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Abstract: Cardiac diseases (CDs) are one of the leading causes of the growing global mortality rate. Early detection
of CDs is necessary to avoid a high increase in the mortality rate. Machine learning-based computer-aided diagnosis
of CDs using various physiological signals has recently been used by researchers. Since pulse plethysmograph (PuPG)
signal contains a wealth of information about cardiac pathologies, therefore, this paper presents an expert system design
for the automatic diagnosis of cardiac disorders like hypertension, dilated cardiomyopathy and myocardial infarction
using a novel fingertip PuPG signal analysis. The proposed system first performs signal denoising of raw PuPG sensor
data using discrete wavelet transform (DWT). After signal segmentation, it extracts discriminant and simplest time-
domain features, which are used to perform the detection of normal and abnormal subjects through a support vector
machine (SVM) classifier. The proposed detection and classification systems are tested using 10-fold cross-validation
which yielded an average accuracy of 98.90%, sensitivity of 100.00%, and specificity of 98.02% for detection (normal
vs. abnormal) experiments with only four features and an average accuracy of 97.57% for the multiclass problem using
five computationally inexpensive features. Comparative analysis with existing methods based on electrocardiogram,
photoplethysmograph, and phonocardiogram revealed that the proposed system has high efficiency in terms of CD
detection with very low computational complexity. The findings of this work provide insights into the contribution
of PuPG signal analysis towards accurate detection of cardiac disorders through innovative, low cost, and noninvasive
methods. Such a system with mobile cardiac health monitoring could be used as a counterpart or second opinion with
clinical diagnoses and provide patients with additional but subtle indicators of varying heart dynamics.

Key words: Pulse plethysmograph (PuPG), biomedical signal analysis, support vector machine, feature extraction,
discrete wavelet transform, cardiac disorders

1. Introduction
According to the World Health Organization reports, ”Cardiovascular diseases (CVDs) are the number one cause
of death globally: more people die annually from CVDs than from any other cause. An estimated 17.7 million
people died from CVDs in 2015, representing 31% of all global deaths”. Cardiac diseases (CDs) are triggered by
disorders of the heart and blood vessels, abnormality in blood pressure, coronary heart disease, cerebrovascular
disease, rheumatic heart fever, congenital heart disease, and heart failure [1]. It is estimated that 90% of CDs
are preventable [2] with the timely usage of indicative tools for diagnosis of CDs such as electrocardiograph,
photoplethysmograph (PPG) [3] and sphygmograph [4, 5]. Recently, pulse sensors have gained considerations
due to their noninvasive nature and convenience in handling. The most commonly used technologies for pulse
measurements are photoplethysmography that monitors the varying blood volume and pulse plethysmography
∗Correspondence: sumair.aziz@uettaxila.edu.pk
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(PuPG) that use piezoelectric material to sense the pressure changes in blood flow during each cardiac cycle.
An expert system for detection and classification of dilated cardiomyopathy, hypertension and myocardial

infarction using PuPG signal analysis is presented in this article. The cardiac diseases addressed in this work
include: (i) Dilated cardiomyopathy [6] is a disorder affecting heart muscles. In this disorder, the pumping
ability of the affected heart is decreased due to the enlargement of the main pumping chamber. This disturbs
the time of ventricular relaxation of the heart. Cardiomyopathies are the major reasons for heart failure and
on average causes 10,000 deaths in the United States each year [7]. (ii) Hypertension is a significant risk factor
for cardiac mortality and it is responsible for events like heart stroke, myocardial infarction, heart failure and
chronic kidney disease [8]. Due to high blood pressure, the arteries experience extra stress. Hypertension is
considered idiopathic and has no clear culprit for its cause [9, 10]. (iii) Myocardial infarction occurs when the
flow of blood to the heart is reduced causing decreased oxygenation to the heart tissues. This is one of the
major causes of worldwide deaths. Myocardial Infarction is often considered as a the first sign of coronary
artery disease (CAD) [11].

2. Related works
Various techniques including electrocardiogram (ECG), phonocardiogram (PCG), and photoplethymograph
(PPG) are currently being used to detect heart pathologies.

