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Abstract: The most challenging objective in machine translation of sign language has been the machine’s inability to
learn interoccluding finger movements during an action process. This work addresses the problem of teaching a deep
learning model to recognize differently oriented skeletal data. The multi-view 2D skeletal sign language video data is
obtained using 3D motion-captured system. A total of 9 signer views were used for training the proposed network and
the 6 for testing and validation. In order to obtain multi-view deep features for recognition, we proposed an end-to-end
trainable multistream convolutional neural network (CNN) with late feature fusion. The fused multiview features are
then inputted to a two-layer dense and a decision making softmax. The proposed CNN employs numerous layers to
characterize view correspondence to generate maximally discriminative features. This study is important to understand
the effects of multiview data processing by CNNs for sign language recognition in decoding joint spatial information.
Further, deeper perspectives were developed into multiview processing of CNNs by applying skeletal action data.
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1. Introduction
Sign language recognition (SLR) has been attempted rigorously in the past using a wide range of sensors that
capture bodily movements in one-, two- and three-dimensional spaces [1]. Despite extensive research on all data
spaces with multiple methodologies, the successful translation of these models into real time SLR systems is
scarce. This is because of the uncharacteristic human hand movements in space, which cause sensors to capture
ambiguous data. For example, the 2D video data [2] of finger movements is blurred during motion, which results
in poor recognition. The 1D sensor data[3] from flex and gyro sensors are a great alternative to 2D videos but
has failed to recover signs with respect to other body parts. Consequently, the 3D sensors such as Kinect[4],
leap motion[5], and motion capture[6] have improved the SLR results in the past decade. However, only motion
capture had the capability to model near perfect biomechanics of human body to recreate sign language 3D
data[7].

Machine interpretation of sign language has been challenging due to its intuitive nature of human hand
and finger movements. Specifically, these machine translated movements should provide meaningful arguments
for a smooth conversation between two classes of humans. However, the human body biomechanics makes it
difficult to capture a particular sign in its entirety. Figure 1 exemplifies the above statement by displaying video
frames of some signs that require a different orientation by the algorithm to recognize correctly. Computer
∗Correspondence: pvvkishore@kluniversity.in
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vision combined with machine learning algorithms for sign language recognition have achieved good outcomes
in the past decades [8–10]. Despite successful outcomes, most of the research focused on data captured using
only front view, and orientations of the signer position were not considered for evaluation.

Figure 1. Camera orinetation complications during capturing of sign language for machine interpretation. Video frames
of Indian sign language for the words (a) time, (b) together, (c) with, and (d) forward.

The hand and finger movements performed by humans are bounded by individuals’ body biomechanics.
Hence, there will always be variations in same signs performed by different signers or even in the signs done by
the same signer in different times. A complete SLR requires hand and fingers to reflect visual properties of joints
and their orientations as input to a machine interpreter. Past works, which focused mainly on multi-view SLR
[1], gesture recognition [11], face [12], and action recognition problems [13] have brought some insight into this
problem. There are very few works in the area of multiview skeletal sign language recognition to understand
the view effects on the performance of the deep learning frameworks. Conventional SLR models are based on
hand crafted feature extraction methods and machine learning [8]. Unfortunately, the hand-crafted features
using computer vision algorithms seldom model all the attributes of a sign language in multiple views. Figure 2
presents a 9-view big camera positions from our dataset used for training and 6-view small camera position for
testing. Consequently, Figure 3 shows the video frames captured from 9 views for training. It clearly shows the
need for a multiview processing approach as there are selfocclusions from hands during the signing process.
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Figure 2. Camera orientations used in capturing multiple views of 3D sign language. Larger cameras represent the
training views and smaller ones represent the test views

Multiview learning enhances the degrees of freedom of camera orientation in the field, and thus improves
real time performance of the recognition algorithm. It is useful to explore how skeletal sign language video data
can be integrated into deep learning framework. The major contributions of this work are:

1. We propose to capture a new 2D skeletal sign language video dataset with 200 signs that are recorded
with 3D motion capture technology. The 2D skeletal videos can be obtained in any orientation from 0 to
360 degrees on all three axis. Our dataset is named as KLEF3DSL_2Dskeletal, which has 15 videos per
sign in multiple views.

