
Turk J Elec Eng & Comp Sci
(2021) 29: 831 – 844
© TÜBİTAK
doi:10.3906/elk-2005-50

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Dynamic issue queue capping for simultaneous multithreaded processors

Merve YILDIZ GÜNEY1,∗, Büşra KURU1, Sercan SARI1,
İsa Ahmet GÜNEY2, Gürhan KÜÇÜK1

1Department of Computer Engineering, Faculty of Engineering, Yeditepe University, İstanbul, Turkey
2Department of Computer Engineering, Faculty of Engineering, Doğuş University, İstanbul, Turkey

Received: 18.05.2020 • Accepted/Published Online: 10.08.2020 • Final Version: 30.03.2021

Abstract: A simultaneous multithreaded (SMT) processor mixes multiple instruction streams in its superscalar out-of-
order execution core for higher throughput. To achieve this, a superscalar processor is modified in such a way that some
of its resources are duplicated and the rest is shared among multiple threads. The issue queue (IQ), which holds all
waiting instructions until they become ready and scheduled for execution, is among these shared resources. A baseline
unmanaged IQ can give an unexpectedly low performance since a hungry thread can tie up most of the IQ entries.
This type of scenario is also worse in terms of the fairness metric since some of the threads may experience starvation.
Earlier studies propose both static and a limited type of dynamic capping of the IQ entries for regulating IQ traffic and
providing better SMT throughput and fairness. In this study, we propose an efficiency-based dynamic capping (EDC)
algorithm that calculates an efficiency metric for each thread and allocates the IQ entries for maximizing the throughput
and the fairness metrics. EDC gives 3.6% better throughput and 3.9% better fairness results compared to the current
state-of-the-art algorithms, on the average.

Key words: Simultaneous multithreaded processor, issue queue, resource capping, throughput, fairness

1. Introduction
A superscalar out-of-order (OoO) processor has a pipelined datapath that allows the completion of multiple
instructions of a single thread per clock cycle. Such architectures are highly common among all types of
commercial processors due to their inherent ability to exploit instruction level parallelism of processes and
improve performance. The average number of instructions per clock cycle (IPC) is the major metric to measure
the processor performance. Various datapath resources may sit idle during the execution of instructions from
a single thread. For instance, when the processor is running the operating system code, most of the floating-
point ALUs are not utilized. Similarly, when a thread is in its computation-intensive code region, the cache
structure might be underutilized. A simultaneous multithreaded (SMT) processor, which is a modified version
of a traditional superscalar processor, is introduced to solve this resource underutilization problem by allowing
instructions of more than one thread to coexist and execute on the same datapath. Once we reduce the degree
of resource underutilization, we can also expect an immediate throughput boost as its positive side-effect.

When a superscalar processor is modified to handle an incoming SMT traffic, it utilizes dedicated
architectural register files, reorder buffers (ROB), and rename tables for each running thread while sharing
enlarged versions of the existing physical register files, the branch predictor, caches, the fetch queue, and
∗Correspondence: myildiz@cse.yeditepe.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
831

https://orcid.org/0000-0002-5491-6263
https://orcid.org/0000-0003-2530-103X
https://orcid.org/0000-0002-2095-8350
https://orcid.org/0000-0002-4492-0218
https://orcid.org/0000-0002-3589-5321


GÜNEY et al./Turk J Elec Eng & Comp Sci

the issue queue (IQ). Although the dedicated structures do not impose much of a research challenge, shared
structures require special research attention. There are plenty of studies in the literature that achieve to improve
performance by analyzing shared structures such as caches [1, 2], write buffer entries [3], and register files [4–6].
In this study, we focus on one of the crucial shared datapath structures (i.e. the IQ) that schedules ready
instructions to the OoO execution core of an SMT processor.

The IQ is a centralized structure that accepts instructions from multiple threads. There are two major
components of this structure: 1) the wake-up, and 2) the selection logic. The wake-up logic is responsible for
waking up instructions whose source operands become valid by setting their corresponding ready flag within
the IQ. When a ready flag is set, its corresponding instruction suddenly becomes a candidate for execution.
Then, in an n-way SMT processor, the selection logic selects at most n ready instructions for execution among
all those candidate instructions. There are various scheduling algorithms proposed and studied for the selection
logic. Generally, the best algorithm for the hardware realization is a simple positional-based algorithm, in which
the hardware scans IQ entries from the beginning to the end until it locates and schedules n ready instructions.
The selection algorithm must complete the instruction selection task as fast as possible since it is in the critical
path of the processor datapath. For that reason, the load balancing task on the number of instructions from
each thread is usually targeted by the earlier fetch stage with the help of a fetch policy [7–11].

