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Abstract: An adaptive algorithm for evaluation of singular and near singular integrals in 3D is presented. The algorithm
is based on successive adaptive/selective subdivisions of the element until a prescribed error criteria is met. For evaluating
the integrals in each subdivision, Gauss quadrature is applied. The method is computationally simple, memory efficient
and can be applied for both triangular and quadrilateral elements, including the elements with nonplanar and/or curved
surfaces. To assess the method, several examples are discussed. It has shown that the algorithm performs well for
singular and near-singular integral examples presented in the paper and evaluates the integrals with very high accuracy.
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1. Introduction
Accurate evaluation of field variables on and near the boundary of the solution domain is an important issue
for many applications of boundary element method. Near-singular integrals may stem from elements that are
very close to each other (e.g., in the case of particle flow problems when the moving particle is very close to the
channel wall), or in case of a small element being a neighbor with a considerably large element (e.g., when a fine
mesh is attached to a neighboring coarse mesh), or in evaluation of internal quantities near the boundary (e.g.,
in elastoplastic analysis using dual reciprocity method, in case of computing stress components at collocation
points near the boundary).

The general approach to evaluating such singular and near-singular integrals can be classified into four
main topics: (i) increasing the quadrature order, (ii) analytical or semianalytical solution of the integral, (iii)
transformation of the coordinates to a new set of parameters in which the singularity is canceled or reduced
with the aid of the Jacobian of the transformation, and (iv) subdivision of the element to smaller elements and
summing up the contributions from each subdivision.

Increasing quadrature order is a simple solution to the problem, yet, computationally inefficient and not
practical in coding. Therefore, in literature this alternative is mostly disregarded, unless combined with another
algorithm, such as element subdivision [1], and/or adaptive Gaussian quadrature algorithms [2–4]. In Section 3,
an example on the effect of increasing the number of Gauss points is presented, which displays why this method
is discouraged.
∗Correspondence: hakan@bayindir.org

This work is licensed under a Creative Commons Attribution 4.0 International License.
1187

https://orcid.org/0000-0003-4911-9056
https://orcid.org/0000-0003-2005-050X
https://orcid.org/0000-0001-5405-802X


BAYINDIR et al./Turk J Elec Eng & Comp Sci

Analytical or semianalytical solution of the singular or near-singular integral is widely used in 2D
applications, especially for element geometries that are linear [5, 6], but obtaining an analytical solution to
integrals appearing in 3D is not an easy task. Therefore, analytical approach to singularity is limited to simple
element geometries and/or simple function forms [7]. Examples would be the exact integrations for the Laplace
equation [8] and elasticity equation [9].

In solving singular integrals, series expansion of integral kernel into a prescribed number of terms and
obtaining an approximate analytical solution using this expansion (which can be considered as a semianalytical
method) is a common procedure for solution in several problems [10, 11]. In some problems, separation of
singular and nonsingular parts of the kernel is possible, which gives the possibility to analytically obtain a
solution for the singular part and solving the nonsingular part with Gauss quadrature [12–14]. Another method
for obtaining approximate analytical solutions is to approximate the function with its limiting value (e.g.,
limx→0(1 + x)q = 1 + qx , [15]) or use a simpler function with identical singularity, as in using Kelvin solutions
in place of Helmholz solutions since

[∀ω] (x → y) :

{
Gij(x,y, ω)−Gij(x,y) = O(1)
Hij(x,y, ω)−Hij(x,y) = O(1)

}
(1)

where Gij(x,y, ω) and Hij(x,y, ω) are the Helmholz fundamental solutions and Gij(x,y) and Hij(x,y) are
the Kelvin fundamental solutions [16].

In all cases, to obtain an analytical (or semi/approximate analytical) solution for a singular integral,
there is a need for simple element geometries, such as isoparametric elements of linear or quadratic order.
The need for a simple element geometry and simple forms of functions is also true for the analytical or
semianalytical evaluation of near-singular integrals. For example, in [17], near-singular integral is evaluated
by transforming the domain integral into line integrals over a linear isoparametric triangle, and solving the
resulting line integrals numerically. The same procedure is followed in [18] for semianalytical solution of near-
singular integrals appearing in Galerkin surface integrals. As in [17], in [18] linear isoparametric triangular
elements are employed. For higher order elements, such as quadratic quadrilateral elements, this is possible
with the approximation of the distance function [19].

Parameter transformation is a widely used strategy for evaluating singular or near-singular integrals.
Several transformations are proposed in literature, starting from polynomial transformations [20–22] to sigmoidal
[23] or sinh [24] transformations, or combinations of these in different directions, like sinh transformation in
the radial direction and sigmoidal transformation in the angular direction [25]. Basic idea is to obtain a
transformation that has a Jacobian which approaches zero faster than the kernel of the integral approaches
maximum value [26]. The major drawback (for near-singular cases) is the need for the calculation of the
projected point onto the plane of the element. The position of this point, especially if it lies close to the
boundary of the element or is outside the domain of the element, requires special care [27]. Also, the selection
of an effective transformation is an important issue and not independent from the function form [28].