2. We propose a 9 stream CNN and a novel fractal view based feature fusion mechanism which generates
a maximally discriminative multiview features for recognition. In this categorized pooling model, fractal
views having maximum uncorrupted information is combined into one feature vector. We have three such
fractal views that generate a high-quality noise free multiview feature vector.

3. Intensive evaluations on our 200 × 15 × 5 = 15000 video skeletal sign language video datasets as well
as 4 multi modal action datasets have been used in validating the proposed CNN architecture. The
experimentation has shown that the proposed multiview learning through deep features and categorized
pooling network achieves higher accuracies than the single view and other multimodel sign language
recognition methods.

The rest of the paper is organized as follows. Section 2 serves to provide an insight into the past works;
Section 3 gives the machine construction, training and testing procedures; results and related analysis on the
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Figure 3. Figure showing a time frame of captured training frames in 9 multiple views for the sign ’basketball’.

outcomes of the proposed method are presented in Section 4; Section 5 draws conclusions and gives future
directions.

2. Related background
SLR has been investigated in the past three decades exclusively using methods in computer vision, image
processing, and machine learning [8] However, very little was ever explored from multiview machine perception
for SLR. The multiview perception of sign language has been possible with leap motion [10], Kinect [4], and 3D
motion capture [6]. The previous works in [1] has pointed the use of SLR with multicamera model and indicated
the need for such models as the hand movements cause selfocclusions which are difficult to be represented for
recognition. Hence, it becomes necessary for machined translators of sign language to learn from multiple views
for constructing a rich feature space for recognition in real time.

The concept of view invariance has been explored exhaustively in human action recognition models.
These methods can be divided into two categories based on the type of data being used: generative models and
non-generative models. In generative models, synthetic multiview data will be generated by the program for
training and testing. Contrastingly, the nongenerative models use multiple sensors in different orientations to
capture real multiview data for experimentation. The generative models use deep generative models that apply
adversarial training to obtain information from multiple views [14]. These methods try to extract correlations
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between the views through GANs which has shown promising results on 3D skeletal data [15]. These methods
are largely focused on 3D models, where a single image 3D model is applied to GANs to generate a multiple
views for recognition using deep networks. The input to generative models is a 3D object image, which generates
learned representations of the disentangled and oriented 3D output synthesized objects in the view manifold.

The generative models used geometric reasoning to derive multiple views from single view representations.
These methods focused on morphed prewrapping and postwrapping the interpolation images to generate multiple
views [16]. These hand-crafted methods were unsuccessful in capturing the required information. With the
advent of deep learning, the geometric reasoning to obtain multiple views has been achieved through learning
on a convolutional neural network (CNN)[17]. These models require two or more images for synthesis of multiple
views and at times reproduced information only seen in the images. Others such methods applied CNN decoders
which used implicit/explicit graphics code to generate transformed view pixels [18]. Recent models show a deep
generative encoder-decoder CNN network to generate an appearance flow vector in the input view to the output
[19]. All these methods generate views that are derived using some form of transformation, which works under
certain constraints set by the algorithm.

Conversely, the nongenerative models acquire multiview data from differently oriented sources to learn
the derived features for recognition [20]. Multi view CNNs represent features from multiple views of available
data from 3D object space [21], video action recognition [22], and person reidentification [23]. A comprehensive
feature representations are attained through iterative learning from different views. These CNNs models have
multiple streams that feed into data from each view which generates a view specific features. These features
are fused together to form a discriminative mixed feature vector that represent all views. Finally, the flattened
multiview features are processed by a fully connected neural network for classification[24]. Despite their higher
accuracies, there are several shortcoming in the above model.

The biggest limitation is in the multiview data acquisition. The network model is efficient for views below
10 for 3D object recognition [25]. Similarly, if the depth of the network is not hyperparameterized accordingly,
it becomes computationally inefficient. Although the above two are iteratively manageable, the recognition
accuracy depends on the capabilities of the fusion network. Mostly, the previous multi view CNN algorithms
have differed in the fusion network. View pooling is the commonly used fusion in multi view recognition
[24]. Enhancements to view polling are group pooling [20] and intraview group pooling [26] that has shown
considerable accuracy in 3D object recognition. However, most of the models approached the problem of multi
view 3D object recognition, which resulted in improved recognition over single view models [27].