A performance bottleneck occurs when some threads insert too many instructions into the IQ and disallow
others from exploiting instruction level parallelism by having a larger window. Tullsen et al. examine several
fetch policies to prevent IQ clogging [7]. They examine both utilizing different round-robin schemes as well as
prioritizing threads based on some novel metrics such as least unresolved branches (BRCOUNT), least data
cache misses (MISSCOUNT), fewest instructions in the IQ (ICOUNT), and the youngest instruction at the
head of the ROB (IQPSN).

Some research in the literature focuses on ceasing fetch from threads which are likely to cause IQ clogs.
Tullsen and Brown state that threads with long-latency load instructions are likely to clog the IQ due to
instructions depending on these long-latency loads and propose blocking threads from fetching instructions until
they complete their long-latency loads [8]. Eyerman and Eeckhout argue that not all long-latency loads are the
same, and allowing threads to fetch more instructions can improve their performance if a thread can overlap the
penalties of long-latency loads by inserting independent load instructions [9]. El-Moursy and Albonesi propose
preventing threads from fetching instructions as long as the number of load instructions in the pipeline which
resulted in an L1 data cache miss is above a certain threshold [11].

Apart from policies that attack the problem by preventing threads from fetching, some work focus on
distributing the resources among threads. Cazorla et al. allocate shared resources to threads by classifying
them as slow or fast based on the existence of an L2 miss [10]. Threads are also classified as active and inactive
for each resource type according to their recent utilization of that resource. They allocate resources only to
active threads, and the amount is determined based on the number of fast and slow threads that are present in
the system.

Choi and Yeung choose to utilize the throughput of the system as a feedback metric and propose a
hill-climbing algorithm that dynamically manipulates how much IQ entries are allocated to each thread [12].
Bitirgen et al. criticize their work for not using any learning models [13]. In another work, Wang et al. propose
an efficiency metric that indicates how much work is done by each thread compared to their allocated resources
and periodically allocates additional resources to the most efficient thread [14]. Another study proposes a

832



GÜNEY et al./Turk J Elec Eng & Comp Sci

method to improve thread coscheduling by utilizing a probabilistic model for prediction [15].
The idea of capping IQ entries was first proposed as a static capping method [16]. The authors of the

paper study various cap values, and for a 32-entry IQ on an 8-instruction wide 4-threaded SMT processor, they
claim that the static cap value of 12 is the magic number giving the optimal performance. The authors also
propose a limited type of dynamic algorithm that assigns either a cap value of 12 for fast threads or a cap
value of 5 for slow threads [17]. In that method, the average number of blocked instructions for each thread is
calculated within a 256-cycle period, and then, a cap value of 5 is applied when that average number of blocked
instructions of a thread is larger than 28, assuming that the corresponding thread is slow. Otherwise, the thread
is assumed to be a fast thread, and it is given a larger cap value of 12. In a later study, the authors also propose
an autonomous IQ distribution control, in which the cap value can be either increased or decreased according
to the overall issue rate of the system [18].

To better motivate our work, we run both the baseline configuration with an unmanaged IQ and the
static capping configuration with a fixed capping of 12 IQ entries on the M-Sim simulator with the identical
SMT settings [19]. Figures 1 to 4 compare the average IQ occupancy traffic on both baseline and static capping
configurations for two different workloads containing a set of selected benchmarks from the SPEC2000 suite.
In these figures, the epoch length is selected to be 256 K cycles. Figures 1 and 2 depict a scenario with the
<mgrid,mcf,mgrid,mcf > 4-thread workload, in which the baseline configuration gives 4.5% better performance
over the static capping method. Here, the important thing is that there is almost no ALU conflict (only 0.7
ALU conflicts per cycle) among threads in the baseline configuration. An ALU conflict instance occurs when
a ready instruction cannot be scheduled to its corresponding ALU since that ALU is already busy executing
another instruction. With the static configuration, average ALU conflicts per cycle drop to 0.5; however, high-
performance mgrid threads cannot allocate enough IQ entries to show their best performance. In Figure 1, we
see that mgrid threads may need up to 20 IQ entries on the average to show higher performance results, and
the baseline configuration gives them such opportunity.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

0

10

20

EPOCH

A
ve
ra
ge

IQ
O
cc
u
p
an
cy

mgrid mcf mgrid mcf

Figure 1. Average IQ occupancy traffic for <mgrid,mcf,mgrid,mcf> workload on the baseline configuration.

