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Abstract: Global environmental problems associated with traditional energy generation have led to a rapid increase
in the use of renewable energy sources (RES) in power systems. The integration of renewable energy technologies
is commercially available nowadays, and the most common of such RES technology is photovoltaic (PV). This paper
proposes an application of hybrid teaching-learning and artificial bee colony (TLABC) technique for determining the
optimal allocation of PV based distributed generation (DG) and battery energy storage (BES) units in the distribution
system (DS) with the aim of minimizing the total power losses. Besides, some potential nodes identified by the power
loss sensitivity factor (PLSF). Thereupon TLABC is applied to determine the location of the DG and its size from the
candidate nodes. The beta probability distribution function (PDF) is employed to characterize the randomness of solar
radiation. High penetration of RES can lead to a high level of risk in DS stability. To maintain system stability, BES is
considered to smooth out the fluctuations and improve supply continuity. The benefits of using BES is mainly dependent
on operational strategies related to PV and storage in DS. The performance of the developed approach is tested on the
69 node and 118 node DSs and compared with the differential evolution (DE) algorithm, genetic algorithm (GA), for a
fair comparison. Besides, the developed approach compared with other methods in literature which are solved the same
problem. The results show how practical is the developed approach compared with other techniques.
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1. Introduction
In the last few years, considerable attention has been paid to the usage of RES (such as PV, wind, etc.) to
minimize power losses due to global environmental problems associated with traditional generation. Many
countries have been introduced or are proceeding towards the implementation of renewable energy policies like
the renewable energy portfolio standard (RPS) [1]. Accepting an RPS is a production obligation of a certain
percentage of the total electricity production from RES for a specific date. However, available PV energy is
unstable and variable. However, high PV integration can lead to large power fluctuations, which may risk the
provision of continuous power supply. In addition, the amount of PV energy that can be absorbed by the power
system at a particular time may be significantly limited, since the available traditional units may not be able
to respond to changes caused by PV units’ fluctuations. To use this source of energy as a viable source, as
well as to ensure system stability, BES are used to retain violations of system constraints and decrease power
∗Correspondence: Correspondence: fjurado@ujaen.es
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fluctuations in DS [2]. Thus, the optimal allocation of PV units can improve system reliability and efficiency
by solving their variable nature problems [3]. The optimal allocation of PV units in the system is essential;
therefore, unplanned distribution can have many adverse effects on the system [4]. To date, many previous
studies have been focused on the optimal solution to the problem. Metaheuristic based optimization methods
have been implemented to solve DG allocation problems, such as the adaptive genetic algorithm (AGA) [5],
the multiobjective quasi-oppositional teaching learning-based optimization (QOTLBO) and quasi-oppositional
swine influenza model-based optimization with quarantine (QOSIMBO-Q) [6], the bat algorithm (BA) and
particle swarm optimization (PSO) [7], stochastic fractal search algorithm (SFSA) [8], a mixed integer nonlinear
programming (MINLP) technique [9] and krill herd algorithm (KHA) [10]. Mansur et al. have introduced a
tree growth programming method for optimal allocation of DGs in the DS in terms of minimizing annual power
losses in [11].

While most of the researches are focusing on the autonomous PV power generation system, several
researches analyse the grid-connected hybrid system (HS). Santos et al. have studied how grid dependence is
influenced when the RES is integrated in accordance with the relationship between the load and probabilistic
RES generation. The study showed that the combination of DG units reduces importing power from the grid
and, prevents losses in large-scale imported power through a substation [12]. Determining the optimal size for
PV with a BES, and the best combination (penetration of source) in HS has been investigated in [13]. Power
flow and related power losses due to the influence of HSs with the grid have been also examined [13]. A charge
and discharge strategy of BES units have been presented to mitigate the unexpected changes in PV outputs, and
residential systems peak loads support in the evening [14]. Efficient voltage regulation in DSs has been achieved
by management of the BES units’ output on the consumer side with high PV penetration [15]. Finally, an
optimal discharge and charge scheduling of the BES unit for DSs integrated the sizeable PV-based DG outputs
with aiming energy loss minimization has been studied in [16]. Nevertheless, the technical impacts of the RES
based DGs have not been properly addressed in such studies.

This paper presents a more accurate optimization approach based on teaching-learning and artificial bee
colony (TLABC) and Power loss sensitivity factor (PLSF)PLSF for optimal allocating the PV and BES units
into a DS. The main objective function is energy loss minimization. In addition, the voltage stability index
(VSI) is calculated to show the performance of the proposed method on the stability of DS.