Myocardial infarction is detected from ECG waveforms [12] using fractal and entropy based features and
K-nearest neighbor (KNN) classifier. The method achieved an accuracy of 99.62% and 99.74% for noisy and
clean datasets respectively. ECG signals are also used to classify dilated cardiomyopathy, myocardial infarction,
and hypertrophic cardiomyopathy [13] using nonlinear features. The method achieved 99.27% accuracy with
K-nearest neighbors using 15 features. Detection of myocardial infarction using artificial neural network is
discussed in [14]. ECG data from PhysioNet is optimized using hybrid firefly and particle swarm optimization.
The algorithm yielded a 99.3% detection accuracy. Cardiac disorders are detected from multilead ECG using
multiscale phase alteration features [15]. The system achieved sensitivities of 0.94, 0.78, and 0.80 and for
myocardial infarction, bundle branch block, and heart muscle defect classes, respectively.

Diagnosis of MI from the fusion of ECG, clinical data, and PCG using KNN classification method yields
in 99.0% of accuracy, 98.0% of sensitivity, and 100% specificity [16]. ECG signals were used to detect MI
using multiscale energy and eigenspace [17]. The system was 96% accurate in diagnosing MI with the SVM
classifier. In [18], the authors use 12-lead ECG beats to detect MI. The method consisted of a multilead attention
technique with a convolutional neural network and the bidirectional gated recurrent unit framework achieved a
mean accuracy of 96.50%.

A relatively new technique, called pulse plethysmograph (PuPG), is used to monitor blood flow or volume
of blood during each heartbeat. Plethysmograph is a Greek word that has two parts, ‘plethysmo’ which means
increase, and graph means to write [19]. A method to identify MI from PuPG signal analysis [20] achieved
98.5% accuracy using three features and an SVM classifier. DCM was detected [21] from PuPG time-series with
an accuracy of 99.7% using discrete wavelet transform (DWT) and SVM. Diagnosis of acute coronary syndrome
(ACS) from PuPG signal analysis by employing empirical mode decomposition (EMD) and SVM is presented
in [22]. The system obtained a diagnostic accuracy of 99.42% on 5-fold cross-validation.

A similar sensing technique for measuring heart rate is called photoplethysmograph [23, 24]. The main
difference between pulse and photo plethysmograph is that photoplethysmograph uses light to detect the volume
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of blood flow while pulse plethysmograph has piezoelectric material that senses the pressure changes in blood
flow during each cardiac cycle.

In another study, second derivative photoplethysmography features were employed for the diagnosis of
myocardial infarction [25]. The binary logistic regression model for classification achieved a detection accuracy
of 90.6%. Hypertension and diabetes were detected with an accuracy of 96.74% using isolation forest, synthetic
minority oversampling technique Tomek link, and ensemble learning approach [26].

Fingertip PPG signals are used to classify episodes of intradialytic hypotension. The study used the
genetic algorithm and AdaBoost to achieve a mean accuracy of 94.5%. Prediction of hypertension using heart
rate variations (HRV) derived from PPG signals is proposed in [27]. The standard deviation of all RR intervals
was used as an HRV feature to detect Hypertension in PPG with an accuracy of 85.47%. A system to detect
hypertension using six morphological descriptors derived from PPG with 92.31% accuracy is discussed in [28].
Identification of hypertension patients from ballistocardiograms (BCG) is presented in [29]. The system achieved
a mean accuracy of 84.4% using class association rules (CAR) classifier and morphological features.

Medical instrumentation in hospitals can easily be impacted by electromagnetic interference (EMI) in
a complicated electromagnetic environment [30, 31]. ECG signals are most commonly affected by the EMI
and preconditioning circuits, noise removal and shielded cables are required to minimize this interference. PCG
requires highly-trained specialists to auscultate the PCG signal [32]. Variations in ambient light and temperature
greatly influence the PPG signal. PPG signal acquisition is vulnerable to motion artifacts [33]. The frequency
of the PPG signal is about 1–3 Hz [24] so it also requires a high order filter for signal processing.

3. Contribution
The objective of the current study was to develop an automated, reliable and noninvasive system for the
diagnosis of hypertension, dilated cardiomyopathy, and myocardial infarction. Main contributions of this work
are as follows:

• This is the first study that targeted the classification of hypertension (HYP), dilated cardiomyopathy
(DCM) and myocardial infarction (MI) using a novel pulse plethysmograph signal analysis approach.