Figures 3 and 4 depict an opposite case with the <bzip2,applu,parser,art> 4-thread workload, in which
the static capping method gives more than 32% better performance over the baseline configuration. Here,
the important thing is that there is an average of 4.5 ALU conflicts per cycle among threads in the baseline
configuration. With the static capping strategy, average ALU conflicts per cycle drops to 3.5, meanwhile, all
threads receive a sufficient number of IQ entries to show their best-possible performance with such limited

833



GÜNEY et al./Turk J Elec Eng & Comp Sci

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

0

10

EPOCH

A
ve
ra
ge

IQ
O
cc
u
p
an
cy

mgrid mcf mgrid mcf

Figure 2. Average IQ occupancy traffic for <mgrid,mcf,mgrid,mcf> workload on the configuration with the static
capping method.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

0

10

20

30

EPOCH

A
ve
ra
ge

IQ
O
cc
u
p
an
cy

bzip2 applu parser art

Figure 3. Average IQ occupancy traffic for <bzip2,applu,parser,art> workload on the baseline configuration.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

0

10

EPOCH

A
ve
ra
ge

IQ
O
cc
u
p
an
cy

bzip2 applu parser art

Figure 4. Average IQ occupancy traffic for <bzip2,applu,parser,art> workload on the configuration with the static
capping method.

resources. In Figure 3, we see that the art thread receives almost all IQ entries between epochs 7 and 16, and
that creates long periods of starvation on the other remaining threads. As a result, the baseline configuration
performs much worse than the static capping method on this workload.

834



GÜNEY et al./Turk J Elec Eng & Comp Sci

To summarize, we empirically show that there are workloads and execution intervals where the baseline
allocation method and static capping outperform one another. Furthermore, we show that some threads may
require a higher number of IQ entries than a fixed upper limit defined by the system, and in some cases, we
may benefit from a higher overall throughput by allocating a high number of entries to a single thread without
significantly lowering the performances of other threads.

We motivate this study regarding the above observations. Devising a new allocation method which avoids
starvation and low fairness by allocating IQ entries based on performance, while not limiting the allocation
options by imposing a fixed upper bound can help us improve both throughput and fairness metrics compared
to the baseline and static capping configurations.

Our contributions in this paper are as follows:

• We show that both the baseline configuration and the static capping method cannot be always effective
in all kinds of workload mixtures.

• We propose an adaptive capping mechanism to achieve a more fair thread performance and higher SMT
throughput.

• Our proposed mechanism uses dynamic capping values instead of relying on fixed thresholds and ensures
that all IQ entries are always utilized.

• Our proposed mechanism is insensitive to epoch durations and can provide a stable performance even
without using fine-grain decision intervals.

The rest of the paper is organized as follows. Section 2 describes the proposed mechanism that aims for
better throughput and fairness results followed by our simulation methodology in Section 3. Section 4 presents
our simulation results. Finally, we conclude our paper in Section 5.

2. The proposed design

The authors of the earlier static IQ capping paper also propose a dynamic method in which the IQ cap of
each thread is set according to its dynamically determined thread category of either slow or fast [17]. We also
focus on an alternative dynamic IQ capping method which is known as autonomous IQ distribution control [18].
Before explaining our proposed efficiency-based dynamic IQ capping method, we would like to review these
earlier approaches.

2.1. Limited dynamic IQ capping

We call this earlier method as the limited dynamic IQ capping (LDC) method since it only allows two cap
offsets (5 for slow threads and 12 for fast threads for a 32-entry IQ on a 4-threaded SMT processor) rather than
allowing a range of cap values.

The LDC method, which is shown in Algorithm 1, requires the knowledge of the average number of
blocked instructions for each thread in clock cycle granularity. The mechanism keeps a running count of the
number of instructions which are dispatched with operands not in ready state in BAD (i.e. blocked at dispatch)
vector and completed but not committed in the BAC (i.e. blocked at commit) vector. The average number of
blocked instructions is calculated by dividing the total blocked instruction count by the epoch length E . Next,
the algorithm checks whether the average number of blocked instructions is less than a predefined threshold

835



GÜNEY et al./Turk J Elec Eng & Comp Sci

T for each thread. If it is less than the predefined threshold, the algorithm updates the IQ cap value of that
thread as 12. Otherwise, the method assumes that the number of blocked instructions of that thread is too
high, and it classifies the thread as slow and sets its cap value to 5.