The concept of multiview deep learning is being extended to human action recognition with different
modal inputs from RGB video [22], RGB D Kinect data [28], and 3D skeletal data [29, 30]. Other than deep
models, random forests [31], fuzzy distances [32], linear discriminant analysis [33], and bag of key poses [34]
were some of the popular methods that were applied with multiple variations across human action recognition.
Non deep learning models extract features manually from each view and are ensembled using a fusion model
to be classified by a machine learning algorithm. The success of the above models has inspired researches to
apply these models for gesture recognition [35]. It uses 3D hand gesture cloud in multiple views for recognition.
Similarly, skeletal action data in multiple views were used extensively for a large group of action recognition
models due its complexity in terms of data representation in multiple views [36].

Inspired by the preceding discussion, we propose to apply the multiview deep model for skeletal sign
language recognition. We propose a 4-layer CNN with 9 multi view streams whose features are pooled categor-
ically to form a multivariate discriminating feature vector. Our pooling network is called categorized pooling
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network (CPN), which pools features based on views to generate a nonoverlapping features to be processed
by the next CNN layers. The following section describes the proposed network architecture with training and
testing procedures.

3. Multiview CNN for sign language
This section presents the architecture of the proposed network for multiview skeletal sign language recognition
from 2D video data. The section begins with problem statement, which is followed by the proposed architecture,
training, and testing procedures.

3.1. Problem statement
Here, we define multiview skeletal signs as V γ

x , which represents 2D skeletal video data. The parameter γ

denotes the view orientation and takes values in the range of 1 to 9, indicating the viewing class. Similarly, γ is
ranged between 1 and 6 for testing data. The orientation of cameras was shown in Figure 2. The trained CNN

with learned weights w is represented as Cw . For the input multi view data V
γ(test)
x on the learned CNN,

Cw is given as

Ys = Cw.V
γ(test)
x (1)

Where Ys is the softmax output showing probabilistic class representations. Previous approaches on
multiview CNN applied 2D skeletal and RGB video data of human actions to train the model. However, this is
the first time a 2D skeletal sign language video data is being used for multi-view recognition. The 2D skeletal
videos are generated for 3D sign language data captured with 3D motion capture technology [6, 7]. The 3D
sign language data is recorded with an 8 camera Vicon motion capture system at Biomechanics and Vision
Computing Research Centre, KLEF University. Thereupon, the 3D data in 15 viewing orientations are scaled
down to 2D skeletal videos. Hence, each sign class will have 15 orientations; 9 of them will be used for training
and 6 for testing. The raw 2D skeletal videos are used for assembling the multiview CNN from input video data
x as

V γ
x =

[
v1x, v

2
x, v

3
x, ....., v

γ
x

]
(2)

Subsequently, assembled views are used for training the multiview CNN architecture Cwv
to generate

sign language recognition system as

Yclass = Cwv
�
[
v1x, v

2
x, v

3
x, ....., v

γ
x

]
(3)

The following subsection details the proposed multiview CNN architecture.

3.2. Multiview CNN architecture
This work proposes a 9-stream shallow CNN architecture for decoding the information embedded in the multiple
views of skeletal sign language 2D video data. The architecture is based on our previous works on 3D sign
language [6]. Figure 4 presents the multiview CNN framework proposed in this work. Since the pixel values
are similar in all the video data, the batch normalization and ReLU activations were discarded. It is also
found through experimentation that there is no need for batch normalization between intermediate layers for
stabilizing the leaning process and, therefore, reducing the training epochs. There are 4 convolutional layers
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operated with 3×3 filter structures and a 2×2 pooling with stride 1 after each convolutional layer. There are
no dropouts in the final layers of the proposed network.

Figure 4. Proposed multi stream CNN architecture for multi view 2D skeletal sign language recognition.