Note that, in all above cited studies for evaluating near-singular integrals, location of the near-singular
point with respect to the integrated element is of crucial importance. Also, in most cases, the given solution is
limited to the presented kernel function or similar functions.

A general approach to evaluate singular or near-singular integrals is to divide the element being integrated
into the prescribed number of sub-elements. Note that, there are infinite choices of subdivision strategies that
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can be utilized on simplexes. In this study, a subdivision algorithm based on triangulations is proposed.
Integrals over nontriangular elements, such as quadrilateral elements, can also be evaluated with this method
by subdividing the element into triangles before the process is applied. In the proposed algorithm, triangulations
do not alter the geometrical properties of the original element – in fact, all subtriangles are similar triangles
to the original element, therefore no regularization in the geometry of sub-triangles are needed. Also, any
Gauss quadrature scheme can be employed within the algorithm. The main advantage of the algorithm is its
self-adaptivity independently from the location of the source point to the integrated element. Furthermore, a
selective subdivision is used, increasing resolution at the regions needed, and stopping the subdivision process at
the regions where a prescribed error criterion is reached. The algorithm is not recursive, but stack-based, also it
is designed to work depth-first. The depth-first approach prevents large queues since only one triangle’s integral
is calculated at once. These design decisions lead to two major properties: a very small memory footprint and
effortless parallelization. As a result, the algorithm can be run in a parallel manner without the need of complex
synchronization structures and works with very small memory consumption costs. The proposed algorithm is
flexible in the sense that it can be applied to any type of element including nonplanar geometries, and any
kernel function within the integral.

2. Adaptive element subdivision algorithm

The element subdivision with triangulation, in literature, is mainly performed in two ways: either the element
is subdivided into three triangles from its center, or the projection of the source point onto the plane of the
integrated element is used as a pivot to subdivide the element [28]. In such cases, the newly formed subelements
mostly become distorted since one of the angles become too large with respect to the others, which requires a
secondary subdivision to overcome this problem and regularize the subelements (see Figure 1).

(a) (b)

Figure 1. Two commonly applied subdivision technique for triangular shapes, (a) the division based on the center point,
(b) division based on the projected point. The left division is the first iteration, the right is the redivision to obtain
regular triangles.

It is important to note at this point that, none of the subelements formed after these types of subdivisions
are similar to the original element being integrated. Application of an adaptive technique to nonsimilar
triangles is not practical since the algorithm needs to take distortions in the triangles into account and make
corrective subdivisions if necessary. This adds more processing steps and may cause unnecessary or impractical
subdivisions.

An exception to this subdivision technique appears in [29] where the triangular element is divided into
similar triangles by folding the triangle – as given in Figure 2. The method can be considered to be adaptive,
in the sense that it continues the subdivision process until a given convergence criterion is achieved. The major
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disadvantage is that each subdivision process doubles the number of triangles, making 4k subtriangles for a
process of k -fold. Also, the subdivision is not sensitive to the location of singularity or near singularity.

In the proposed algorithm in this study, the element subdivision is made based on side midpoints of the
triangle, which results in four similar triangles as demonstrated in Figure 3a. To present the algorithm, we first
define a tree structure with elements being triangles that are generated as the result of the subdivision process.
The tree originates from the original triangle that integration will be evaluated on. Each element of the tree
will be composed of a parent and four children (Figure 3b).

Original Triangle One -fold division Two -fold division

Figure 2. Subdivision by folding as presented in [29] using Romberg integration scheme.

(a)

4

21
3

421
3

(b)

Figure 3. The subdivision of the triangular element (a) proposed subdivision technique applied to a triangular element,
and (b) the parent and its four children in tree structure.

The algorithm mainly depends on the comparison of intermediate approximate values of two integrals.
These two integrals are computed on the same triangle, but in a different manner. First the so-called parent
triangle is considered, then this triangle is subdivided into four which are are integrated independently to add
up a composite value of the integral. As a last step, these two values are compared using the stopping criterion
(SC) given as

SC =

∣∣∣∣Ievalulated − Iexact
Iexact

∣∣∣∣× 100% (2)

If the SC is equal or lower than the predeterminded value, integration process is terminated. Otherwise,
child triangles are appended to the queue for further subdivision, integration and comparison processes. This
process of subdividing the triangles continues for every triangle, until the required SC is satisfied for all.
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When a subdivision and comparison process yields a result with the desired SC, all five triangles are
discarded and result obtained from the sum of divided triangles is kept. This simple notion directs the
algorithm to divide sections of the triangles with more singularity into smaller, more fine grained triangles
and abandon sufficiently accurate parts earlier. With this behavior, the algorithm automatically concentrates
subdivided triangles to the region of the integration domain where near-singularity is mostly affected. This is
done inherently within the algorithm without any preprocessing or guesswork and shows a naive but highly
accurate adaptive behavior.