Algorithm 1 The limited dynamic capping algorithm
if EPOCH ends then

for each thread i do
BAD[i]← BAD[i]/E
BAC[i]← BAC[i]/E
if (BAD[i] +BAC[i]) ≤ T then

CAP [i]← 12
else

CAP [i]← 5

BAD[i]← 0
BAC[i]← 0

Although this algorithm is presented as a dynamic IQ capping algorithm, the predefined threshold value
restricts the number of possible IQ cap values to just two constants. Eventually, threads receive either 5 or 12
IQ entries, and this can cause an inefficient allocation of IQ entries among threads. Additionally, in some cases,
the total cap can be smaller than the IQ size. For instance, if all threads are selected as slow, the total cap of
the system is restricted to 20 entries for a 4-threaded SMT processor, and 12 entries sit idle. Such allocations
may cause underutilization of resources.

2.2. Autonomous IQ distrubution control

The autonomous IQ distribution control (ADC) method focuses on a single IQ cap value that can be dynamically
moved every 1000 cycles [18]. While this mechanism needs no a priori information about system environments
or workloads, it applies the same cap value to the all threads. The algorithm, which is shown in Algorithm 2,
counts the number of issued instructions, and if that number is larger than the number of issued instructions of
the previous period by a certain threshold rate T , it increases the cap value by DELTA amount. Otherwise,
if the number of issued instructions in the previous period is larger than the number of issued instructions of
the current period by the same threshold rate T , then the cap value is decremented by DELTA amount. We
believe that applying the same cap value to all threads may not be as efficient as dedicating an individual cap
value to each thread for considering their instantaneous demands.

Algorithm 2 Autonomous IQ distrubution control Algorithm
if EPOCH ends then

for each thread i do
total_issue← total_issue+ issue_count[i]
issue_count[i]← 0

if (total_issue− prev_total_issue) ≥ (T ∗ prev_total_issue) then
CAP ← CAP +DELTA

else
if (prev_total_issue− total_issue) ≥ (T ∗ prev_total_issue) then

CAP ← CAP −DELTA

prev_total_issue← total_issue

836



GÜNEY et al./Turk J Elec Eng & Comp Sci

2.3. The efficiency-based dynamic capping algorithm

In our proposed efficiency-based dynamic capping (EDC ) algorithm, we utilize an efficiency metric similar to
the committed instructions per resource entry (CIPRE ) metric of an earlier study [14]. First, we collect the
average number of ROB entries of each thread in the R vector for the current epoch. Then, we collect the
number of committed instructions in the cc (i.e. commit count) field of each thread T for the same epoch.
Meanwhile, we also remember the previous commit count in the pcc field of the same thread, which is collected
from the previous epoch. Details of our proposed algorithm, efficiency-based dynamic capping algorithm, are
shown in Algorithm 3.

Algorithm 3 The Efficiency-Based Dynamic Capping Algorithm (EDC)
if EPOCH ends then

for each thread i do
if R[i] = 0 then

EFF [i]← 0
else

EFF [i]← (T [i].cc− T [i].pcc[i])/R[i]

T [i].pcc← T [i].cc
R[i]← 0

(MINidx, MAXidx)← findMINMAX(EFF )
CAP [MAXidx]← CAP [MAXidx] +DELTA
CAP [MINidx]← CAP [MINidx]−DELTA

To calculate the efficiency for a certain thread in a certain epoch, we divide the difference between
committed instructions in consecutive epochs by the average occupancy of ROB entries and store the result in
the efficiency vector EFF . The efficiency value represents how well a thread performs with the given amount
of resources. If it is high, it shows that a thread can commit a large number of instructions per ROB entry, and
this makes the thread an efficient thread. Otherwise, we can consider the thread as an inefficient one.

In EDC, we consider the efficiency of all threads and we try to allocate IQ entries among the threads
according to their instantaneous demands. After the calculation of the efficiency vector, we determine two
threads: 1) a thread with the minimum efficiency value whose cap value is not the lower cap limit, and 2) a
thread with the maximum efficiency value whose cap value is not the upper cap limit. In this study, we selected
the lower and upper cap limit as 5 and 12, respectively, and initially all caps are set to 8. In Algorithm 2,
the findMINMAX function accepts the EFF vector and returns indices of suitable threads with minimum
and maximum efficiency. Here, DELTA stands for how many IQ entries efficient and inefficient threads can
exchange at a single decision step. In our tests, we only utilized the DELTA value of 1, since the gap between
the lower and the upper limits are chosen to be small. The main idea of our algorithm is to adjust the optimum
sharing of IQ entries among threads that have the maximum and the minimum efficiency.