In the previous works, similar architectures were designed with feature fusion at the last convolutional
layers or in the early layers. The fusion in last layers is called late fusion and in early layers is called early fusion.
The end of the network fusion is termed as score or decision level fusion. In contrast to the previous works in
[20–23], we propose categorized pooling network (CPN), which pools features using view profiling. The view
profiling is performed with three views: Left, Right, and Front. The top and bottom views also fall in these
categories. The pooling network performs a location wise intersection f (

∩
) , which generates a unique set of

features in one orientation given as:

HR
p = f (

∩
)
(
vR35
x , vR45

x , vR30
x

)
(4)

HL
p = f (

∩
)
(
vL(−35)
x , vL(−45)

x , vL(−30)
x

)
(5)

HF
p = f (

∩
)
(
vF0
x , vF30

x , vF (−30)
x

)
(6)

The orientations in the above equations can be understood using the Figure 3. Following the CPN network are
the two-layer fully-connected dense and softmax layers. The output decision level forging from three views is
obtained for recognition of a particular sign as:

Rs = fuse (pL, pR, pF ) , (7)
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where, Rs is the final fused score for recognition. The fuse is the fusion rule and (pL, pR, pF ) are decision
level probabilities of softmax layers in left, right, and front views. The following subsection presents a details
the training the proposed architecture.

3.3. Training

The proposed multiview CNN is designed and trained in python 3.6 using keras as the frontend and tensorflow2.0
as the backend. The hyperparameters such as batch size, initializations, and video frame sizes were kept
constant across training on all datasets. However, the learning rate was found initially across a given dataset
and was decremented by a factor of 0.01, whenever the validation error became constant for four consecutive
epochs. At the start of training, the weights and biases were initialized randomly with a zero mean and 0.01
variance gaussian distribution model. The proposed CNN structure learned multiview video frames by updating
the weights and biases using backpropagation gradient descent algorithm. A batch size of 16 was iteratively
identified based on image resolution and GPU memory. The number of classes trained were 200. For each sign
class, a set of 27 videos were used for training and 18 were used for validation. The total number of 9 (views) × 4
(subjects) × 96 (frames) × 200 (classes) = 691,200 frames trained the entire network and 172800 for validation.
The network is trained multiple times during which it reached an average validation error of 2.74% at 139 epochs.
During training, the learning rate was decreased twice from 0.01 to 0.001 at 43 epochs and 0.001 to 0.005 at
88 epochs. There was no fine tuning applied to improve the validation error. Apart from the proposed data
KLEF3DSL_2Dskeletal, we also validated the networks performance on other benchmark multiview datasets
such as NTU RGB+D [37], SBU kinect interaction [38], KLYoga3D [39], and MMA [40]. From each dataset,
40 action classes were used in the orientations as shown in Figure 2 by rotating the skeletons and extracting
the video actions. The number of frames across all networks are kept constant at 9 × 4 × 96 × 40 = 13,8240,
for training. The validation set has 34560 frames distributed across 40 classes. The NTU RGB+D dataset
trained network reached an average validation error of 3.45% at 98 epochs. Similarly, KLYoga3D and MMA
attained average validation error of 2.95% at 105 epochs and 3.18% at 109 epochs, respectively. Apart from the
proposed CNN, there are other multistream models that were experimented with using the same datasets from
[20, 22, 24, 26, 27, 30]. All these models were redesigned to accommodate the skeleton video datasets used in
this work are trained from scratch with the same hyperparameters and variable parameters. The results of this
experimentation will be presented in section 4. The next subsection shows the testing procedures followed for
proposed CNN model and the other similar networks.

3.4. Testing

After training on the KLEF3DSL_2D skeletal dataset, the testing is conducted on a 6- view test dataset. The
test data is of different orientation from the training set. The capture angles of test data are represented with
small cameras in Figure 4. Figure 5 shows the test data frames. A total of 6×5×96×200 = 576000 frames
are utilized for testing the trained CNN. Similarly, the test data for other skeletal action datasets accounts to
6×2×96×40=46080 frames. Two parameters, mean recognition accuracy (mRA) and mean F1-score (mF1s)
are computed to measure the performance of the proposed multi view CNN and the other models. The next
section discusses the results obtained with analysis to generate critical insights into the dynamics of multi view
sign language recognition.
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Le� Test Views

Front Test Views

Right Test Views

Figure 5. Figure showing a time frame of testing video sequences in 6 multiple views for the sign ’basketall’.

4. Results and analysis

Experiments were conducted to understand the influence of multi view learning with respect to skeletal sign
language video dataset. The skeletal sign video dataset is most challenging one compared to other 2D video and
3D sign datasets. First, the performance of the proposed CNN is analysed for single view and multiview testing.
Second, we validate the proposed categorized pooling against other forms of pooling approaches to prove its
usefulness towards multiview recognition. Third, we compare the proposed network with other state-of-the-art
methods on our skeletal sign language dataset. Finally, a through comparison on benchmark skeletal action
datasets is performed to ensure its competence against the state-of-the-art action recognition methods.