PLSF has been applied to determine the potential nodes whereof more suitable to be connected with PV
and BES units, then the optimal allocations of DG and BES are determined using TLABC. The Beta PDF is
employed to depict the randomness of solar radiation. BES is considered to smooth out the fluctuations and
improve supply continuity. The performance of the developed approach is tested on the 69 node and 118 node
DSs and compared with GA [17], DE [18] and other techniques in the literature.

The remaining of this paper is arranged as follows: Section 2 describes PLSF analysis. Probabilistic
power generation of PV based DG, BES and load modeling are presented in Section 3. The mathematical
formulation and optimal PV and BES sizing presented in Section 4. Section 5 describes the proposed approach
and its implementation steps. Section 6 describes the simulation results. Conclusions are mentioned in Section
8.
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2. Power loss sensitivity factor (PLSF)

In this study, PLSF is used to determine the candidate nodes whereof more compatible for connecting the DG.
This strategy is more helpful to decrease the search space. The equivalent grid-connected radial DS is shown
in Figure 1.

Figure 1. Equivalent radial distribution system diagram.

In Figure 1, Pi and Pk represent the active power injected at node i and node k, respectively. Qi and Qk

represent the reactive power injected at node i and node k, respectively. Vi and Vk are the voltage magnitudes
of node i and node k, respectively. Xi and Xk represent the reactance and resistance of branch ik, respectively.
Pi and Pk and PDG+BES,k and QDG+BES,k represent the active and reactive power of DG+BES added at node
k, respectively. Pd,i , Qd,i , Pd,k and Pd,k are the active and reactive load at node i and node k, respectively.
The active and reactive power losses of branch ik are calculated as:

Pik−loss =
(Pk

2 +Qk
2)∗Rik

V 2
k

, (1)

Qik−loss =
(Pk

2 +Qk
2)∗Xik

V 2
k

. (2)

Accordingly, minimizing the total active power losses in the DS leads to reduce the total active energy
losses Eloss during 24 h as:

Eloss =

24∑
t=1

Pik−loss(t)∆t, (3)

where ∆t is the time duration, which is 1 h in this study.
PLSF can calculate using (4) as shown in Figures 2 and 3.

∂Pik−loss

∂Qk
=

2Qk
∗Rik

(Vk)2
(4)

After calculating PLSF values of all nodes, they are arranged in descending order as per these values.
The ranked up to 50% PLSF values of nodes can be regarded as candidate nodes for optimal integration of PV
and BESs in DS [19-22]. In this study, 34 and 58 nodes have been selected as candidate buses for 69-node and
118-node test systems, respectively. Due to space limitation, we will not show all candidate buses here.
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Figure 2. Determined values by PLSF for 69 node distribution system.
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Figure 3. Determined values by PLSF for 118 node distribution system.

3. PV, BES and load models

3.1. PV modeling

Power generation using PV unit is highly dependent on meteorological conditions, such as solar radiation, and
ambient temperature. These conditions are directly related to geographic area. Hence, the effectiveness of the
conditions of solar radiation in a certain area is usually analyzed at the initial stage for the effective use of PV
panels.

The standard deviation (SD) and mean of hourly solar radiation per day is calculated using collected
historical data. Continuous PDF for an exact time interval is divided into stages, in each solar radiation within
certain limits. The PV power generation is determined by all possible stages of probability’s in that hour. In
this study, the step for solar radiation is 0.05 kW/m2. The average value of each stage is used as output power
calculation for this stage (i.e. if the first stage of solar irradiation, is between 0 kW/m2 and 0.05 kW/m2, the
average value of this stage is 0.025 kW/m2 ).
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3.1.1. Solar radiation model
It is considered that the probabilistic nature of solar radiation follows the beta PDF [23]. The beta PDF of
solar radiation ‘s’ (kW/m2 ) in the time interval ‘t’ is defined as:

fb(s
t) =

Γ(α2 + β2)

Γ(α2)Γ(β2)
, 0 ≤ St ≤ 1, αt, βt ≥ 0 (5)

otherwise : fb(s
t) = 0 (6)

where, fb(st) is the Beta PDF of st , αt and βt are the shape rates of Beta PDF and Γ depicts Gamma
function. The shape rates of Beta PDF can be found using mean (µ) and SD (σ ) of radiation for suitable time
interval.

βt = (1− µt)(
µt(1 + µt)

σt2
− 1);αt =

µt ∗ βt

1− µt
(7)

The PV array hourly average power output corresponding an exact time interval ‘t’ (P t
pv ) is expressed

as (8). A typical day for three years is generated in p.u., as shown in Figure 4.