• The proposed method offers a significant accuracy of 98.90% for detection of cardiac disorders using only
four features.

• The proposed approach provides an average accuracy of 97.57% for categorization of HYP, DCM, MI, and
normal PuPG signals using only five features.

• The proposed method is feasible for implementing on embedded devices to monitor cardiac health and
could be used to complement clinical diagnoses.

This study will lead to developing a real-time and low-cost system to assist physicians in diagnosing heart
abnormalities using noninvasive modalities with higher accuracy and efficiency.

4. Materials
4.1. PuPG signals acquisition system
The PuPG signals were recorded using the PTN-104 Plethysmograph sensor attached to the subject’s finger. The
sensor was interfaced with the NI myDAQ device [34] for acquiring data on the computer using NI LabVIEW.
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Figure 1. Block diagrams of the cardiac detection (binary class) and classification (4 class) systems using PuPGsignals

PuPG sensor senses variations in blood flow that generates voltage because of the piezoelectric material. This
analog voltage was converted to digital by myDAQ at a sampling frequency of 1KHz.

4.2. Dataset description
In this study, we collected 1827 PuPG signals from healthy and abnormal subjects. Signals were acquired from
patients admitted in the cardiology ward, Pakistan Institute of Medical Sciences, Islamabad, Pakistan. The
abnormal class consists of a total of 438 signals collected from 13 patients of DCM, 448 PuPG signals gathered
from 18 MI patients, and 443 signals recorded from 30 HYP subjects. A total of 498 PuPG signals were also
collected from normal/healthy persons who were not having any cardiac abnormality. Each PuPG signal was
recorded for 10 s. The total length of each recording was 10,000 samples.

4.3. Ethical approval
Since human subjects were involved in this study, due to ethical approval was taken from the ethics committee.
Informed consent was obtained from all individual subjects included in this study.

5. Proposed method
5.1. Overview of proposed methodology

The proposed scheme of work is comprised of four main stages which include, (i) preprocessing of the raw PuPG
sensor data, (ii) signal segmentation for extraction of the region of interest, (iii) feature extraction, and (iv)
classification. In this study, we proposed separate frameworks for the detection and classification of cardiac
disorders through PuPG signal analysis. Figure 1 illustrates the block diagrams of detection and classification
systems.

Raw PuPG signals were denoised through wavelet decompositions. Region of interest was extracted from
the denoised signal using soft thresholding. Preprocessing and signal segmentation stages are similar for both
detection and multiclass system. Feature extraction for the detection system employs four features, namely
mean, root mean square, log energy, and zero-crossing rate. Whereas, the multiclass system utilizes a total of

965



KHAN and AZIZ/Turk J Elec Eng & Comp Sci

Figure 2. Preprocessing through DWT.

five features such as mean, root mean square, log energy, Shannon energy, and zero-crossing rate. Extracted
features for the detection of cardiac abnormality were fed to SVM to distinguish normal and abnormal data
classes. While multiclass SVM was employed to categorize HYP, DCM, MI, and normal data classes through
extracted five features.

5.2. Preprocessing – wavelet denoising

To eradicate gain dependencies induced by the electronics of the PuPG front-end acquisition module, the
acquired signal p(t) was normalized. Figure 2 illustrates the steps of signal denoising through DWT. The
noise/power line distortion incurred by the data acquisition module can be seen as a sinusoidal oscillatory
signature in the PuPG Hat with a frequency around 50Hz. This distortion must be filtered out of the PuPG
signal before the boundary allocation of the region of interest. To avoid the experimental tweaking of filter or
filter banks, discrete wavelet transform (DWT) [35, 36] was used to remove this odd signature.

In comparison with methods based on fixed window Fourier transform, which have a dilemma in frequency
and time resolution and localization, wavelet-based methods offer high time resolution for high-frequency
components and high-frequency resolution for low-frequency components [37]. The DWT splits the signal
into a patch of high and low-frequency components. These low frequency and high-frequency signal components
are termed as an approximation cApp and detailed coefficients cDet respectively. The procedure was executed
again on this approximation patch to break it up further into the next approximation and high-frequency
components and it was iterated up to several levels. DWT follows reconstruction rule and it can also be used
to reconstruct noise-free information from the combination of its approximation and detailed components [38].