To clarify the key points of EDC, we give an example of a 2-threaded environment. Assume that we have
threads T1 and T2 . At the end of an epoch, we run our algorithm and calculate the individual efficiency value
of each thread. Next, if we see that T1 works more efficiently than T2 , to balance between threads, we reduce
the cap value of T2 by DELTA entries while increasing the cap value of T1 by DELTA entries. By doing
so, we provide an adaptive capping mechanism to achieve a more stable and fair resource sharing mechanism
among threads. Rather than giving a static value of 5 or 12 to threads or giving the same cap value to all of
the threads, we give them a chance to receive cap values that are more suitable to their instant needs. By doing

837



GÜNEY et al./Turk J Elec Eng & Comp Sci

that, while we eliminate unfair resource sharing, we also provide an SMT processor with better throughput.

3. Experimental methodology

3.1. Simulator and workloads

The simulator used in this research is M-Sim [19]. It is an extended version of the well-known SimpleScalar
simulator offering both single- and multithreaded simulations. M-Sim enables us to collect cycle-accurate
processor statistics, to implement our proposed algorithm, and to accurately compare its results with those of
other algorithms in the literature. However, simulators are too slow to run any workload from its beginning to
its end. Therefore, we run our simulations for 200M instructions on each workload after skipping first 100M
instructions. Table 1 gives the fixed parameters of the simulated processor. To compare our proposed design
with the current state of the art, we chose a similar processor configuration and similar simulation regions
described in the original study [17].

SPEC CPU2000 and CPU2006 benchmark suites are used to evaluate our proposed design. We selected
20 4-threaded workloads showing various characteristics in favor of the LDC, ADC, or the EDC algorithms.
These 20 combinations of workload mixtures are shown in Table 2.

Table 1. Simulation parameters.

Parameter Description
Superscalar width 8
Number of threads 4
IFQ/ROB/LSQ/IQ size 32/128/48/32 entries
Function unit: Number of units/ integer ALU: 6/1/1
completion latency/issue latency integer mult: 1/3/1

Integer Div: 1/12/12
Floating point Add: 4/2/1
Floating point Mul: 1/4/1
Floating point Div: 1/20/19
Floating point Sqrt: 1/24/24

Level-1 instruction cache 512 sets, 64-byte blocks, 2-way associativity, LRU
Level-1 data cache 256 sets, 64-byte blocks, 4-way associativity, LRU
Level-2 unified cache 512 sets, 64-byte blocks, 16-way associativity, LRU
Write buffers 16 64-byte entries
Branch predictor 2048-entry bimodal
Physical registers 256 integer and floating point

3.2. Metrics

Prevalent metrics for a multithreaded environment are throughput and fairness [20]. The throughput is defined
as the sum of IPC of each thread, where n indicates the number of threads per mix in the system, as shown in

838



GÜNEY et al./Turk J Elec Eng & Comp Sci

Table 2. Workload mixtures.

Mix Benchmarks
1 libquantum, milc, sjeng, zeusmp
2 libquantum, omnetpp, sjeng, zeusmp
3 mesa, mcf, parser, twolf
4 hmmer, milc, omnetpp, zeusmp
5 hmmer, libquantum, namd, zeusmp
6 mcf, milc, omnetpp, sjeng
7 mcf, milc, namd, sjeng
8 mcf, milc, omnetpp, zeusmp
9 mcf, milc, sjeng, zeusmp
10 libquantum, milc, namd, sjeng
11 libquantum, milc, omnetpp, sjeng
12 gcc, gcc, gcc, gcc
13 art, gcc, vortex, mesa
14 bzip2, art, mesa, twolf
15 libquantum, namd, omnetpp, sjeng
16 mgrid, mcf, mgrid, mcf
17 milc, omnetpp, sjeng, zeusmp
18 bzip2, applu, parser, art
19 milc, namd, omnetpp, sjeng
20 mcf, namd, omnetpp, sjeng

Equation (1) below.

Throughput =

n∑
i

IPCi (1)

Harmonic IPC is a popular metric to calculate the degree of fairness among the threads (see Equation (2)).
Even if one of the running threads experiences a high performance drop compared to its standalone performance,
the harmonic IPC (or fairness) drops drastically.

Fairness =
n∑n

i
StandaloneIPCi

IPCi

(2)

In this paper, these two metrics are used to compare our proposed algorithm of efficiency-based dynamic
capping to its competitors [17]. The metric shown in Equation (3) indicates the throughput improvement
percentage averaged over the studied mixtures. Here m denotes the number of workloads in our simulation. We
also measure the improvement percentage of fairness similarly.