The algorithm is implemented with simplicity in mind. For efficiency and resiliency under large loads,
the algorithm is designed without recursion. The triangles to be processed are stored in a stack, which has a
LIFO (last in, first out) behavior. This stack makes the algorithm to work in depth-first fashion, and as a result
the algorithm processes a single triangle until it calculates the required integral. The flowchart of the algorithm
is given in Figure 4. Also, complete computation pipeline is consciously designed to prevent subnormal floating
point numbers, which create measurable slowdowns during operation of the algorithm. Subnormal floating point
numbers are the numbers which fill underflow gap around zero in floating point arithmetic and require special
processing by the CPU, hence slowing down computations from one to three orders of magnitude depending on
the number’s closeness to 0 .

This simple and lightweight subdivision algorithm adaptively focuses on hard parts of an integration
without any pre or post processing. This adaptive behavior converts Gaussian quadrature from a fixed time,
variable accuracy to variable time, almost constant accuracy method. As a result, resulting computation
becomes very accurate which, will be detailed in the next section.

Start
Integrate first

triangle

Push integrated

traiangle to stack

Is stack

empty?
Return final

result

Get top

triangle

Sum

four integrations

Calculate

percent error

Divide triangle

to four

Integrate all

four triangles
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No

error < target
Add all triangles

to stack

Add integration 
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YesNo

Figure 4. The adaptive subdivision algorithm flowchart.

An example triangulation is presented in Figure 5. Here, the original triangle
△

ABC is first divided into

four similar triangles
△

AEF ,
△

EBD ,
△

EDF and
△

FDC for which the integral values are summed up and compared
with the original triangle. Since the SC is not met, all four sub-triangles are pushed to stack, the upper most
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triangle
△

FDC is taken from the stack as the parent triangle. This triangle is subdivided into four children and
the integral value is compared with the parent. Since the comparison yielded a SC that is below the prescribed

bound, the integral value of the
△

FDC is updated as the value of the sum of the integrals of the children, and

the triangles are popped out. The next integral on top of the stack is
△

EBD , which is divided into four children.
Since the comparison did not yield to a SC that is lower than the bound, all children are also divided into four
and compared with their respective parents. When the prescribed value is obtained between a parent and its
four children, the corresponding triangles are popped out of the stack. The process goes on with the other
triangles until there is no triangles left on the stack.
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Figure 5. The subdivision of the integration region into similar triangles. Each subdivision level is represented with a
different color. The self-localization behavior of the algorithm can be traced in the triangle region BED .

Since the algorithm uses Gaussian quadrature during evaluation of integrals in every step, utilization of
different number of Gaussian quadrature points have an effect on speed of evaluation. Since a higher order
Gaussian quadrature is inherently more accurate in approximation of the integral value, using a higher order
Gaussian quadrature results in more accurate evaluations with fewer number of triangles. This effect can be
clearly observed in the results presented in the Section 3.

Another advantage of the proposed algorithm is its independence of the integral kernel. This independence
means the algorithm does not need to be changed or tuned with respect to the problem being evaluated. As
a result, the algorithm can be integrated into a general purpose application and be used for evaluation of
any singular or near-singular integral. This feature separates the proposed algorithm from other methods and
algorithms which needs to be tuned or partially reimplemented in order to evaluate singular and near-singular
integrals efficiently and accurately.

Last but not the least, the proposed algorithm’s design is targeted towards real world high performance
computing applications. This targeting enables it to be able to exploit all the computing resources provided by
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modern multicore and multiprocessor systems. During execution, the algorithm isolates all its work data and
does not need any information besides the target triangle, source point and a SC at start and during execution.
Due to these properties, multiple copies of the algorithm can be run in parallel, evaluating multiple triangles at
once, hence accelerating the evaluation process in real world problems greatly.

One possible caveat of the algorithm is its tendency to overshoot prescribed error. The reason for this
phenomenon is the calculation of the SC on the last five (one parent and four siblings) triangles. When the
algorithm tries to satisfy SC on smaller triangles that yield smaller integration values, this translates to an even
lower SC value on the whole integration process. This issue may be averted in a variety of ways, but most
of these methods will complicate the algorithm, hence result in a more computationally costly algorithm with
lower accuracy. To keep the algorithm simple and fast, the authors did not pursue a solution to eliminating
this overshooting phenomenon.

3. Case studies
To display the efficiency of the proposed algorithm, three benchmarks are presented in this section.

3.1. Solution of a simple singular kernel over linear parametric triangular element

As a first benchmark, the first example from [17] is studied. Here, the integral

I =

∫
T

1

rn
dA (3)

is evaluated and compared with the exact values. In Equation 3, n represents the order of singularity and r

is the Euclidean distance between the source (fixed) point and the varied (integration) point on the integrated
element.

The triangle that the integral is evaluated over is shown in Figure 6 along with the position of the source
point. It is obvious that, as the value of z approaches to zero, the integral becomes highly near singular.

X

Y

Z

(0,0,0) (1,0,0)

(1,1,0)

Δ

Δ

z

Source point

Figure 6. The location of the source point and the integrated triangular element for the benchmark problem. The
triangle is a right-angled triangle at xy-plane and the source point is located at (∆,∆, z) .