The Symlet wavelet template ’Sym5’ is chosen as a mother wavelet because of its morphological similarities
to the PuPG signal. The 4th level approximation coefficients cApp4 obtained after the noisy PuPG p(t) is
decomposed using Sym5 filter banks contains the clean PuPG signal. Initially, wavelet decomposition, up to
four levels was performed over the noisy PuPG signal p(t) . Soft thresholding was performed on the detailed
coefficients of each level (cDet1 ,cDet2 ,cDet3 ,cDet4 ). The denoised signal v(t)was obtained by taking the
inverse discrete wavelet transform of the decomposed components [39].

5.3. Signal segmentation – soft thresholding

At this step, the region of interest was extracted from the preprocessed signal v(t) It was observed from
extensive experimentation that discriminant information of healthy and abnormal subjects is more concentrated
in the upper hat of the PuPG signal. Extraction of the region of interest from a signal reduces the redundant
information present in different classes which provides a better feature extraction and classification. Signal

966



KHAN and AZIZ/Turk J Elec Eng & Comp Sci

segmentation using soft thresholding was performed using Equation (1).

y(t) =

{
v(t) v(t) ≥ T

T otherwise
(1)

T = min(v(t)) + 0.7× {max(v(t))−min(v(t))}, (2)

where v(t) was normalized version of the preprocessed signal. T is the threshold parameter defined by
Equation (2) and y(t) is a segmented signal. Figures 3a–3c show the raw, preprocessed and segmented signals
for normal, hypertension, DCM and MI classes, respectively.

5.4. Feature extraction
Feature extraction is the critical phase in biomedical signal investigation and analysis. This step targets the
extraction of significant features from the segmented PuPG signal y(t) that differentiate normal and diseased
patients. Features were selected by analyzing the data following the physiology and morphology of the cardiac
cycle in the case of normal and pathological PuPG as described earlier.

In this work, we carried out extensive experimentation via a pool of features from time, frequency, and
textural domains. But time and statistical features [40, 41] such as Shannon energy (SE), zero-crossing rate
(ZCR), mean (M), log energy (LE), standard deviation (SD), and root mean square (RMS) yielded better
performance as compared to frequency and textural domain features. Therefore, these features were computed
to extract the discriminant information of PuPG signals related to normal and abnormal classes. Further
analysis of feature combination is presented in the results section.

5.5. Feature fusion
The final features for both detection (Xd ) and 4-class (Xc ) systems were constructed through a simple serial
concatenation of several features. The features in these vectors were selected after extensive experimentation
over a range of classification methods. Equations (3) and (4) represent the final feature vectors for both systems.

Xd = [M,RMS,LE,ZCR] (3)

Xc = [M,SD,SE,LE,ZCR] (4)

5.6. Classification – support vector machines (SVM)

After extracting significant features from the PuPG signal in the previous step, cardiac disorders were identified
through binary and multiclass-SVM. SVM is one of the most extensively used classifiers for biomedical appli-
cations [42–44]. It works by constructing a separating hyper-plane in a feature space that splits the training
data into two classes [45–48]. Nonlinear data distributions were separated using kernel functions which trans-
form the original data to a higher dimensional feature space, where features might become linearly separable.
The generalization ability of the SVM classifier is the best while dealing with a small sample problem. SVM
was originally proposed for binary classification but later on extended for multiclass problems using one-vs-one
(OVO) and one-vs-rest (OVR) approaches. Linear SVM is given by the following equation.

y = WTX − b, (5)
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Figure 3. Raw, preprocessed and segmented version of PuPG signals for normal, HYP, DCM and MI classes.
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where X is the extracted feature vector from preprocessed PuPG signal, W is the weight vector per-
pendicular to the decision hyper-plane and b represents offset of the hyper-plane. In this work, binary and
multiclass SVMs were trained using quadratic, Gaussian and cubic kernels for detection and classification tasks.
Two experiments were performed with different datasets and classifier settings. i) Binary class experiments,
where features extracted from each PuPG signal were labeled as normal and abnormal and a binary SVM is
trained. ii) Multiclass experiments, where training data were labeled as normal and according to the disease
type (hypertension, dilated cardiomyopathy, myocardial infarction) and finally multiclass SVM was trained for
the four-class problem.