4.1. Evaluating single and multiview test samples

In this subsection, we evaluate our model’s performance on single and multiview test videos. The test set is
comprising of 6 views. First, we test the trained multiview CNN using one single view video per class at a time.
For each view, we compute the performance measures mRA and mF1S. During this test, all the 9 streams are
shown the same view. None of the test views are not part of the training set. The results of this single view
testing are presented in Table 1. However, these test views come from the subjects used for training. Hence,
the 1st evaluation is from a test dataset with single view same subject. The second part of Table 1 shows
performance measures from single view different subject. Subsequent comparisons on Table 1 show that the
proposed CNN architecture is capable of recognizing signs in views that are not seen earlier by the network.
Despite good scores, the cross-subject test inputs performed slightly lesser than the same subject testing.

Second, the proposed CNN was offered to test multiple views concurrently in both same and cross
subject modes. The results of this experiment are shown in Table 2. In contrast to previous single view test,
the multiview has performed exceedingly well. In multiview test, the left view is presented to the CNN streams
that were trained in left and this protocol was followed for remaining views also. The results show that the
features learned by the individual streams close to the one particular view have higher accuracies than the
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Table 1. Performance of the our trained multiview CNN with only one test view as input.

Views Same Subject Cross View Cross Subject Cross View
Test Views/Scores Ltv1 Ltv2 Rtv1 Rtv2 Ftv1 Ftv2 Ltv1 Ltv1 Rtv1 Rtv2 Ftv1 Ftv2
mRA 0.6819 0.6639 0.6471 0.6837 0.7182 0.7328 0.6472 0.6236 0.6745 0.6454 0.6524 0.6412
mF1S 0.6124 0.6185 0.6218 0.6185 0.6845 0.6842 0.6219 0.6188 0.6249 0.6148 0.6179 0.6182

others. For example, the left view test video has given maximum softmax decision score on the streams that
have learned left view data and vice versa. The mRA and mF1S in Tables 1 and 2 show the same. However,
the cross-subject test has slightly lower accuracies than the same subject test inputs. Overall, the results show
that the proposed multiview CNN has the ability to learn multiple views, simultaneously. The following Figures
6a and 6b show the confusion matrices of two views Ltv1 and Ftv1 in cross subject cross view testing.

Table 2. Performance of the our trained Multiview CNN with two test views as input.

Views Same Subject Cross View Cross Subject Cross View

Test Views/Scores Ltv1–
Ltv2

Rtv1–
Rtv2

Ftv1–
Ftv2

Ltv1–
Rtv1–
Ftv1

Ltv2–
Rtv2-
Ftv2

All
Six Views

Ltv1–
Ltv2

Rtv1–
Rtv2

Ftv1–
Ftv2

Ltv1–
Rtv1–
Ftv1

Ltv2–
Rtv2-
Ftv2

All
Six Views

mRA 0.7519 0.7439 0.7721 0.7798 0.7682 0.8197 0.7309 0.7324 0.7273 0.7511 0.7497 0.7805
mF1S 0.7244 0.7102 0.7374 0.7485 0.7419 0.7859 0.6912 0.7043 0.6972 0.7108 0.7075 0.7204

4.2. Evaluation of categorized polling network

This subsection presents the effectiveness of the proposed categorized pooling network against similar pooling
techniques. The other pooling networks used by our model before arriving at the proposed network are max
pooling, average pooling, grouped pooling, and concatenation. Pooling is an operation, where element-wise
operations are performed on the multiple feature tensors. The proposed categorized pooling involves a view
defined multistage local pooling approach in which the operation is performed categorically on a particular
view. This generates a feature vector that is maximally distant from globally and minimally close locally in
the vicinity of particular view. Consequently, this process has guaranteed a highly discriminant feature space
for closely mapped signs. The challenge in sign language recognition is identifying closely matched signs, and,
to our astonishment, most of the signs have very similar hand movement. Figure 6 presents the confusion
matrix to show the similarity between signs. In single-view sign language recognition systems, these similarities
are augmented considerably due to feature matching. In addition to our dataset, we also tested the proposed
multiview CNN on the benchmark datasets for validating the proposed CPN against other pooling forms. To
maintain uniformity across datasets, only 40 classes in all datasets were used for testing. The results of our
testing are presented in Table 3. In grouped pooling, a set of views are concatenated as it performs better than
the concatenated as shown in Table 3. The categorized pooling has outperformed the others due to its ability
to select features piece wise based on viewing orientation.