To display inefficiency of increasing only the Gauss quadrature order (in a conventional Gaussian integra-
tion algorithm, without element subdivision), we first present Table 1. It can be easily seen that, as the point
gets closer to the integrated element, e.g., as z → 0 , increasing the number of Gauss points, to even 4 million
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points, is not effective enough (for z = 0.001 , %error = 1.85). Note at this point that, for a single integrated
element, the storage requirement for 4 million points (including the corresponding weights) is approximately 90
MB (in contrast, solution of a 1000 constant elements elastostatic problem, including the evaluation of internal
points consumes 139.27 MB at most when solved using the framework presented in [30] utilizing the shown
method in this study). This makes Gaussian quadrature inefficient from both computational and resulting
percent error aspects.

Table 1. Effect of increasing the number of Gauss points in a conventional algorithm (n = 5 and ∆ = 0.6).

z Exact solution # of Gauss points % error

0.1

102 1.369e + 01

2502 4.570e− 12

1.03964997638965e + 03 5002 4.570e− 12

10002 4.570e− 12

20002 2.380e− 11

0.01

102 9.766e + 01

2502 9.000e− 02

1.04718947671873e + 06 5002 1.830e− 04

10002 1.780e− 10

20002 7.710e− 11

0.001

102 1.000e + 02

2502 8.932e + 01

1.04719754311651e + 09 5002 4.754e + 01

10002 3.830e + 00

20002 1.850e + 00

In the present study, 3-, 6- and 7-point Gauss quadratures are used in evaluating the integrals in the parent
and divided elements (all Gauss quadrature tables are presented in the Appendix with respective references).
For comparison, the study of Niu et al. is taken into consideration [17].

Firstly, 7-point Gauss quadrature results are presented along with the data given in the implied reference
[17]. Values labeled as conventional are obtained by evaluating the same integral with 8-point Gaussian
quadrature (also present in [17]). Note that, in [17] the same definition for the percent error given in Equation 2
is used. In all presented results, unless otherwise is explicitly stated, the SC is prescribed as SC = 10−4 .

Table 2 presents the comparison of the percent error. It can be seen that the results of the current study
present almost-constant accuracy independently from the location of the source point whereas the results of
[17] highly depend on the location of the near-singular point. It is also worth noting that even with a relaxed
stopping criteria of SC = 10−4 , the obtained results are comparable with [17].

To assess the memory footprint of the developed algorithm, a stripped-down C++ implementationi is
memory profiled using Valgrind Massif. Massif is a heap and stack profiler which, in practice, measures the
memory usage of an application by encapsulating it and monitoring its memory allocation behavior. The
profiling is done for every test case in Table 2 for stopping criteria SC = 10−4 and SC = 10−8 using 7-point

iA special application containing only the integration algorithms is developed during the preparation of this paper to test and
verify the case studies. The algorithms are identical to [30].
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Gaussian quadrature. The relevant results can be seen in Table 3ii. Since there are no implementation details
provided in [17], it is not possible to make any accurate predictions on the memory usage of the algorithm
developed by the researchers because of the vast number of possible ways to design and implement such an
algorithm. As can be seen in Table 3, the complete program’s memory footprint is extremely small and can be
considered independent of integration difficulty. This property allows this algorithm to be implemented without
any noticeable resource impact even in massively multicore scenarios.

Table 2. Comparison of the 7-point Gauss quadrature results from the current study with the results presented in [17].
The singularity order is n = 5 and the stopping criteria is 1e-4.

Point Percent error
z ∆ Exact Sol’n Conventional Niu 7 pt. adapt.

0.001

0.01 1.046e + 09 2.60e + 01 4.61e− 12 1.032e− 06

0.1 1.047e + 09 7.54e + 01 3.42e− 14 7.772e− 08

0.6 1.047e + 09 9.93e + 01 0.00e + 00 7.772e− 08

0.01

0.01 8.737e + 05 1.62e + 01 4.80e− 05 7.772e− 08

0.1 1.046e + 06 1.06e + 01 4.76e− 12 1.376e− 08

0.6 1.047e + 06 2.64e + 01 5.56e− 14 3.738e− 09

0.1

0.01 3.327e + 02 2.54e + 00 2.93e− 01 3.846e− 09

0.1 8.734e + 02 9.12e− 01 2.07e− 05 3.154e− 08

0.6 1.039e + 03 7.58e− 02 3.69e− 11 4.357e− 08

Numbers are truncated. Computation precision is 14 significant digits.

Table 3. Comparison of the memory usage of the algorithm in different cases in both SC = 10−4 and SC = 10−8 using
7-point Gauss quadrature. The singularity order is n = 5 .

Point Memory usage (bytes)
z ∆ Exact Sol’n SC → e = 10−4 SC → e = 10−8

0.001

0.01 1.046e + 09 92, 384 95, 960

0.1 1.047e + 09 92, 384 94, 456

0.6 1.047e + 09 91, 448 94, 456

0.01

0.01 8.737e + 05 90, 288 94, 456

0.1 1.046e + 06 91, 448 94, 456

0.6 1.047e + 06 90, 288 94, 456

0.1

0.01 3.327e + 02 88, 360 92, 384

0.1 8.734e + 02 88, 360 92, 384

0.6 1.039e + 03 90, 288 93, 320

Numbers are truncated. Computation precision is 14 significant digits.