6. Results
Results of the proposed expert system for cardiac disease classification using pulse plethysmography (PuPG)
signals are analyzed in this section. After signal preprocessing through DWT, time domain and statistical
features were computed to extract the characteristic information contained by different classes of PuPG signal.
A pool of features consisting of time, spectral, and textural domains were tested with a range of classification
methods. The results with best performing features are shown in this work, for instance, mean (M), standard
deviation (SD), skewness (S), kurtosis (K), root mean square (RMS), Shannon energy (SE), log energy (LE),
and zero-crossing rate (ZCR). The features were evaluated through comprehensive experimentation over a range
of classification methods (SVM, KNN, decision tree).

In this article, all results are stated using the 10-fold cross-validation strategy, and final results were
averaged over 100 iterations. The quantities measured here include;

1. True positive (TP): PuPG signal belongs to an abnormal class and is correctly predicted as an abnormal
signal by the classifier.

2. False positive (FP): PuPG signal belonged to a normal subject and falsely predicted as an abnormal
subject.

3. True negative (TN): PuPG signal belonged to a normal subject and correctly predicted as a normal
subject.

4. False negative (FN): PuPG signal belonged to an abnormal subject and falsely predicted as a normal
subject.

Based on the values of the abovementioned parameters, we calculated accuracy (Acc), specificity (Sp),
sensitivity (Sen), positive predictive value (PPV), negative predictive value (NPV) and error rate (Err). All
experiments were performed in MATLAB 2018a on personal computer Core i7 with 16GB of RAM. Experi-
ments were conducted for two different problems; (i) detection of cardiac disorders (normal vs abnormal), (ii)
classification of cardiac disorders (normal, hypertension, dilated cardiomyopathy, myocardial infarction).

6.1. Detection of cardiac disorders
In detection experiments, datasets were divided into two classes; normal and abnormal. All PuPG signals
belonging to HYP, DCM and MI classes were labeled as ”abnormal”. Representation of the PuPG signal of
different classes through extracted features was validated through comprehensive experimentation. Classification
method with different basis functions such as SVM-linear (SVM-L), SVM-quadratic (SVM-Q), SVM-cubic
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(SVM-C), SVM-fine Gaussian (SVM-FG), and SVM-medium Gaussian (SVM-MG) was applied on different
feature combinations. The results of the best performing feature combinations are summarized in Table 1.

Table 1. Performance comparison of SVM with different feature combinations for detection (binary) experiment.
Significant results are highlighted.

Classifier Features Performance indicators
M SD S K RMS SE LE ZCR Acc(%) Sen(%) Sp(%) PPV(%) NPV(%) Err(%)

SVM-linear

* * * * * * * * 91.17 94 88.93 87.04 94.94 8.83
* * * * * * 90.73 93 88.93 86.92 94.14 9.27
* * * * * * * 90.73 93.5 88.54 86.57 94.51 9.27
* * * * * * * 90.51 90.5 90.51 88.29 92.34 9.49
* * * * * * 90.51 88 92.49 90.26 90.7 9.49

SVM-quadratic

* * * * * 96.69 96 97.23 96.48 96.85 3.31
* * * * * * * 96.47 97 96.05 95.1 97.59 3.53
* * * * * * * 96.47 95.5 97.23 96.46 96.47 3.53
* * * * * * 96.25 96 96.44 95.52 96.83 3.75
* * * * * * * 96.25 95.5 96.84 95.98 96.46 3.75

SVM-cubic

* * * * 97.57 97 98.02 97.49 97.64 2.43
* * * * * * 97.13 96.5 97.63 96.98 97.24 2.87
* * * * * 97.13 95.5 98.42 97.95 96.51 2.87
* * * * 97.35 96.5 98.02 97.47 97.25 2.65
* * * * * 97.57 96.5 98.42 97.97 97.27 2.43

SVM-medium Gaussian

* * * * 95.81 95 96.44 95.48 96.06 4.19
* * * * * * 95.36 94 96.44 95.43 95.31 4.64
* * * * 95.14 95 95.26 94.06 96.02 4.86
* * * * * 95.36 94.5 96.05 94.97 95.67 4.64
* * * * * 95.36 94.5 96.05 94.97 95.67 4.64

SVM-fine Gaussian

* * * * 98.9 100 98.02 97.56 100 1.1
* * * * * 98.68 99 98.42 98.02 99.2 1.32
* * * * * 98.68 99.5 98.02 97.55 99.6 1.32
* * * * * 98.45 99.5 97.63 97.07 99.6 1.55
* * * * 98.45 99.5 97.63 97.07 99.6 1.55

Table 2. Comparison of different classifiers for binary class experiments.