The decision level fusion in all the experiments was max fusion model, which by far proved to be the
best across different architectures. In the next subsection, we train similar multi view state-of -the-art models
on our dataset to evaluate the performance of our proposed CNN architecture. However, we test these models
with all six-view sign language skeletal videos.
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Figure 6. Confusion matrices for 25 signs in cross subject cross view testing on (a) Left view 1(Ltv1) and (b) Front
view 1(Ftv1).
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Table 3. Performance of CPN against other feature pooling methods on different multi view datasets trained and tested
with our proposed CNN.

Datasets Pooling max Average Grouped Concatenated Categorized (ours)
mRA 0.5896 0.5125 0.6258 0.5485 0.6895NTU RGB+D
mF1S 0.5512 0.4856 0.5798 0.5245 0.6485
mRA 0.5248 0.4881 0.5592 0.5149 0.6254SBU Kinect Interaction
mF1S 0.4972 0.4258 0.4258 0.4673 0.5863
mRA 0.5421 0.5103 0.5723 0.5358 0.6211KLYoga3D
mF1S 0.5213 0.4992 0.5296 0.5013 0.6052
mRA 0.5845 0.5196 0.6189 0.5473 0.7125MMA
mF1S 0.5698 0.4923 0.5994 0.5291 0.6951
mRA 0.5853 0.5099 0.6196 0.5488 0.7519KLEF3DSL_2Dskeletal
mF1S 0.5522 0.4765 0.5841 0.5123 0.7244

4.3. Comparison with other multiview CNN models

This section highlights the advantages of the proposed CNN model adjacent to other state -of -the -art multiview
deep learning models. We designed the programmes as proposed in [20, 22, 24, 26, 27, 30]. All are trained from
scratch using our dataset and tested with our test set on the same machine. Table 4 gives the performance
parameters mRA and mF1S.

The proposed network decodes each view into corresponding feature maps that are view specific. In most
of the previous works, the views are pooled randomly without any underlying phenomenon. In this work, we
propose to pool features that are view neighbouring features such as right sided, left sided and centre with top
and bottom views. This proposed network computes scores that are specific to a particular set of views and
tags them with the remaining views to generate a more comprehensive recognition scores on unseen views in
the test set. This is done to ensure the system operated on the unknown views when introduced for real time
operations. The Table 4 presents mRAs that are computed with one set of views as input during testing. For
all the training views that are presented to the network as test views, the mRA was recorded around 93.43%.
However, we restrained from testing using all the training views, and therefore, used a test set that was having
different views unseen by the network. This is the reason behind the slightly less mRAs when compared to
other scores reported in the previous works

The experiments on our skeletal sign language dataset reveal the complexity of sign language. The
toughness lies in the joint representations which occupy around 10 pixels in a video frame of 256×256. Hence
convolutional layer filter sizes should be minimum for producing optimal features. Therefore, instead of
working the original filter sizes specified by the previous works, we used for all networks a filter size of 3×3.
The performance of the proposed model is higher than the previous models due to the presence of CPN,
which selectively manufactured a high discriminating feature vector for recognition. The large quantity of
misclassifications occur when the hands and face overlap making it difficult for the machine to judge its inference
for sign recognition. Categorized pooling takes the best features from a set of similar looking views to build a
feature vector that best represents all those views. However, a lot of fine tuning has be done to further improve
the recognition of skeletal sign language. The following subsection gives a more generalized comparison of the
proposed and other multiview CNNs on benchmark action datasets.
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Table 4. Shows comparison of our proposed multi view CNN with previous works on the KLEF3DSL_2D skeletal
dataset.