P t
pv =

ns∑
g=1

Ppvo
(stg)fb(s

t
g), (8)

where ‘g’ denotes a stage factor and ns is the solar radiation discrete stage number. stg is the gth stage

of solar radiation at tth time interval.
Solar radiation and ambient temperature are the basic dominant factors that affect the PV array power

output. The PV power generation with average solar radiation (sag ) for the gth stage is estimated as [23]:

Ppvo
(Sag) = Npvmod

∗ FF ∗ Vg ∗ Ig, (9)

where

FF =
VMPP ∗ IMPP

VOC ∗ ISC
;Vg = VOC −Kv ∗ Tcg; Ig = Sag[ISC +Ki(TC − 25)];Tcg = TA + Sag[

NOT − 20

0.8
]. (10)

Here, Npvmod
is PV modules total number. TA is ambient temperature; VMPP and IMPP are maximum

power tracing voltage (V) and current(A), respectively; VOC and ISC are open circuit voltage and short circuit
current, respectively; Ki and Kv are current and voltage temperature coefficients(A/C and V/C ) respectively;
FF is the fill factor; Tcg is PV module temperature at gth stage.

3.2. BES modeling

Over the last few years, several types of energy storage (ES) have been intensively studied. These types include
super capacitors, electrochemical battery, compressed air ES, flywheel ES, and superconducting magnetic ES.

777



KHASANOV et al./Turk J Elec Eng & Comp Sci

Hour

D
em

an
d

/P
V

 o
u

tp
u

t(
p

.u
)

Figure 4. Normalized daily active load curve and PV output.

For this paper lithium-ion (Li-ion) BES is selected with a roundtrip efficiency of 77%. This is the most popular
type of BES for today’s portable electronics, characterized by the best energy and weight ratio, no memory
effect, and no slow charge loss on nonuse. However, incorrect handling may cause a Li-ion battery to explode.
Lithium-ion BES is becoming increasingly popular with defense, aerospace and automotive applications due to
its high energy intensity. The charging and discharging equations of the BES are given in (11) and (12).

Discharge : EBESk
(t+ 1) = EBESk

(t)−∆t
P disch
BESk

ηd
(11)

Charge : EBESk
(t+ 1) = EBESk

(t)−∆t ∗ P ch
BESk

∗ ηc (12)

where, P disch
BESk

is the discharged power by the BES for a t time duration, P ch
BESk

is the power charged by
the PV to the BES, that is, the BES is being charged. EBESk

(t) is the energy stored in the BES at time (t).
∆t is time duration of each segment. ηd and ηc are the discharging and charging efficiency, respectively.

BES must satisfy the restrictions given in (13) to (16). Power limits:

0 ≤ P disch
BESk

≤ P disch,max
BESk

(13)

0 ≤ P ch
BESk

≤ P ch,max
BESk

(14)

Stored energy limits:

EBESkmin ≤ EBESk
(t) ≤ EBESkmax (15)

Starting and ending energy limits:

EBESk
(0) ≤ EBESk

(T ) ≤ EBESks, (16)
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where P disch,max
BESk

is the maximum discharge power rate; P ch,max
BESk

is the maximum charging power rate;
EBESkmin and EBESkmax are the lower and upper energy limits of the BES; EBESk

(0) is initial energy of
the BES; EBESks is the BES unit initial limit of stored energy. For the energy balance, the stored energy
EBESk

(T ) is set the same as the initial stored energy. In this paper, minimum and maximum capacity limits
of BES units are assumed to be 20% and 90%, respectively [23].

3.3. Load model
The load demand for the system is modeled corresponding to the normalized daily 24-h load curve with a peak
of 1 pu, as shown in Figure 4 [24]. The load factor (LF) can determined as the field beneath the load curve,
the load curve in p.u. subdivide by the sum of time interval [24].

LF =

24∑
T=1

p.u.Demand(t)

24
(17)

The voltage-dependent load demand model, which includes variable load over time, can be calculated as
[24]:

Pk(t) = Pok(t) ∗ V
np

k (18)

Qk(t) = Qok(t) ∗ V
nq

k , (19)

where Pk and Qk represent active and reactive power injected at node k. Pok and Qok represent the
active and reactive power loads at node k. Vk represents the voltage value at node k, and np and nq represent
active and reactive load voltage indexes, respectively [24], where np = 1.51 and nq = 3.4.