Improvement% =

m∑
j

ThroughputEDC − Throughputcompetitor

Throughputcompetitor
(3)

839



GÜNEY et al./Turk J Elec Eng & Comp Sci

4. Results
In this section, we compare four processor configurations (i.e. baseline, LDC, ADC, and EDC) in terms of
throughput and fairness metrics followed by a sensitivity study on the epoch length. The baseline configuration
represents an SMT processor with an unmanaged issue queue structure. The results indicate that EDC provides
the highest average throughput and fairness compared to its competitors.

4.1. Throughput

Figure 5 shows the throughput comparison of the baseline, the LDC, ADC, and the EDC algorithms. In the
first four workloads, the LDC performs better than the EDC. However, in the fourth workload, the baseline and
ADC configurations are the winners. The baseline configuration performs slightly better than both LDC and
EDC algorithms in workloads 9, 11, and 16, as well. This phenomenon occurs when the ALU requirements of
the running threads do not conflict too much. When running threads are harmonious, the baseline configuration
becomes the best configuration for performance, since it does not limit the IQ requirement of any of the running
threads. However, when the average number of ALU conflicts per cycle increases, the baseline configuration
receives a considerable performance hit. Workloads 5, 13, 14, and 18 show such example behavior.

In Figure 5, LDC algorithm performs worst on the rightmost workloads. It simply cannot capture
the IQ requirements of the running threads well (almost 20% worse performance compared to the baseline
configuration). ADC algorithm, on the other hand, performs worse than LDC and EDC algorithms in workloads
3, 5, 8, 12, 13, 14, and 18. However, it is never the worst performing algorithm in any of the workloads. Our
EDC algorithm and its efficiency-based adaptive nature change cap values of individual threads such as that it
even slightly beats the baseline and ADC configurations. In the end, the EDC performs 3.6% better than the
ADC, 3.7% better than the LDC and 5.8% better than the baseline case across all simulated workloads, on the
average.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 AVG

1

2

3

4

5

Workloads

 
ro
u
gh
p
u
t
(I
P
C
)

Baseline LDC ADC EDC

Figure 5. Throughput comparison of the baseline, LDC, and EDC mechanisms.

4.2. Fairness
Generally, fairness and throughput metrics are two conflicting metrics. For instance, we can give all the
resources to one of the best performing threads, and achieve top performance. In that case, however, since the
other threads start to starve, the fairness value goes to almost flat zero.

Figure 6 shows fairness comparison of the baseline, LDC, ADC, and the EDC algorithms. In workload
5, we get an unusual result: although dynamic approaches beat the baseline configuration by a large margin in

840



GÜNEY et al./Turk J Elec Eng & Comp Sci

terms of throughput, they also beat it in terms of fairness, by even a larger margin, as well. Similar results are
also observed in workloads 3, 12, 13, 14, and 18. This is again probably due to a high number of ALU conflicts
per cycle while running the baseline case. Since there is no capping involved in the baseline configuration, too
many ALU conflicts result in low performance on all running threads further lowering the fairness value. In the
dynamic approaches, IQ capping helps to reduce such ALU conflicts, and as a result, all dynamic approaches
provide better throughput and better fairness results compared to the baseline case. In contrast, in workload 11,
the fairness of the baseline configuration is slightly higher than the fairness results of the dynamic approaches.
Finally, two worst-performing workloads of LDC, workload 19 and 20, badly suffer in terms of fairness, as well.

To sum up, in terms of fairness, the EDC performs 7.7% better than the LDC, 7.5% better than the
baseline, and 3.9% better than the ADC method across all simulated workloads, on the average. Our results
show that rather than using fixed cap values or giving the same cap value to all threads, it is more efficient to
adjust the cap value according to the demands of threads. Average fairness results for the baseline configuration
and the LDC go head to head.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 AVG

0.1

0.2

0.3

0.4

0.5

0.6

Workloads

F
a
ir
n
e
s
s

Baseline LDC ADC EDC

Figure 6. Fairness comparison of the baseline, LDC, and EDC mechanisms.