Method Accuracy (%) Sensitivity(%) Specificity (%) PPV(%) NPV(%) Error rate(%)
SVM (linear) 91.17 94.00 88.93 87.04 94.94 8.83
SVM (quadratic) 96.69 96.00 97.23 96.48 96.85 3.31
SVM (cubic) 97.13 96.50 97.63 96.98 97.24 2.87
SVM (fine Gaussian) 98.90 100.00 98.02 97.56 100.00 1.10
KNN medium 92.53 90.91 95.24 96.97 86.21 7.47
KNN cubic 92.53 90.91 95.24 96.97 86.21 7.47
KNN weighted 97.51 97.73 97.14 98.29 96.23 2.49
DT 95.73 96.59 94.29 96.59 94.29 4.27

SVM-L classifier achieved a maximum 91.17% accuracy on the combination of all eight features. SVM-Q
achieved 96% mean accuracy with all five feature set combinations and the best results (96.69%) for this classifier
were achieved on feature combination of root mean square, Shannon energy, log energy, and zero-crossing rate.
The average score of 97% was achieved through the SVM-C classifier on five the best feature sets. Overall,
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Figure 4. Confusion matrix of binary and multiclass (4-class). All values are presented in percentage.

the best results for the detection of cardiac disorder were achieved through the SVM-FG classifier through a
combination of only four features namely mean, root mean square, log energy and zero-crossing rate. Where,
SVM-FG yielded 98.90% accuracy, 100% sensitivity and 98.02% specificity (Table 2).

Figure 4a shows class-wise accuracy in the form of a confusion matrix with SVM-FG. It can be seen that
all instances of the normal class were correctly predicted while only 2% of instances of the abnormal class were
misclassified. To further validate the proposed methodology, we performed classification with a different type
of learners i.e. K nearest neighbor (KNN) with K=5 (KNN-medium), KNN with the cubic kernel (KNN-cubic),
weighted KNN (KNN-W) and decision tree (DT). It is observed that accuracy and sensitivity performance
measures were well above 90% for all classification methods and 98% accuracy were achieved through SVM-FG
(Table 2).

6.2. Evaluation of multiple cardiac disorders

To unveil the efficiency of the proposed methodology as a reliable cardiac disorder classification system, we
broadened the evaluation scope by performing the validation over the multiclass problems. This included
training and testing on features that belonged to normal subjects as well as subjects belonging to multiple
cardiac disorders. In these experiments, the whole dataset was divided into normal, hypertension (HYP), dilated
cardiomyopathy (DCM) and myocardial infarction (MI) classes. In multiclass problems, the high correlation
between the different classes makes the classification task even more challenging.

To unveil the features having the best representation of various classes of PuPG signal, comprehensive
experimentation was performed by testing all possible feature combinations through multiclass SVM classifiers
with several kernel functions. Performance of SVM-L, SVM-C, SVM-Q, SVM-FG and SVM-MG classifiers in
terms of statistical measures are shown in Table 3. The SVM-C achieved a classification accuracy of 96.69%
with only four features. Classification performance was further improved by the inclusion of mean feature
with SVM-FG classifier. Overall, the best accuracy of 97.57%, sensitivity of 100% and specificity of 97.23% is
achieved through SVM-FG with only five features. It was shown that mean and zero-crossing rate features have
a critical role in achieving good performance for all classifiers.
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Table 3. Performance comparison of SVM with different feature combinations for multiclass (4-class) experiment.
Significant results are highlighted.