4. Mathematical formulation of the studied optimization problem

4.1. Objective function

In this study, optimal allocating of PV and PV+BES units with aim minimize energy loss using the developed
approach. This objective function (OF) is calculated as follows:

Fobj = minimize(Ploss) ∗∆t = minimize(Eloss), (20)

where Eloss is the total energy loss. The VSI is used for indicating the voltage stability of DS. High VSI
of any node identifies the less sensitive node to the voltage collapse. The VSI of node k is calculated as follows
[11]:

V SI(k) = |Vi|4 − 4(PkXik −QkRik)
2 − 4|Vi|2(PkRik −QkXik) (21)

The OF is subjected to some constraints such as DG size, node voltage and branch capacity limitation.
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4.2. Equality constraints

The sum of injected and outgoing powers must be equal:

Pslack +

NDG∑
i=1

PDG(i) =

L∑
i=1

Plineloss(i) +

N∑
k=1

Pd(k) (22)

Qslack +

NDG∑
i=1

QDG(i) =

L∑
i=1

Qlineloss(i) +

N∑
k=1

Qd(k) (23)

where, Pslack and Qslack represent active and reactive power of slack node. NDG is installed DG units’
number, L is total branch number.

4.3. Inequality constraints
4.3.1. Voltage constraint

The magnitude of each node voltage must be limited as:

Vlb ≤ |Vi| ≤ Vub (24)

where, Vlb and Vub represent minimum and maximum voltage magnitudes.

4.3.2. DG’s power constraint

The installed DG size must be limited as [11]:

Pmin
DG ≤ PDG ≤ Pmax

DG (25)

Qmin
DG ≤ QDG ≤ Qmax

DG (26)

where Pmin
DG and Pmax

DG represent the maximum and minimum DG units’ active power, respectively.
Qmin

DG and Qmax
DG represent the maximum and minimum DG units’ reactive power, respectively.

4.3.3. Branch capacity limitation

The branch capacity must meet the following limitation:

SLi ≤ SLi(rated) (27)

4.4. Determining the size of the combination of PV and BESs (PV+BES)

4.4.1. PV sizing

Figure 5 shows the grid-connected hybrid PV+BES conceptual model. This model is designed for installation
on the roofs of commercial premises. The concept is to convert every nonmanageable PV unit output to a
manageable PV unit with a collaboration of PV and BES units, in order to minimize system total power losses
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for a given load. This strategy can generate a diurnal quantity of manageable energy, E(PV+BES) . The EPV

is PV unit generating energy, during the 24-h cycle of the day. Eg
PV rid is transferred energy to the grid. The

PV unit’s excess energy is used to charge the BES unit, Ec
BESh , instead of cutting it when PV unit output

power is bigger than load during the day. When the output power of PV unit is low or zero overnight, then
the stored energy is discharged to the system, Ed

BESisch . PV and BES units are located on the same node to
prevent energy losses in the charge state of BES.
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Figure 5. PV power output and BES charging and discharging performance.

The daily PV+BES unit amount of energy for all the duration (T = 24 h) on node j can be express as:

EPV+BESk
=

24∑
t=1

PPV+BES(t) ∗∆t, (28)

where PPV+BES(t) is the collaboration of PV and BES unit’s active power output on node k during a
given day time interval t.

The daily charge and discharge energy on node j can be obtained by calculating (29) and (30) (see Figure
5).

Ech
BESj

=

24∑
t=1

P ch
BESj

(t) ∗∆t (29)

Edisch
BESj

=

24∑
t=1

P disch
BESj

(t) ∗∆t (30)

The PV+BES and PV units’ total output energy at node j can be expressed as:

E(PV+BES)j = EGrid
PVj

+ EDisch
BESj

(31)

EPVj
= EGrid

PVj
+ Ech

BESj
, (32)
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where EGrid
PVj

is the PV unit energy amount transferring to the system at node j. The BES unit charge

and discharge energy at node k with a roundtrip efficiency (ηBES = ηcηd ) as follows:

EDisch
BESj

= ηBES ∗ Ech
BESj

. (33)

The PV unit total output energy at node j can be calculated based on (31) to (33) as:

EPVj
=

E(PV+BES)j − (1− ηBES)E
Grid
PVj

ηBES
. (34)

The maximum PV unit power generation during a certain time duration, 24-hour cycle of the day is used
to indicate the PV unit nominal power or optimal PV unit size at node j.

PPVj
= CFunit

PV ∗ EPVj
, (35)

where CFunit
PV =

Punit
PV

Eunit
PV

, Punit
PV is PV unit maximum power output, and Eunit

PV is the PV unit generated

energy during 24-h. Assuming ηBES = 1 , from (35) the initial size of PV calculated as PPVk
= CFunit

PV ∗
E(PV+BES)k , and EGrid

PVk
is then taken from Figure 6, for example. When ηBES is less than unit, PPVk

increases. Therefore, the optimal size of PV is obtained from the Eqs. (34) and (35) as:

PPVj = CFunit
PV (

E(PV+BES)j − (1− ηBES)E
Grid
PVj

ηBES
). (36)

4.4.2. BES sizing

The optimal BES unit’s size at node j is found based on the nominal power (PBESj ) and energy capacity
(EBESj

) as well it can hold all the excess a PV unit’s energy, that needs to be curtailed to keep system losses
at the lowest level for each period. The upper charge and discharge power over a specific duration during the
24-hour cycle of the day are used to determine BES unit nominal power. The maximum energy of charge during
this period is used to identify BES unit energy capacity.