4.3. Sensitivity to epoch length

Finally, we study the effect of epoch length on our results. In our experiments, we study 256 cycles (which is
taken from the LDC study in [17]) and 256K cycles of epoch lengths. Figure 7 shows the average results of
throughput and fairness for both of these epoch lengths. Note that there is a very negligible difference in these
results, and more surprisingly, the choice of a low-duty cycle (256K cycles) epoch length gives slightly better
throughput and fairness. Remember that our EDC algorithm relies on the complex findMINMAX function,
which may consume a considerable amount of energy if it is implemented on hardware and if it is run every
256 cycles. Therefore, this sensitivity analysis provides us an important result to prove the feasibility of our
proposed mechanism in terms of its energy-efficiency.

Both LDC and ADC require very short decision intervals, which can create oscillations in the control
logic. For instance, when we consider the ADC algorithm, it is highly possible that the issue rate of the processor
may incline in one short period of time, and ADC immediately increases the cap size of all of the threads. In the
end, such a decision may trigger a stall in the issue rate due to too many ALU conflicts, which is obviously the
result of the decision taken in the previous period. Thus, due to a decline in the issue rate, ADC immediately
decreases the cap size of all of the threads creating a loop, which forces ADC to reincrease the cap size in
the next period. Similar oscillations can also happen in the LDC logic, since it utilizes even shorter decision

841



GÜNEY et al./Turk J Elec Eng & Comp Sci

intervals. EDC on the other hand, provides higher stability compared to its competitors since it can work with
very large time intervals, which are immune to such resource oscillations.

�roughput (IPC) Fairness

0

1

2

3

4

3 . 33

0 . 32

3 . 34

0 . 32

256 256K

Figure 7. Results of the sensitivity study to 256 and 256K cycles of epoch lengths.

5. Conclusion
Simultaneous multithreaded (SMT) processors gained huge popularity recently, since they allow better processor
resource utilization and better throughput. From the system perspective, these are two much-admired features.
In this paper, we directly address the fairness problem in SMT processors, by applying an efficiency metric and
capping the instruction queue (IQ) accordingly. In our proposed efficiency-based dynamic capping mechanism,
which we call EDC, we periodically calculate the efficiency of each thread by dividing their committed number
of instructions by the given average number of reorder buffer (ROB) entries in each period. At the end of
a period, we take IQ entries from the thread with the minimum efficiency and give them to the thread with
the maximum efficiency. This simple but effective dynamic method gives 3.6% better average throughput and
3.9% better average fairness results compared to its closest competitor, which is known as the autonomous IQ
distribution control (ADC) method.

In the LDC and the ADC methods, the period length is set to 256 and 1000 cycles, respectively. These
are indeed extremely fine-grain settings, and at the end of every 256 or 1000 cycles, a new capping decision
is made. We show that our proposed method is insensitive to the period length, and even when we chose the
period length of 256 K cycles, almost identical throughput and fairness results are still obtained. This is an
important finding to show the energy-efficiency of our proposed method.

Currently, our proposed algorithm shares all available IQ resources among all active threads. A future
research direction would be to determine how many IQ entries each thread requires in order to reach their
potential performance, and whether all IQ entries should be kept powered or not. In the case where the total
number of IQ entries required by the threads is less than the number of physical entries in the processor, the
system can temporarily power down idle entries in order to save power by both powering down the entries
themselves, and by partially powering off the out-of-order instruction selection logic.

Finally, in a recent study, Margaritov et al. propose an SMT processor, in which the threads are not
equally favored [21]. When there is a latency-sensitive thread in the mixture, it might be served more resources
than the rest of the threads to satisfy its predetermined quality-of-service (QoS) threshold. We believe that

842



GÜNEY et al./Turk J Elec Eng & Comp Sci

similar arrangements can be easily integrated into our proposed algorithm to satisfy QoS of certain threads in
SMT workloads.

Acknowledgment

This work is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) under
Grant No. 117E866.

References

[1] Dı́az J, Hidalgo JI, Fernández F, Garnica O, López S. Improving SMT performance: an application of genetic
algorithms to configure resizable caches. In: Proceedings of the 11th Annual Conference Companion on Genetic
and Evolutionary Computation Conference: Late Breaking Papers; New York, USA; 2009. pp. 2029-2034.

[2] Özer E. Low-cost and power-efficient thread collision detection scheme for shared caches in a real-time multithreaded
embedded processor. Turkish Journal of Electrical Engineering and Computer Sciences 2013; 21(3): 714-733.

[3] Zhang Y, Lin WM. Write buffer sharing control in smt processors. In: Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA); New York, USA; 2013. pp. 243-249.

[4] Gungorer H, Kucuk G. Dynamic capping of physical register files in simultaneous multi-threading processors for
performance. In: 32nd International Symposium (ISCIS 2018); Poznan, Poland; 2018. pp. 41-48.