Further analysis can be made considering the number of Gauss quadrature points on each triangle in the
evaluation. The simplest is the 1-point GQ, where the evaluation is based on the center point of the triangle.
This case is not covered in this study since for small values of z the computation time becomes extremely long.
In this study, we present the results obtained with 3- and 7-point GQ. The points are symmetrically distributed

iiThe profiling is done over 100 runs and reported maximum value is used for tabulation.
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on the element as proposed by [31]. The results of the comparisons are given in Tables 4 and 5 where the
error, number of triangles used in evaluating the integral and average solution time of 5 runsiii is tabulated
respectively. It can be seen that 7-point GQ gives comparable results with those of 3-point GQ in accuracy with
much less number of triangles. Furthermore, it can be seen that all evaluations give an almost constant accuracy
regardless of the position of the source point, and this accuracy can be preset by the application developer or
user in accordance with the requirements of the problem solved. Also, a set of benchmarks are done to observe
the effect of using different number of GQ points in the integration process. In the benchmarks, exactly the
same integration is evaluated on the triangle shown in Figure 6, and number of GQ points have changed. The
solution times of these benchmarks is tabulated in Table 6iv. Tables for GQ points can be found in Appendix A.

The effect of utilizing a different number of GQ points in the evaluation of integrals can be observed
in Tables 4–6. In every case, an increase in the number of GQ points reduces total computation time and
the number of triangles evaluated to reach the prescribed error bound. In these benchmarks, stopping criteria
is selected as SC = 10−8 to push the algorithm to its limits and highlight the effect of increasing GQ point
count clearly. This reduction of time and number of evaluations are obtained with a negligible increase in
computation resource requirement. If desired, the GQ points can be increased further. Increasing points will
accelerate computation up to a certain extent without degrading the result accuracy. Since the algorithm will
evaluate at least 5 integrals to compare the results between the parent and divided triangles, accelerating the
process will not be possible after a certain GQ point count. In any case, the result accuracy will not degrade.

Table 4. Comparison of GQ order concerning percent error and number of triangles used in evaluating the integral
(n = 5).

Point 3-point GQ 7-point GQ
z ∆ % Error Triangle count % Error Triangle Count

0.001

0.01 1.695e− 11 159309125 6.946e− 13 157333

0.1 2.663e− 12 229474789 1.216e− 11 225909

0.6 6.875e− 12 260216069 1.289e− 11 255957

0.01

0.01 1.798e− 12 71031493 5.729e− 13 69925

0.1 2.068e− 12 128665733 2.202e− 12 86641

0.6 8.448e− 13 159180101 2.089e− 12 153477

0.1

0.01 7.875e− 12 26970245 6.884e− 12 26213

0.1 2.642e− 12 36464661 2.394e− 12 37285

0.6 8.485e− 12 55231125 4.570e− 12 54805
1Numbers are truncated. Computation precision is 14 significant digits.
2Stopping criteria is chosen as e = 10−8.

For completeness, one last analysis can be presented for evaluating the performance of the proposed
algorithm with different orders of singularity. For this, n is changed from 2 to 5. In the presented evaluations,
7-point GQ is used in triangular integration. It can be seen in Table 7 that for all singularity orders, n , the
proposed method gives a good approximation with the exact value. For comparison, results obtained from
46-point (order 14 [32]) GQ evaluation are included (Appendix A).

iiiThe time measurements are done on a Dell PowerEdge R720 server with two 2.0 GHz Intel Xeon 2650 eight-core processors
and 392 GB of RAM.

ivBenchmarks in Tables 6 and 7 are done with a Mac Book Pro (Mid 2014 model with 2.8GHz Intel Core i7 CPU and 16GB
RAM). Timing is an average of 100 runs.
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Table 5. Comparison of GQ order concerning average time to obtain solution (n = 5).

Point Solution time (ms)
z ∆ 3-point 7-point

0.001

0.01 51732 110

0.1 74380 159

0.6 83891 179

0.01

0.01 22836 48

0.1 41324 86

0.6 50870 105

0.1

0.01 8654 18

0.1 11651 29

0.6 17473 38

Stopping criteria is chosen as e = 10−8.

Table 6. Comparison of GQ order concerning average time to obtain solution (n = 5 , ∆ = 0.1).