5. Teaching-learning and artificial bee colony (TLABC)

TLABC is a hybridization of the teaching-learning (TLBO) [25] and artificial bee colony optimization (ABC)[26],
which combines the benefits of both (the exploitation of TLBO and the exploration of ABC) [27]. TLABC is
starting with initializing the number of population (NP), yi = (yi1, yi2, ..., yiD), i ∈ {1, 2, ..., NP} ,

yij = ymin,j + (ymax,j − ymin,j) ∗ rand, (37)

where ymin,j and ymax,j represent the lower and upper bounds of the dimension j. Then calculate fitness
values as:
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fit(Xi) =
1

1 + f(Xi)
, f(Xi) ≥ 0 (38)

otherwise : fit(Xi) = |1 + f(Xi)|, (39)

where, fit(yi) is fitness function value of yi . The TLABC is effectively employed three hybrid search
phases to find a global solution as follows.

5.1. Teaching-based employed bee phase
Here every employed bee search new resource of food uses hybrid TLBO teaching tactics.

ui,d = yoldi,d + rand22 ∗ (yteacher,d − TF ∗ ymean,d), rand11 < 0.5 (40)

otherwise : ui,d = yr11,d + S(yr22,d − yr33,d), (41)

where r11, r22 , and r33(r11 ̸= r22 ̸= r33 ̸= i) are integers and randomly selected from {1, 2, ..., NP}; d ∈
{1, 2, ..., D} , rand11 and rand22 represent random numbers [0,1]. TF is the teacher factor. S is scale factor in
[0,1]. If ui is better than yi , then ui is used to substitute yi . yoi,dld is ith position of old learner. yteacher,d

and ymean,d represent position of the teacher and current generation mean.

5.2. Learning-based onlooker bee stage
Here the onlooker bee chooses the sustenance resource to search out as indicated the selection probability p.

Pi =
fit(yi)∑SN
i=1 fit(yi)

(42)

After that, the onlooker bee finds out new food source using the TLBO’s learning tactics:

uS = yS + rand ∗ (yS − yj), f(ys) ≤ f(yj) (43)

uS = yS + rand ∗ (yj − yS), f(ys) > f(yj), (44)

where J ∈ {1, 2, ..., NP} and j ̸= S . If uS is better than yS ,then uS is used to substitute yS .

5.3. Generalized oppositional scout bee phase
Here, if a nourishment resource yi cannot be improved further for specific period time, it is viewed as depleted
and would be relinquished. After that a new candidate solution randomly yi = (yi1, ..., yij , ..., yiD) and
generalized oppositional solution yGO

i = (yGO
i1 , yGO

i2 , ..., yGO
iD ) are created:

yGO
i = k(aj + bj)− yij , (45)

where k is a random number between 0 and 1, and aj = max(yij), bj = min(yij) .
The best solution of them is utilized rather than the old depleted nourishment source.
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yGO
i = yi, f(yi) ≤ f(yGO

i ) (46)

= yGO
i , f(yi) > f(yGO

i ) (47)

Figure 6 depicts the flow chart of the developed approach.

6. Numerical results
In this section, the developed approach (hybrid TLABC with PLSF) has been validated using the 69 node and
118-node DSs. The 69-node system is a radial DS with a nominal voltage of 12.66 kV, active and reactive loads
are 3801.5 kW and 2694.6 kVAr, respectively, where the incorporated loads are commercial load type. The
complete system data is given in [28]. Without DG integration, the active and reactive power losses are 224.98
kW and 102.187 kVAr, respectively. The 118-node system is a large-scale radial DS with a nominal voltage of
11 kV, its active and reactive loads are 22710 kW and 17041 kVAr, respectively, where the loads are commercial
load type. The complete system data is given in [29]. Without DG integration, the active and reactive power
losses are 1297.95 kW and 978.54 kVAr, respectively. The mean and SD for every hour of the day is computed
using historical data of solar radiation per hour [24].

The developed approach and forward-backward power flow technique has been modeled using MATLAB
R2018b. To show how effective is the developed approach, the subsequent scenarios are discussed:

Scenario (1): Optimal allocation of single and multiple PV units at unity power factor for minimizing
the total power losses without uncertainty in demand load.

