleration
measurements are taken while the robot was tracing a trajectory in the shape of infinity sign. Furthermore,
the results given in Figures 4b and 4c respectively stand for the velocity and position responses obtained
from direct integration of the accelerations shown in Figure 4a. In those plots, the differences between the
measurements obtained from the encoders and from the accelerometers clearly show the extent of the drifting
motion. Especially in position control, the disturbance created by the drifting motion is even bigger than the
reference motion, which is an unacceptable situation for precise localization.
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Figure 4. Responses obtained from the encoders and accelerometers: accelerations (a), velocities (b), positions (c).
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4. Proposed drift compensation method
The proposed drift compensation algorithm relies on the generation of acceleration references for the wheels.
On the other hand, tracking of these acceleration references requires proper estimation and compensation of
the disturbances acting on the wheels. In order to present the whole picture, firstly, a summary of the inner
loop disturbance compensation algorithm is given which is followed by the proposed drift control method.

4.1. Disturbance-observer-based robust acceleration control
Compensation of the disturbances acting on a motion control system is a very well-investigated concept in many
different studies [22–24]. Here, a short derivation of the robust acceleration tracking control algorithm will be
made for a single degree of freedom (DOF) system. The plant dynamics for a single DOF motion control system
(i.e. for each wheel) can be given by:

J(ϕ)ϕ̈(t) +B(ϕ, ϕ̇) +G(ϕ) = τc(t)− τe(t) (13)

where the scalars J(ϕ) , B(ϕ, ϕ̇) , G(ϕ) , τc(t) , and τe(t) represent the inertia of the plant, the viscous friction
torque, the load torque induced by the gravity, the control torque, and the external torque acting on the
system, respectively. The dynamics given in (13) contains all of the torques due to the mechanical constraints
of the system under consideration. The realization of the robust motion control depends on the estimation and
compensation of the nonlinear terms of (13). Furthermore, keeping in mind that the control torque can be
written as a scalar multiple of the control current (i.e. τc(t) = Ktic ), the previous equation can be rearranged
as follows:

Jnϕ̈(t) = Knic(t)− τd(t) (14)

where Jn and Kn stand for the nominal inertia value (i.e. J(ϕ) = Jn +∆J ) and the nominal torque constant
of the system under consideration (i.e. Kt = Kn + ∆K ). In (14), the term τd(t) represent the disturbance
torque acting on the system which has the following content:

τd(t) = ∆Jϕ̈(t) +B(ϕ, ϕ̇) +G(ϕ) + τe(t)−∆Kic(t) (15)

Here, ∆Jϕ̈(t) and ∆Kic(t) respectively represent the acceleration-induced disturbance torque and the current-
induced disturbance torque acting on the system. Using the nominal parameters Kn and Jn of the system and
a low-pass filter, the estimation of the disturbance torque ( τ̂d(t)) can be made via a disturbance observer (DOB)
which is illustrated in Figure 5. Further information on the details of the DOB structure can be found in [25]
while a stability and robustness analysis of the DOB-based motion control systems is given in [26]. Assuming
a high-accuracy estimation of the disturbance term (i.e. τd(t) − τ̂d(t) ≈ 0), one can write down the following
identity:

Jn
Kn

ϕ̈(t) = ic(t) (16)

Equation (16) can be interpreted in several ways. The most important implication of this identity is that a
motion control system with disturbance compensation can trace the desired acceleration references by properly
scaled control currents. Hence, a plant with the inner loop DOB can be referred as a robust motion control
system which can follow the enforced acceleration references. Accordingly, the drift compensation method
proposed in the following subsection will be formulated to yield the desired acceleration references for system
under consideration.
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Figure 5. Block diagram of the robust acceleration control algorithm based on disturbance observer.

4.2. Drift estimation and compensation

After the acquisition of the acceleration drift vector δΛ̈ =
[
δẍ δÿ δθ̈

]T , one can multiply it with Ψ to
convert the acceleration drift back to the wheels’ angular acceleration drift. This relation is given as follows:

ΨδΛ̈ = δΦ̈ (17)

where δΦ̈ =
[
δϕ̈1 δϕ̈2 δϕ̈3 δϕ̈4

]T ∈ R4×1 stands for the vector of wheel drifts in the acceleration

dimension. Basically, δΦ̈ contains the amount of difference in acceleration for each wheel that is needed
to be controlled to have a less drifting wheel and better follow the reference path. In order to create additional
compensation torque from (17), one has to multiply the drift accelerations with the nominal inertia of the
motors and wheel set Jn , which can be given as:

δτ =
[
δτ1 δτ2 δτ3 δτ4

]T (18)

Here, δτn ∈ R4×1 with n ∈ {1, 2, 3, 4} represents the control torque for the compensation of the drift in the
nth wheel. The inner loop compensation, on the other hand, is made by calculating the reference accelerations
using a PD control algorithm and enforcing them via the disturbance observer (DOB)-based acceleration control
method as detailed in the previous section. The power of the proposed control scheme relies on the generation
of additional feedback directly in the acceleration dimension which can easily be fused with the inner loop
controller. In order to provide further insight about the proposed control structure, a schematic drawing of the
controller block diagram is shown in Figure 6.

5. Experiments

The algorithm was tested to prove its efficiency in compensating drift caused mainly by slippage and uneven
floor. The slippage would be more observable with complex references where the wheels are required to change
rotation speed and direction rapidly during the desired motion.
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Figure 6. Block diagram of the proposed drift compensation algorithm.

5.1. Setting of the experiments

In order to highlight the performance of the proposed compensation algorithm, three different sets of experiments
are made. In each experiment set, two different tests are made for the cases without any compensation and
with the proposed compensation method making use of the same reference trajectory. The references in the
experiment sets are selected as circular trajectory, infinity sign trajectory, and sinusoidal trajectory on X -Y
plane. The alternation between these trajectory profiles had the specific purpose of testing the proposed
algorithm under different acceleration responses. The circular and infinity trajectories aim at testing the
responses under uniform and periodic accelerations with the same frequencies and with different frequencies
in two axes, respectively. On the other hand, sinusoidal trajectory is selected to observe the performance with
a periodic reference on one axis and a linear reference on the other axis. The duration of the tests are selected
such that the uncompensated response in each experiment set leads to at least 5% tracking error.

5.2. Experiment results

The results obtained from these experiments are illustrated in Figure 7. For each experiment set, the planar
trajectories are illustrated in (a) -type plots while the time-dependent X and Y trajectories (i.e. X(t) and
Y (t)) are shown in (b) - and (c) -type plots, respectively. Inspecting the results shown in the response plots, the
superior performance of the proposed control architecture can be clearly observed. In all of the experiments,
the compensated responses show better tracking than the uncompensated response.

The graphical responses are further supported by the numerical results obtained from the experiments.
The table shows the root mean squared (RMS) tracking errors of the reference trajectories along with the
improvements in errors with the proposed control scheme. In the table, the superscripts ∗nc and ∗wc represent
the responses taken from experiments without additional compensation and with the proposed compensation
method, respectively. The numerical results in the improvements are also compared with another recent study
focusing on a state observer-based sliding mode control approach for the trajectory tracking of mecanum wheeled
mobile robots [27]. Using [27] as a benchmark study, the improvement in the RMS value of tracking error with
respect to the uncompensated case for the circular reference trajectory is increased from 27.8% to 47.3% in
the x-axis and from 35.1% to 52.6% in the y-axis, respectively. Similarly, the improvement of the RMS value
of tracking error for the infinite trajectory is increased from 52.8% to 58.3% in the x-axis and from 52.3% to
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Figure 7. Experiment results. left column: responses obtained on XY plane. Middle column: X -axis reference
trajectories and responses. Right column: Y -axis reference trajectories and responses.

61.4% in the y-axis, respectively. These RMS error values also prove the superior performance of the proposed
drift compensation method.

Table . Root mean squared tracking errors.

εncrms,x εwc
rms,x Improvement (%) εncrms,y εwc

rms,y Improvement (%)
Experiment Set-1 1.4686 0.7728 47.3 1.4572 0.6913 52.6
Experiment Set-2 1.7462 0.7280 58.3 1.6725 0.6460 61.4
Experiment Set-3 1.7822 1.5712 11.8 1.5207 0.4308 71.7
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6. Conclusion
In this study, a novel drift compensation algorithm is proposed for precise indoor navigation of mecanum
wheeled robots. The proposed algorithm relies on the estimation of the acceleration drift, which is used for the
generation of compensation torques for the wheels against drifting motion. The estimation algorithm makes use
of multiple accelerometer data and the position measurements of the wheels from the encoders. The estimated
drifting torque is used as additional compensation over an inner loop control architecture based on robust
acceleration control with disturbance observer. The proposed drift compensation algorithm is validated over
a series of experiments. The results obtained from these experiments illustrate the improvement made by the
proposed controller in positioning performance of mecanum wheeled mobile robots.
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