Solution time (ms)
z 3-point 5-point 7-point
5 0.508 0.215 0.015

1 30.468 3.018 0.184

0.5 141.797 7.989 0.410

0.1 795.135 43.747 2.424

0.01 3015.818 141.509 7.422

0.001 5273.177 260.369 13.778

Table 7. Comparison for different singularity orders (∆ = 0.1).

z Order (n) Exact solution # of triangles Solution time (µs) Error 46-point GQ error
0.1 2 3.410e + 00 761 0.277 3.860e− 11 3.500e− 01

0.01 2 1.012e + 01 2509 0.928 4.790e− 10 1.632e + 01

0.001 2 1.734e + 01 4449 1.694 3.305e− 10 4.904e + 01

0.1 3 1.748e + 01 1065 1.115 1.226e− 08 6.700e− 01

0.01 3 2.963e + 02 3621 3.947 3.804e− 10 5.086e + 01

0.001 3 3.124e + 03 6417 7.240 3.624e− 10 9.484e + 01

0.1 4 1.161e + 02 1477 1.764 1.760e− 10 5.700e− 01

0.01 4 1.564e + 04 4945 5.535 1.360e− 10 7.767e + 01

0.001 4 1.570e + 06 8813 10.066 6.540e− 10 9.974e + 01

0.1 5 8.734e + 02 37285 2.424 2.394e− 12 9.092e + 01

0.01 5 1.046e + 06 86641 7.422 2.202e− 12 1.000e + 02

0.001 5 1.047e + 09 225909 13.778 1.216e− 11 9.999e + 01
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3.2. Solution of a simple singular kernel over curved elements

A second benchmark is aimed to assess the performance of the proposed algorithm over nonplanar and/or curved
elements. For this, a 3D six-noded quadratic isoparametric element is considered. To be consistent with the
previous benchmark, the three vertex nodes of the quadratic triangular element and the definition of the fixed
point are kept as the same in Figure 6. The coordinates of the nodes in order are given in Table 8. The change
of geometry is displayed in Figure 7 for three different values of M .

Figure 7. The curvature of the isoparametric quadratic six-noded element. The tip z-coordinate values are: M = 1
(red), M = 0.5 (blue), M = 0.25 (green) and M = 0 (black). Note that for M = 1 the element is planar and identical
to three-noded linear isoparametric element.

Table 8. Coordinates of the nodes for quadratic element in benchmark 2. The curvature can be controlled by changing
the parameter M in z-coordinate of the third node. For M = 0 , the surface is identical to that given in Figure 6.

Node # x-coordinaate y-coordinate z-coordinate
1 0 0 0
2 1 0 0
3 0 1 M

4 1/2 0 0
5 1/2 1/2 0
6 0 1/2 0

The integral is given as in Equation 3. A semianalytical solution to this integral is possible. For this,
first the quadratic transformation is performed as:

I =

∫
T

f(xi)dA =

+1∫
0

1−ξ∫
0

f(ξ, η)J(ξ, η)dξdη (4)

where
xi = Njx

j
i (5)

1198



BAYINDIR et al./Turk J Elec Eng & Comp Sci

with xj
i are the coordinates of the ith node and Nj are the corresponding base functions. In Equation 4, J(ξ, η)

is the Jacobian which is given by

J(ξ, η) =

∥∥∥∥∂xi

∂ξ
× ∂xi

∂η

∥∥∥∥ (6)

Later, a second quadratic transformation is proposed (as in [31]) with

ξ =
1 + u

2
and η =

(1− u)(1 + v)

4
(7)

which transforms the integral to

I =

∫
T

f(xi)dA =

+1∫
0

1−ξ∫
0

f(ξ, η)J(ξ, η)dξdη =

+1∫
−1

+1∫
−1

f(u, v)J(u, v)(1− u)dudv (8)

which in the final form can be solved by bisection to obtain a very accurate solution.
A first analysis considers the change of the singular point for a constant curvature of the element setting

M = 1 . Table 9 presents the obtained results. For different closely located fixed points, the outcome of the
proposed method is compared with the semianalytical results along with the comparison of 100-point GQ. It
can be seen that the results present an almost constant accuracy.

Table 9. Comparison of the proposed method with the semianalytical solution for M = 1 .

z ∆ Semianalytical % Error present % Error 100-pt GQ

0.001

0.01 7.316e + 00 6.679e− 08 1.182e + 01

0.1 5.550e + 00 7.016e− 07 1.898e + 00

0.6 8.246e + 00 2.057e− 06 1.578e + 01

0.01

0.01 5.048e + 00 1.465e− 06 2.450e + 00

0.1 5.173e + 00 3.355e− 07 1.148e + 00

0.6 8.559e + 00 6.340e− 07 1.825e + 01

0.1

0.01 2.120e + 00 3.997e− 06 1.442e− 02

0.1 2.941e + 00 2.031e− 07 2.803e− 03

0.6 1.462e + 01 2.067e− 06 2.448e + 01
1Numbers are truncated. Computation precision is 14 significant digits.
2Stopping criteria is chosen as e = 10−8.

As a second assessment to the proposed method, the z-coordinate of the third node (i.e. M ) is varied
to change the curvature of the element. The near-singular point is selected to be (0.6, 0.6, 0.001). It should be
noted that this point is close to the sixth node of the element.

It is expected to obtain the exact result evaluated for the 3-point linear isoparametric element when
M = 0 . In other cases, the semianalytical results can be evaluated. These values are compared with the values
obtained from the present study and also with 100-point GQ (Table 10). The results show that the accuracy of
the method is satisfactory, especially when compared with the very bad approximations by the 100-point GQ.
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Table 10. Comparison of the proposed method with the semianalytical solution for fixed point location ∆ = 0.6 and
z = 0.001 .