Views Same subject cross view Cross subject cross view
Multiview
CNN
models

Test
views/
Scores

Ltv1 Ltv2 Rtv1 Rtv2 Ftv1 Ftv2 Ltv1 Ltv1 Rtv1 Rtv2 Ftv1 Ftv2

mRA 0.6604 0.6424 0.6256 0.6622 0.6967 0.7113 0.6257 0.6021 0.653 0.6239 0.6309 0.6197[27]
mF1S 0.5909 0.597 0.6003 0.597 0.663 0.6627 0.6004 0.5973 0.6034 0.5933 0.5964 0.5967
mRA 0.6694 0.6514 0.6346 0.6712 0.7057 0.7203 0.6347 0.6111 0.662 0.6329 0.6399 0.6287[28]
mF1S 0.5999 0.606 0.6093 0.606 0.672 0.6717 0.6094 0.6063 0.6124 0.6023 0.6054 0.6057
mRA 0.6394 0.6214 0.6046 0.6412 0.6757 0.6903 0.6047 0.5811 0.632 0.6029 0.6099 0.5987[29]
mF1S 0.5699 0.576 0.5793 0.576 0.642 0.6417 0.5794 0.5763 0.5824 0.5723 0.5754 0.5757
mRA 0.6677 0.6497 0.6329 0.6695 0.704 0.7186 0.633 0.6094 0.6603 0.6312 0.6382 0.627[30]
mF1S 0.5982 0.6043 0.6076 0.6043 0.6703 0.67 0.6077 0.6046 0.6107 0.6006 0.6037 0.604
mRA 0.6418 0.6238 0.607 0.6436 0.6781 0.6927 0.6071 0.5835 0.6344 0.6053 0.6123 0.6011[31]
mF1S 0.5723 0.5784 0.5817 0.5784 0.6444 0.6441 0.5818 0.5787 0.5848 0.5747 0.5778 0.5781
mRA 0.6765 0.6585 0.6417 0.6783 0.7128 0.7274 0.6418 0.6182 0.6691 0.64 0.647 0.6358[34]
mF1S 0.607 0.6131 0.6164 0.6131 0.6791 0.6788 0.6165 0.6134 0.6195 0.6094 0.6125 0.6128
mRA 0.6819 0.6639 0.6471 0.6837 0.7182 0.7328 0.6472 0.6236 0.6745 0.6454 0.6524 0.6412Ours
mF1S 0.6124 0.6185 0.6218 0.6185 0.6845 0.6842 0.6219 0.6188 0.6249 0.6148 0.6179 0.6182

4.4. Comparing multiview models on skeletal action data

An extensive comparison is required to decide the performance of the proposed CNN against state-of-the-art
multiview CNNs from literature. All the methods from previous works are designed for action recognition.
The skeleton in action sequences have 24 joints as compared to 57 joints in our sign language dataset. Hence,
the models for action recognition are computationally less rigorous than the sign language. The performance
parameter mRA is obtained using various algorithms on the skeletal action datasets in Table 5. Accordingly,
the number of epochs for action recognition are down by 36%. The multiview skeletal data for training and
testing have been created by rotating the skeletal joints in the directions of the cameras as shown in Figure 2.

The proposed model has shown better performance on action datasets captured under various conditions
when compared to other multiview CNN methods. The higher performance of the proposed multiview CNN
is due to the polling network, which categorically pools the features based on the view profiling. This process
created a more robust feature vector the preserved common features related to a view along with highly
discriminant ones that are unique to a particular orientation. Finally, we compare the proposed multi view
CNN based on computational complexity and ablation studies.

5. Conclusions
This work enriches the importance of multiview sign language recognition on skeletal data and provides new
insights on categorized pooling of features for improved learning. The categorized pooling provides a set of
uncommon features that are oriented in a particular direction and are uniquely represented in that orientation.
This has provided a rich feature vector for 2D skeletal sign language video data in 9 different training views. Six
different test views are used to evaluate the proposed multiview CNN model with categorized pooling network.
The results have shown a network with better performance on 2D multiview sign language skeletal video dataset
as well as four benchmark action datasets.
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Table 5. Shows recogntion accuracies of signle view test on our proposed and previous works across benchmark datasets.