Classifier
Features Performance indicators
M SD S K RMS SE LE ZCR Acc Sen Sp PPV NPV Err

SVM-linear

* * * * * * 90.51 98.5 91.3 89.95 98.72 9.49
* * * * * * * 90.07 97.5 91.7 90.28 97.89 9.93
* * * * * * * 87.86 93.5 90.12 88.21 94.61 12.14
* * * * * * 87.64 95 88.14 86.36 95.71 12.36
* * * * * * * * 88.3 92 93.28 91.54 93.65 11.7

SVM-quadratic

* * * * * * 95.58 96.5 96.84 96.02 97.22 4.42
* * * * * * * 95.14 96.5 96.05 95.07 97.2 4.86
* * * * * 95.58 97.5 96.05 95.12 97.98 4.42
* * * * * * 94.7 95 95.65 94.53 96.03 5.3
* * * * * * 94.04 95.5 94.47 93.17 96.37 5.96

SVM-cubic

* * * * 96.69 96 99.21 98.97 96.91 3.31
* * * * * * 96.47 97.5 98.81 98.48 98.04 3.53
* * * * * 96.25 96 99.21 98.97 96.91 3.75
* * * * * 96.69 97.5 97.63 97.01 98.02 3.31
* * * * 96.69 96.5 98.81 98.47 97.28 3.31

SVM-medium Gaussian

* * * * * * 95.58 100 92.49 91.32 100 4.415
* * * * * * * 95.36 100 92.09 90.91 100 4.636
* * * * * * 94.92 99.5 92.49 91.28 99.574 5.077
* * * * * 95.36 99.5 92.49 91.28 99.574 4.636
* * * * * 94.48 100 90.12 88.89 100 5.519

SVM-fine Gaussian

* * * * * 97.57 100 97.23 96.62 100 2.428
* * * * * 97.35 100 97.23 96.62 100 2.649
* * * * * * * 97.57 100 97.23 96.62 100 2.428
* * * 97.35 100 97.23 96.62 100 2.649
* * * * * * 97.35 99.5 97.23 96.6 99.595 2.649

To further investigate the proposed methodology, KNN and DT classification methods were also employed
and compared with baseline SVM with various kernels. The reliability of SVM-FG for multiclass problems
against other classification methods was also confirmed (Table 4). KNN-W, SVM-C, and SVM-Q provided evi-
dence for the high discriminative characteristics and efficiency of selected features for the multiclass classification
task.

Regarding the performance of individual classes, it is observed (Figure 4b) that features extracted from
the normal class of PuPG signals contained high discrimination information that resulted in an increased
separation from features associated with the patients. This yielded accuracy as high as 100% for a normal class.
Abnormal data classes DCM, HYP, and MI showed accuracies by 97%, 95%, and 94%, respectively. Based on
these evaluations, it can be concluded that the proposed method in 4-class problems is effective in terms of
representing PuPG signals for normal and abnormal subjects.

7. Discussion
Detection of cardiac disorders using noninvasive sensing techniques has recently attracted attention. One to
one comparison is not possible since all previous research utilized photo plethysmograph (PPG) signals for the
detection of cardiac disorders [23, 25, 49, 50] while this work targeted detection through pulse plethysmograph
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Table 4. Performance comparison of different classification methods for multiclass (4-class) experiments.

Method Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) Error rate (%)
SVM (linear) 90.51 98.50 91.30 89.95 98.72 9.49
SVM (quadratic) 95.58 96.50 96.84 96.02 97.22 4.42
SVM (cubic) 96.69 96.00 99.21 98.97 96.91 3.31
SVM (fine Gaussian) 97.57 100.00 97.23 96.62 100.00 2.43
KNN medium 88.26 90.34 94.29 96.36 85.34 11.74
KNN cubic 80.43 94.89 61.90 80.68 87.84 19.57
KNN weighted 94.66 98.86 96.19 97.75 98.06 5.34
DT 88.97 93.75 90.48 94.29 89.62 11.03

(PuPG) signals. However, we compared the performance of the proposed methodology with recent studies. The
proposed method in this study was compared with the recent state-of-the-art methods (Table 5). Our proposed
method utilized PuPG sensor data for cardiac disorder detection and classification has shown to be better in all
performance measures. Previously, systems have been designed by using SVM [23, 49] and logistic regression
classification [25, 50] where existing literature only focused on two-class problems (normal vs. abnormal).
Instead, the current study presented binary and multiclass disease identification in two separate experimental
settings.