M Semianalytical % Error present % Error 100-pt GQ
0 1.047e + 09 6.85e− 12 9.999e + 01

0.10 9.087e + 05 3.685e− 07 9.306e + 01

0.25 6.487e + 04 1.604e− 06 2.855e + 01

0.50 1.289e + 04 3.504e− 07 7.698e + 01

0.75 6.314e + 03 2.475e− 07 1.124e + 02

1.00 4.298e + 03 9.492e− 07 1.210e + 02

2.00 2.491e + 03 4.501e− 06 5.020e + 01
1Numbers are truncated. Computation precision is 14 significant digits.
2Stopping criteria is chosen as e = 10−8.

3.3. Solution of elastostatic fundamental solutions over constant triangular element with linear
isoparametric geometry

As a third benchmark, elastostatic first and second fundamental solutions which are given by [33]:

Gij(B,P ) =
1

16πµ(1− ν)r
[(3− 4ν)δij − rirj ] (9)

and

Hij = − 1

8π(1− ν)r2

{
∂r

∂n
((1− 2ν)δij + 3rirj)

+(1− 2ν)(nirj − njri)

}
(10)

are evaluated. The exact solution when the source point is on the integrated triangular element is given by [34]
and later by [35]. In this study, the integrated element is selected as the same in Figure 6, with the change
that the source point is now located at the center point of the triangle, e.g., at ( 23 ,

1
3 , 0) . A nondimensional

analysis is performed replacing r with r̄ = r
a where a is the characteristic length and σ̄ = σ

µ where µ is the
shear modulus of chosen material. The analytical solutions are obtained through the formulation presented by
[35] and presented in Table 11 with nondimensional material properties selected as shear modulus, µ̄ = 1.0 and
Poisson’s ratio, ν = 0.2 . The error, in this matrix case, is defined as the maximum of the Frobenius norm of
the difference between the evaluated and the exact matrices:

e = max
({[

Gex
ij −Gev

ij

] [
Gex

ij −Gev
ij

]}1/2
,
{[

Hex
ij −Hev

ij

] [
Hex

ij −Hev
ij

]}1/2
)
. (11)

Table 11. Exact values of the G matrix for the given benchmark triangle.

G matrix
0.161629822 0.003846090 0
0.003846090 0.161629822 0
0 0 0.131698374

H matrix
0.5 0 0.007360794
0 0.5 –0.007360794
–0.007360794 0.007360794 0.5
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Due to geometry, the G matrix is symmetric and H matrix is antisymmetric (in the sense that off-diagonal
elements are negative of each other side, yet the diagonal should be 1

2 , see Table 11). Therefore, only nonzero
independent components are compared, which are G11 , G12 , G22 , G33 and H11 , H13 and H23 . Firstly, the
error in the G matrix is presented in Table 12 compared with the prescribed SC. It can be seen that even with
a very relaxed SC of 10−3 the procedure gives very accurate results. Secondly, the error in the H matrix is
presented in Table 13 compared with the prescribed SC. Similarly, very accurate results are obtained. Note
that, the number of triangles used in the evaluation is 951, 700 for SC = 10−3 , 3, 875, 716 for SC = 10−4 and
28, 317, 812 for SC = 10−5 giving the solution times of approximately 0.37s , 1.42s and 10.86s respectively.

Table 12. Comparison of % error in independent components of G for different prescribed error bounds.

SC → 10−3 10−4 10−5

G11 2.909e− 04 8.093e− 05 1.305e− 05

G12 3.454e− 04 1.218e− 04 2.301e− 05

G22 2.950e− 04 8.074e− 05 1.287e− 05

G33 2.927e− 04 8.056e− 05 1.276e− 05

max 3.454e− 04 1.218e− 04 2.301e− 05

Table 13. Comparison of % error in independent components of H for different prescribed error bounds.

SC → 10−3 10−4 10−5

H11 2.460e− 05 8.800e− 07 5.600e− 07

H13 1.795e− 03 2.367e− 05 7.325e− 05

H23 1.202e− 03 4.342e− 04 4.707e− 05

max 1.795e− 03 4.342e− 04 7.325e− 05

The last benchmark, using the same triangle geometry is presented below. In this scenario, the source
point is moved out of the triangle’s plane, in the direction of its outer unit direction. The new location of the
source point is changed through a positive scalar value, s (see Figure 8). The near singularity increases as
s → 0 thus, the components of the G and H matrices shall approach to the singular exact values presented in
Table 11. G11 and H11 are presented with respect to changing s in the Figure 9. Validating the expectations,
values approach to the exact singular values as the value of s decreases.

s s

SIDE VIEW

outer normal

direction

outer normal

direction

Figure 8. The change of position of the singular point on a triangular element.
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Figure 9. The change of position of the singular point on a triangular element.

4. Conclusion and discussion
A new adaptive method based on element subdivision for obtaining three-dimensional singular and near singular
integrals is presented. The method proves well for the examples studied. The advantages of the presented
method lie in the following discussion:

• The algorithm continues to operate until given SC is achieved. This ensures that the accuracy of the
algorithm is guaranteed.