Same Subject Cross View Cross Subject Cross View
Ltv1 Ltv2 Rtv1 Rtv2 Ftv1 Ftv2 Ltv1 Ltv1 Rtv1 Rtv2 Ftv1 Ftv2

[27] 0.6504 0.6324 0.6156 0.6522 0.6867 0.7013 0.6157 0.5921 0.643 0.6139 0.6209 0.6097
[28] 0.6594 0.6414 0.6246 0.6612 0.6957 0.7103 0.6247 0.6011 0.652 0.6229 0.6299 0.6187
[29] 0.6294 0.6114 0.5946 0.6312 0.6657 0.6803 0.5947 0.5711 0.622 0.5929 0.5999 0.5887
[30] 0.6577 0.6397 0.6229 0.6595 0.694 0.7086 0.623 0.5994 0.6503 0.6212 0.6282 0.617
[31] 0.6318 0.6138 0.597 0.6336 0.6681 0.6827 0.5971 0.5735 0.6244 0.5953 0.6023 0.5911
[34] 0.6665 0.6485 0.6317 0.6683 0.7028 0.7174 0.6318 0.6082 0.6591 0.63 0.637 0.6258

NTU
RGB+D

ours 0.6719 0.6539 0.6371 0.6737 0.7082 0.7228 0.6372 0.6136 0.6645 0.6354 0.6424 0.6312
[27] 0.6704 0.6524 0.6356 0.6722 0.7067 0.7213 0.6357 0.6121 0.663 0.6339 0.6409 0.6297
[28] 0.6794 0.6614 0.6446 0.6812 0.7157 0.7303 0.6447 0.6211 0.672 0.6429 0.6499 0.6387
[29] 0.6494 0.6314 0.6146 0.6512 0.6857 0.7003 0.6147 0.5911 0.642 0.6129 0.6199 0.6087
[30] 0.6777 0.6597 0.6429 0.6795 0.714 0.7286 0.643 0.6194 0.6703 0.6412 0.6482 0.637
[31] 0.6518 0.6338 0.617 0.6536 0.6881 0.7027 0.6171 0.5935 0.6444 0.6153 0.6223 0.6111
[34] 0.6865 0.6685 0.6517 0.6883 0.7228 0.7374 0.6518 0.6282 0.6791 0.65 0.657 0.6458

SBU Kinect
Interaction

Ours 0.6919 0.6739 0.6571 0.6937 0.7282 0.7428 0.6572 0.6336 0.6845 0.6554 0.6624 0.6512
[27] 0.6804 0.6624 0.6456 0.6822 0.7167 0.7313 0.6457 0.6221 0.673 0.6439 0.6509 0.6397
[28] 0.6894 0.6714 0.6546 0.6912 0.7257 0.7403 0.6547 0.6311 0.682 0.6529 0.6599 0.6487
[29] 0.6594 0.6414 0.6246 0.6612 0.6957 0.7103 0.6247 0.6011 0.652 0.6229 0.6299 0.6187
[30] 0.6877 0.6697 0.6529 0.6895 0.724 0.7386 0.653 0.6294 0.6803 0.6512 0.6582 0.647
[31] 0.6618 0.6438 0.627 0.6636 0.6981 0.7127 0.6271 0.6035 0.6544 0.6253 0.6323 0.6211
[34] 0.6965 0.6785 0.6617 0.6983 0.7328 0.7474 0.6618 0.6382 0.6891 0.66 0.667 0.6558

KLYoga3D

Ours 0.7019 0.6839 0.6671 0.7037 0.7382 0.7528 0.6672 0.6436 0.6945 0.6654 0.6724 0.6612
[27] 0.6404 0.6224 0.6056 0.6422 0.6767 0.6913 0.6057 0.5821 0.633 0.6039 0.6109 0.5997
[28] 0.6494 0.6314 0.6146 0.6512 0.6857 0.7003 0.6147 0.5911 0.642 0.6129 0.6199 0.6087
[29] 0.6194 0.6014 0.5846 0.6212 0.6557 0.6703 0.5847 0.5611 0.612 0.5829 0.5899 0.5787
[30] 0.6477 0.6297 0.6129 0.6495 0.684 0.6986 0.613 0.5894 0.6403 0.6112 0.6182 0.607
[31] 0.6218 0.6038 0.587 0.6236 0.6581 0.6727 0.5871 0.5635 0.6144 0.5853 0.5923 0.5811
[34] 0.6565 0.6385 0.6217 0.6583 0.6928 0.7074 0.6218 0.5982 0.6491 0.62 0.627 0.6158

MMA

Ours 0.6619 0.6439 0.6271 0.6637 0.6982 0.7128 0.6272 0.6036 0.6545 0.6254 0.6324 0.6212
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