Table 5. Performance comparison with other studies.

Ref. Modality Classes Method Sensitivity Specificity Accuracy
[17] ECG 2 (Healthy/MI) Multiscale energy,

eigenspace and SVM
85% 78%

[25] PPG 2 (Normal/MI) Amplitude and interval
derived SDPPG features
and binary logistic
regression

93.90% 87.50%

[27] PPG 2 (Normal/Hyp) HRV features – – 85.47%
[28] PPG 2 (Normal/Hyp) Morphological features – – 92.31%
[29] BCG 2 (Normal/Hyp) Morphological features

and CAR
– – 84.4%

[50] PPG 2 (Normal/MI) SDPPG features and
logistic regression

90.60% 87.50%

[20] PuPG 2 (Normal/MI) Lowpass filter with
Lyapunov exponent, mean
frequency and spurious
free dynamic range
features and SVM

100% 95.1% 98.5%

[21] PuPG 2 (Normal/DCM) DWT with kurtosis,
peak to peak and root
mean square features
and SVM

100% 99% 99.7%

[22] PuPG 2 (Normal/ACS) EMD with statistical
and fractal features
and SVM

99.43% 99.41% 99.42%

This paper PuPG 2-class (Normal
/Abnormal) and
4-class (Normal,
HYP, DCM, MI)

DWT, time and
statistical features and
multiclass SVM

Binary: 100%
Multiclass: 100%

Binary: 98.02%
Multiclass: 97.23%

Binary: 98.90%
Multiclass: 97.57%

Previously, only three studies [20–22] utilized the same PuPG signatures to identify MI, DCM, and ACS
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with 98.5%, 99.7%, and 99.42% accuracies respectively. All of those works were based on a two-class problem.
But this study proposed a multiclass approach to detect four classes and on a comparatively larger dataset as
compared to that used in [20–22].

Table 6 shows the mean processing times of each step involved in detection and 4-class systems. The
detection time of the proposed method was 103 ms, while the total execution time of the multiclass system was
107.29 ms. Timing and performance analysis of the proposed method ensures its feasibility for its real-time
implementation on embedded devices.

Table 6. Step-wise execution times for detection and 4-class systems.

Stage-wise execution times (ms)
Processing stage Binary class 4-class
Signal normalization time 0.074 0.074
Preprocessing time 14.519 14.519
Segmentation time 0.121 0.121
Feature extraction time 4.925 5.673
Feature fusion time 0.053 0.087
Prediction time 83.316 86.818
Total time 103.008 107.292

8. Conclusion
In this paper, we proposed a novel PuPG signal-based cardiac disease identification system for DCM, HYP,
and MI. PuPG signals have embedded information about cardiac health and signal characteristics change
significantly with change in the pathological condition of the heart. PuPG signals were first denoised using
DWT and afterward, segmentation using thresholding was performed to extract the region of interest. Time
domain and statistical features were extracted to represent the PuPG signal of different classes and finally, the
SVM classifier was trained to perform effective detection of cardiac diseases. Here, two independent experiments
were performed for detection and classification. In the first experiment, the detection of heart abnormalities
using only two classes (normal vs. abnormal) was performed. The proposed method achieved 100% sensitivity
and 98% specificity which are higher when compared to previously proposed systems. In the second experiment,
the dataset was divided among normal, HYP, DCM, and MI classes. This is the first study that addressed the
classification of multiple cardiac disorders through only PuPG signals with an accuracy of 97.57% for the
multiclass problem.

Literature reveals that there are many pieces of research with various promising technologies using various
biosignals to detect multiple cardiac diseases, but they are not mature enough to create an influential and
statistically significant contribution towards the validation purpose with clinical diagnoses. However, to ensure
reliability, more data will be incorporated in the future for each disease. The efficiency of the proposed method
will be examined on large or multiple datasets. Future studies should also focus on the physiological implications
of PuPG signatures, such as the relation with gender, age, and other constraints, as well as comorbid clinical
circumstances. This study will lead to developing a real-time and low-cost system to assist physicians in
diagnosing heart abnormalities using noninvasive modalities with higher accuracy and efficiency.
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