• Since the subdivision of the triangles continues until given SC is achieved, the subdivision process
concentrates on the location of the point of singularity (or near-singularity), making more divisions around
that point.

• The proposed method operates without approximating the distance of the source point to the element or
without projecting said point to the element hence, it operates regardless of the source point with respect
to the element being evaluated.

• Since all triangles obtained from the original triangles are similar triangles, it is possible to compute the
coordinates of the Gaussian points on the new triangles without complex transformations. This feature
reduces the computational complexity and cost.

• Using the similar triangle property pointed above, it is easier to calculate the areas of the divided triangles
with a simple division by 4. This, again, reduces computational complexity and cost.

• Simplicity of the algorithm allows efficient implementation in terms of both space and time. This claim
is materialized [30] where an elastostatic problem containing 1000 constant elements has been solved
including internal point evaluation and, the whole application has consumed 139.27 MB at most during
the solution process. Furthermore, memory profiling of the algorithm alone has shown that the memory
footprint of the algorithm is extremely small (less than 100 Kib) and can be scaled to many cores without
any significant resource requirement.

It is also important to note here that, the presented algorithm can be used along with any parallelization
algorithm for evaluating the system matrices since it presents an independent element-based integration. Also,
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a considerable speed-up can be obtained when the integrations of the child triangles are evaluated on different
compute nodes.

One major advantage of the algorithm is the applicability of the method to three-dimensional nonplanar
and/or curved elements. In this study, as an example, the isoparametric six-noded quadratic triangular element
is studied and the obtained accuracy is found highly satisfactory. The procedure can easily be extended to other
nonplanar and/or curved elements, e.g., isogeometric elements. Also, the method presents applicability to any
fundamental solution. These two properties make it possible to be used as a common integration algorithm for
package programs that are designed to analyze different problems appearing in different mathematical models.

A. Gaussian quadrature points
In this section, the Gaussian quadrature points and weights referenced in the paper and used in the algorithm
are presented. To save space, some tables are represented in a compact form. To obtain the full set of points,
one shall write all permutations of all alpha , beta , and gamma triplets, then eliminate the identical sets from
the result. This process yields one point if alpha , beta , and gamma have the same values, three points if two
values of the triplet are identical, or six points if all values of the triplet are different. The same weight shall
be used for all points generated from a single line in the table. If the table is generated right, the sum of all
weights after the elimination of identical triplets shall be equal to 1 .

The order 14/46-point Gaussian quadrature is reproduced from [32] and displayed in Table 17. Table
should be read as follows: The orbit S3 has a single abscissa, a = 1

3 , and represents a single point (a, a, a) in
local coordinates. The orbits S21 each have single abscissas, namely a and each corresponds to three points
with local coordinates being combinations of (a, a, 1− 2a) . The orbits S111 each have double abscissas, namely
(a, b) and these correspond to six points with local coordinates being the combinations of (a, b, 1−a−b) . Other
useful Gaussian quadratures consisting 3-, 6- and 7-points are also provided in Tables 14–16, respectively for
further reference.

Table 14. Three-point Gaussian quadrature points and weights used in the algorithm.

Weight Alpha Beta Gamma

0.333333333333333 0.666666666666667 0.166666666666667 0.166666666666667

Table 15. Six-point Gaussian quadrature points and weights used in the algorithm.

Weight Alpha Beta Gamma

0.223381589678011 0.108103018168070 0.445948490915965 0.445948490915965
0.109951743655322 0.815847572980459 0.091576213509771 0.091576213509771

Table 16. Seven-point Gaussian quadrature points and weights used in the algorithm.

Weight Alpha Beta Gamma

0.225000000000000 0.333333333333333 0.333333333333333 0.333333333333333
0.132394152788510 0.059715871789780 0.470142064105110 0.470142064105110
0.125939180544830 0.797426985353090 0.101286507323460 0.101286507323460
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Table 17. Forty-six-point Gauss quadrature points and weights used for comparisons in Table 7.

Orbit Abcissas Weight

S3 0.3333333333333333333333333333333333 0.0585962852260285941278938063477560
S21 0.0099797608064584324152935295820524 0.0017351512297252675680618638808094
S21 0.4799778935211883898105528650883899 0.0261637825586145217778288591819783
S21 0.1538119591769669000000000000000000 0.0039197292424018290965208275701454
S21 0.0740234771169878100000000000000000 0.0122473597569408660972869899262505
S21 0.1303546825033300000000000000000000 0.0281996285032579601073663071515657
S21 0.2306172260266531342996053700983831 0.0508870871859594852960348275454540
S21 0.4223320834191478241144087137913939 0.0504534399016035991910208971341189

S111
0.7862373859346610033296221140330900 0.0170636442122334512900253993849472
0.1906163600319009042461432828653034

S111
0.6305521436606074416224090755688129 0.0096834664255066004075209630934194
0.3623231377435471446183267343597729

S111
0.6265773298563063142335123137534265 0.0363857559284850056220113277642717
0.2907712058836674150248168174816732

S111
0.9142099849296254122399670993850469 0.0069646633735184124253997225042413
0.0711657108777507625475924502924336
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