Scenario (2): Optimal planning of PV+BES for minimizing the total energy losses and enhancing the
voltage profile.

6.1. Scenario (1)

6.1.1. Simulation of 69 node DS
The main obtained results (power losses, minimum voltage, maximum voltage, VSI, cost of losses and cost of
saving) using the developed technique are presented in Table 1. From this table it is seen that the total power
loss is reduced to 83.222 kW, 71.674 kW and 69.426 kW (with loss reduction of 63.01%, 68.1412% and 69.141%)
when one, two and three PV-based DG units are included in 69 node DS, respectively. If we take the energy
cost 0.06 $, then the annual energy savings will be 74505 US dollars, 80575 US dollars and 81757 US dollars
for integrated one, two and three PV-based DG units in the test DS, respectively. The minimum voltage raised
from 0.90919 p.u. up to 0.96829, 0.97893 and 0.97897 p.u. for integrated one, two, and three PV-based DG
units in the test DS, respectively. Minimum VSI raised from $ 0.683 up to 0.879, 0.9183 and 0.9185 p.u. for
integrated one, two, and three PV-based DG units in the test DS, respectively.

As Table 2 shows, the developed approach allows the highest power loss reduction in case of installing DG
units compared to other optimization approaches. Consequently, the developed approach is considered more
effective and dependable wherewith reminder optimization techniques regarding the overall power loss reduction
in DS.

6.1.2. Simulation of 118-node DS
The results of large-scale 118-node DS are presented in Table 3, where the optimal DG allocation is determined
using the developed approach. From this table, it is seen that the total power loss is reduced to 1016.694 kW,
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Figure 6. Flow chart of TLABC.
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Table 1. Main results obtained by developed algorithm (69-node DS).

Without With DGs [size (kW)@location]
Item DG One DG Two DGs Three DGs
Ploss (kW) 224.97 83.222 71.647 69.426
Qloss (kVAr) 102.19 40.568 35.949 34.968
Loss reduction (%) - 63 68.14 69.14
Vmin (pu@bus no.) 0.9092@ 0.9683@ 27 0.9789@ 65 0.979@ 65
Vmax (pu@bus no.) 0.99997 @ 2 1 @ 2 0.99997 @ 2 0.99998 @ 2

Total DG 1781.5@61 370.3@18

installations - 1872.7@61 531.48@17 508.44@11
1670.84@61

VSI 0.683 0.879 0.9183 0.9185
Losses cost ($) 118247 43741.69 37672.09 36490.06
Savings ($/year) - 74505 80575 81757

667.448 kW, 574.875 kW and 516.2841 kW (with loss reduction of 21.66%,48.57%, 55.70% and 60.22%) when
one, three, five and seven PV-based DG units are included, respectively. If we take the energy cost 0.06 $, the
annual energy savings are $ 534374.435, $ 350810.436, $ 302154.346 and $ 271358.938 for integrated one, three,
five and seven PV-based DG units in the test DS, respectively. The minimum voltage raised from 0.8688 p.u.
up to 0.9053, 0.95410, 0.95413 and 0.95460 p.u for integrated one, three, five and seven PV-based DG units in
the test DS, respectively. The minimum VSI raised from 0.5698 p.u. up to 0.6716, 0.8286, 0.83 and 0.8303 p.u
for integrated one, three, five and seven PV-based DG units in the test DS, respectively.

As Table 4 shows, the developed approach allows the highest power loss reduction in case of installing
seven DG units compared to other optimization approaches. Consequently, the developed approach is considered
more effective and dependable compared with competitive optimization techniques regarding the overall power
loss reduction in DS.

6.1.3. Comparison of statistical indicators of TLABC vs. GA and DE

On the whole, the heuristic techniques are distinguished by its randomness. Therefore, many tests have been
performed to prove the robustness of the TLABC with 15 independent runs. The optimization OF’s convergence
curves of the three methods (i.e. TLABC, GA, and DE) of the Ploss are shown in Figures 7 and 8.

In comparison with GA and DE algorithms, the results show that the TLABC accelerates to the near
optimal solution seamlessly, and in steady convergence characteristics. Also, the efficacy and robustness of the
proposed TLABC over GA and DE algorithms are verified based on statistical factors, where many trials have
been made. The minimum, maximum, mean, the standard deviation (SD) and average simulation time (AST)
of the objective function after 15 runs for standard 69-node DS with integrating of three PVs with PLSF as
presented in Table 5 and without PLSF as presented in Table 6.