[5] Sheikh MN, Lin WM. Dynamic capping of rename registers for SMT processors. Journal of Systems Architecture
2019; 99: 1-20. doi: 10.1016/j.sysarc.2019.101637

[6] Zhang Y, Lin WM. Efficient resource sharing algorithm for physical register file in simultaneous multi-threading
processors. Microprocessors and Microsystems 2016; 45 (PB): 270-282. doi: 10.1016/j.micpro.2016.06.002

[7] Tullsen DM, Eggers SJ, Levy HM. Simultaneous multithreading: maximizing on-chip parallelism. In: 25 Years of
the International Symposia on Computer Architecture (Selected Papers); Barcelona, Spain; 1998. pp. 533-544.

[8] Tullsen DM, Brown JA. Handling long-latency loads in a simultaneous multithreading processor. In: 2012 45th
Annual IEEE/ACM International Symposium on Microarchitecture; Austin, TX, USA; 2001. pp. 318-327.

[9] Everman S, Eeckhout L. A memory-level parallelism aware fetch policy for SMT processors. In: 2007 IEEE 13th
International Symposium on High Performance Computer Architecture; Scottsdale, AZ, USA; 2007. pp. 240-249.

[10] Cazorla FJ, Ramirez A, Valero M, Fernandez E. Dynamically Controlled Resource Allocation in SMT Processors.
In: 37th International Symposium on Microarchitecture (MICRO-37); Portland, OR, USA; 2004. pp. 171-182.

[11] El-Moursy A, Albonesi DH. Front-end policies for improved issue efficiency in SMT processors. In: The Ninth
International Symposium on High-Performance Computer Architecture; Anaheim, CA, USA; 2003. pp. 31-40.

[12] Choi S, Yeung D. Learning-Based SMT Processor Resource Distribution via Hill-Climbing. In: 33rd International
Symposium on Computer Architecture (ISCA’06); Boston, MA, USA; 2006. pp. 239-251.

[13] Bitirgen R, Ipek E, Martinez JF. Coordinated management of multiple interacting resources in chip multiprocessors:
A machine learning approach. In: 41st IEEE/ACM International Symposium on Microarchitecture; Lake Como
Italy; 2008. pp.318-329.

[14] Wang H, Koren I, Krishna CM. An Adaptive Resource Partitioning Algorithm for SMT processors. In: International
Conference on Parallel Architectures and Compilation Techniques (PACT); Toronto, ON, Canada; 2008. pp. 230-
239.

[15] Eyerman S, Eeckhout L. Probabilistic job symbiosis modeling for SMT processor scheduling. ACM SIGARCH
Computer Architecture News 2010; 38(1): 91-102.

843



GÜNEY et al./Turk J Elec Eng & Comp Sci

[16] Nagaraju T, Douglas C, Lin VM, John E. Effective Dispatching for Simultaneous Multi-Threading (SMT) Processors
by Capping PerThread Resource Utilization. The Computing Science and Technology International Journal 2011;
1(2): 5-14.

[17] Carroll S, Lin W. Dynamic issue queue allocation based on reorder buffer instruction status. International Journal
of Computer Systems 2015; 2 (9): 395-404

[18] Zhang Y, Hays M, Lin W, John E. Autonomous control of issue queue utilization for simultaneous multi-threading
CPUs. Journal of Emerging Trends in Computing and Information Sciences 2015; 6 (12): 736-744.

[19] Sharkey JJ, Ponomarev D, Ghose K. M-SIM: A Flexible, Multithreaded Architectural Simulation Environment.
Technical Report CS-TR-05-DP01. 2005.

[20] Luo K, Gummaraju J, Franklin M. Balancing throughput and fairness in SMT processors. International Symposium
on Performance Analysis of Systems and Software (ISPASS); Tuscon, AZ, USA; 2001. pp.164-171.

[21] Margaritov A, Gupta S, Gonzalez-Alberquilla R, Grot B. Stretch: Balancing QoS and Throughput for Colocated
Server Workloads on SMT Cores. In: Proceedings of the IEEE International Symposium on High Performance
Computer Architecture (HPCA); New York, USA; 2019. pp. 15-27.

844


	Introduction
	The proposed design
	Limited dynamic IQ capping
	Autonomous IQ distrubution control
	The efficiency-based dynamic capping algorithm

	Experimental methodology
	Simulator and workloads
	Metrics

	Results
	Throughput
	Fairness
	Sensitivity to epoch length

	Conclusion