These compressions used to check if the near-optimal solution located inside this limited search space or
not. From these compressions, we can see the PLSF is suitable for the optimization problem.

The minimum, maximum, average, SD and AST of the objective function after 15 runs for standard
118-node DS with integrating of seven PVs using PLSF are presented in Table 7. In addition, the proposed
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Table 2. Comparison between results of studied system obtained by different optimization methods (69-node DS).

Method DG installed Active power losses
size(kW)@bus Amount (kW) Loss reduction(%)

Without DGs - 224.97 -
2000@61

BA [7] 300@22 72.6 67.73
400@13
700@66

PSO [7] 1900@62 73.1 67.51
300@18
533.4@18

QOTLBO [6] 1198.6@61 71.625 68.17
567.2@63
831.4@9

QOSIMBO-Q [6] 453.8@17 71 68.44
1500@61
530@11

MINLP [9] 380@17 69.59 69.07
1720@61
496.2@12

KHA [10] 311.3@22 69.563 69.08
1735.4@61
527.3@11

SFSA [8] 380.5@18 69.428 69.1389
1719.8@61
524.464@11

GA 380.443@21 69.488 69.113
1712.2@61
1730.7@61

DE 339.05@18 69.486 69.115
536.63@11
380.35@18

TLABC 526.91@11 69.426 69.1391
1718.8@61

TLABC algorithm has more robust statistical indicators than the other algorithms, such as GA and DE. Similar
indicators can be extended straightforwardly to other scenarios as well.

6.2. Scenario (2)

As mentioned above, BESs are installed at the determined PV locations and the developed approach is employed
optimally planning of the PV+BES units output power at every hour with the aim of minimizing the energy
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Table 3. Main results obtained by developed algorithm (118-node DS).

Item Without With DGs [size (kW)@location]
DG One DG Three DGs Five DGs Seven DGs

Ploss (kW) 1297868 1016.694 667.45 574.875 516.284
Qloss (kVAr) 978.65 776.065 508.667 432.572 393.736
Loss reduction (%) - 21.664 48.574 55.706 60.221
Vmin (pu@bus no.) 0.8688 0.9053@111 0.9541@54 0.95413@54 9546@54
Vmax (pu@bus no.) 0.9959@2 0.99709@63 0.99791@100 0.99804@100 0.99815@2

2869.3@110
3119.7@109 1154.3@42

Total 2978.6@71 1609.6@96 2333.7@50
DG - 2978.6@71 2883.3@50 2478.8@72 3708.2@30
installations 2869.3@110 2954.6@50 2533.3@72

2088.3@80 2094.9@80
1663.1@96

VSI 0.5698 0.6716 0.8286 0.83 0.8303
Losses cost ($) 682159 534374 350810 302154 271359
Savings ($) - 147790 331350 380010 410800
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Figure 7. Power losses Convergence curves for different optimization methods (69-node DS).

losses. Using the output power curve of PV+BES, the optimal size of PV and BES can be achieved using the
model described in Section 4.4. Figure 9 shows the PV+BES units output power curve at nodes 11, 28 and 61
of 69 node DS, respectively. These curves following the load demand curve in Figure 4, as PV+BES units are
considered manageable resources.

Figure 10 shows the hourly output power of combined PV and PV+BES units at node 11. This PV
unit’s power output curve’s obviously follows the expected PV model power output curve’s as shown in Figure
4. From Figure 9, it can be observed that the maximum power output of the PV unit is determined at 12:00
h. and it is considered the optimal size of PV based DG. Also, it can be observed that the PV unit generates
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Table 4. Comparison between results of studied system obtained by different optimization methods (118-node DS).

Method DG installed Active power losses
size(kW)@bus Amount (kW) Loss reduction(%)

Without DGs - 1297.868 -
1724.2@48
1335.6@53
1862.3@74

KHA [10] 1865.3@80 574.71 55.73
1663.1@96
1947.3@109
1184.8@112
1375.7@21
1199.7@42
2741.8@50

SFSA [8] 2891.5@71 525.277 59.53
1702.5@81
1332.1@97
2667.4@110
3156.5@109
4590.5@30
1904.9@96

GA 2189.4@50 528.02 59.317
1117.7@42
3181.9@71
1771.4@80
1676.7@96
1595.2@22
1394.3@42

DE 2395.8@72 530.31 59.13
2430.1@81
2379.4@50
3221.2@110
2869.3@110
1154.3@42
2333.7@50

TLABC 3708.2@30 516.28 60.221
2533.3@72
2094.9@80
1663.1@96

the energy against to PV+BES unit energy accommodated by the system to keep power loss minimum at each
time. The hourly differences between the two curves determine the discharge and charge energy of the BES
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Figure 8. Power losses Convergence curves for different optimization methods (118-node DS).

Table 5. Statistical analysis for GA, DE and TLABS regarding power losses with PLSF (69-node DS).

Method Best Average Worst SD Average
solution solution solution simulation time

GA 69.488 71.609.78 73.17.4 1.0137 9.863
DE 69.487 69.698.5 69.947 0.1649 9.843
TLABC 69.425 69.619.9 69.842 0.2086 10.812

Table 6. Statistical analysis for GA, DE and TLABS regarding power losses without PLSF (69-node DS).

Method Best Average Worst SD Average
solution solution solution simulation time

GA 70.476 71.891 73.055 1.0137 10.202
DE 69.525 70.086 70.811 0.1649 9.9172
TLABC 69.426 69.577 69.95 0.2086 11.952

Table 7. Statistical analysis for GA, DE and TLABS regarding power losses with PLSF (118-node DS).

Method Best Average Worst SD Average
solution solution solution simulation time

GA 528.016 543.035 566.97 15.856 71.577
DE 530.31 545.764 558 9.6638 51.602
TLABC 516.284 525.184 541.098 9.2091 79.569

unit. Using the power output of PV + BES, the optimal size for PV and BES can be achieved using PV+BES
model.

The maximum power output difference between PV and PV+BES units is found at 13:00, which provides
the maximum charging power or the nominal power rating of the BES unit (PBES ). Similarly, for the reminder
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Figure 9. Daily PV+BES output power curves in different positions of 69 node DS.
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Figure 10. PV and PV+BES output power curves at node 11.

units connected at nodes, the results are obtained. Tables 8 and 9 are presents the results for the PV unit’s sizes
as well as the nominal power and power output of the BES units for 69 node and 118 node DSs. In addition,
Figures 11 and 12 show the effect of three PV+BES units’ installation on the voltage profile of 69 node system.

Table 8. Optimal size and location of PV+BES in 69-node DS.

Location Node 11 Node 18 Node 61 Total
PV size (kW) 1065.46 783.78 3517.4 5366.6
BES rated power (kW) 564.6 420.5 1878.3 2863.4
BES energy capacity (kWh) 3220 2401.9 10723 16344.8
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Table 9. Optimal size and location of PV+BES in 118-node DS.

Location Node 109 Node 96 Node 72 Node 50 Node 80 Total
PV size (kW) 6355.56 3408.73 5171.45 5919.46 4298.98 25154.2
BES rated power (kW) 3384.32 1822.43 2757.67 3168.18 2300.14 13432.73
BES energy capacity (kWh) 19308.61 10403.16 15736.37 18087.9 13131.47 76667.51
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Figure 11. Impact of three DG installations on voltage profile of 69-node DS without BES integration.
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Figure 12. Impact of three DG installations on voltage profile of 69-node DS with BES integration.

6.3. Energy losses analysis

Figure 13 shows the results of power losses of the base case and the impact of PV and PV+BES installation
on the DS active losses. A noticeable decrease in energy loss in Scenario 2 is observed when compared with the
base case. Total energy losses and their loss reduction for the studied day are presented in Tables 10 and 11
for 69 node and 118 node DSs. The maximum reduction in energy loss is 68.34% and 0.5483% for 69-node and
118-node DSs, respectively.
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Figure 13. Impact of three DG installations on active power losses of 69-node DS.

Table 10. Daily energy losses of 69-node DS.

Scenario Energy loss (kWh) Loss reduction %
Base case 2173.85 -
With PV+BES 688.13 68.34

Table 11. Daily energy losses of 118-node DS.

Scenario Energy loss (kWh) Loss reduction %
Base case 12535.016 -
With PV+BES 5661.857 54.83

7. Conclusion
In this study, a hybrid TLABC optimization method with PLSF has been developed to find the optimal location
and sizing of single and multiple PV and three PV+BES units for 69 node and five PV+BES units for 118 node
DSs, taking into account uncertainties in power generation and time-varying load. The Beta PDF models are
employed to depict the randomness of solar radiation. The OF is designed to minimize the overall energy losses
of DS. The performance of the developed approach has been tested on the 69-node and large-scale 118-node
DSs. Three PV and PV+BES units for 69 node and five PV and PV+BES units for 118 node DSs have been
realized to test the capabilities of developed approach to minimize the total energy losses and impact of them
to the voltage profile. The performance of developed approach has been compared with GA and DE based
on statistical analysis as well as other optimization techniques in the literature. The results showed that the
developed approach is more effective than many other algorithms in minimizing the total power losses.
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