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Abstract: An exponential increase in diverse load demand in the last decade has influenced the integration of more
power plants into the power system. This increases the fault current due to the bidirectional flow of current, resulting
in unwanted tripping of the relays if not properly coordinated. Therefore, it is imperative to ensure the installation of
relays in the grid being able to sense the fault current from any direction (i.e. upstream or downstream). This can
be accomplished by introducing an optimal directional overcurrent relay (DOCR) coordination scheme into the system.
This paper presents an in-depth review of the applications of various optimization techniques for optimal coordination
of directional overcurrent relays (DOCRs) in integrated power networks. The review highlights the advantages and
limitations of techniques implemented to mitigate the DOCR coordination issues. Furthermore, potential research
directions for optimal DOCR coordination are also discussed in this paper.

Key words: Directional overcurrent relay, mathematical algorithm, artificial neural network, hybrid optimization,
protection system

1. Introduction
The electrical power system network is prone to failure due to unavoidable fault occurrence in the system.
The possibility of fault occurrence increases for a long line and in remote location. Hence, one of the most
important aspects of the power system is to have an effective protection system. An effective protection system
minimizes revenue loss by avoiding disruption of electricity supply and protecting expensive equipment such as
generators, switchgear, conductors, condensers, and transformers from damage. For effective protection of the
power system, the protection relays must be coordinated effectively and isolate the faulty area with adequate
margins without unnecessary time delays [1–4].

1.1. Background and motivation

Conventional electric distribution networks (DNs) are radial in nature and supplied from one end via a central
source. A protection scheme for this type of networks is simple because of the unidirectional power flow. To
protect a radial DN, it only requires one overcurrent relay (OCR) at each line. The relay closest to the fault
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location will sense the large magnitude of fault current coming from the grid-connected generator. However,
with the high penetration of distributed generation (DG) units into the DN, a conventional DN has substantially
deteriorated specifically in terms of network protection [5–8]. Consequently, the relay sensitivity and selectivity
have been disrupted due to the bidirectional current flow, which has ultimately caused the sympathetic tripping
of the primary and backup protection and coordination failure with existing protection devices e.g., reclosure
and fuse [9]. Moreover, it is alleged that the problems associated with DN protection are highly dependent on
the network size and the type of integrated DGs. Since DG is an active asset, it transforms conventional radial
systems into grid networks [10]. Due to this new network configuration, the existing protection scheme must be
improved.

1.2. Literature review
The DOCR is the most commonly used protection relay to sense the bidirectional faults in an integrated network.
In subtransmission or DN, DOCR is provided as a primary protection device, whereas in transmission lines, it is
considered as a secondary protection device [11]. DOCR coordination problem can be characterized as a highly
constrained optimization problem. The DOCR coordination problem aims to attain the time multiplier setting
(TMS) and the plug setting current (PSC) of each relay to avoid miscoordination between primary-backup
(B-P) relay and also to minimize the total operating time [12, 13]. Since the 1960s, researchers have made great
efforts to resolve the DOCR coordination problem through computational approaches. The approaches adopted
by the researchers for DOCR coordination can be divided into five categories, which are conventional approach,
NIA-heuristic approach, mathematical approach, hybrids techniques, and artificial intelligence. Figure 1 shows
the different techniques that have been used by most researchers.

In conventional techniques, three approaches had been used: trial and error, curve fitting technique, and
graph theory. Previously, the trial-and-error approach was implemented to obtain the relay setting; however,
the convergence rate of this technique is slow and may not provide suitable relay settings for large network
protection [3, 14, 15]. On the other hand, the curve fitting technique has converted the DOCR characteristic
into a mathematical model. The time multiplier setting (TMS) and relay operating time are determined based
on these modelled time-inverse features. These methods start with a functional form like polynomials, which
possesses a relay curve approximation. The functional coefficients that best suit the curves are then calculated
using the computer [16, 17]. As for the graph theory approach, relay coordination is achieved by conducting
the distribution network analysis to identify breakpoint relays (BPS). Appropriate BPS selection is important
for rapid convergence of the relay coordination problem [17–19].

The NIA-heuristic technique is an iterative generation method for identifying the best quality solutions
through learning strategies, integrating different ideas to scour the search space. Recently, more intelligent
methods are utilized for relay coordination problems. These innovations were focused on observations of
animal social behaviour, nature such as bird flocking, fish schooling, hydrological cycle, the creative process
of music composition, human memory behaviour, Darwinian evolution concepts, and swarm theory [20, 21].
Evolutionary programming (EP), particle swarm optimization (PSO), genetic algorithm (GA), firefly algorithm
(FA), artificial bee colony (ABC) algorithm, whale optimization algorithm (WOA), teaching learning-based
optimization (TLBO) algorithm, electromagnetic field optimization (EFO), biogeography-based optimization
(BBO) algorithm and gravitational search algorithm (GSA) belong to these techniques which possess random
search technique that produces more feasible and near-optimal solutions [22–24].
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Mathematically, the DOCR coordination problem is an analytic optimization method, such as linear
(LP) and nonlinear programming (NLP). In an LP approach, only TMS values are considered as an optimized
variable to achieve selectivity between the relays. Whereas, in the NLP approach, both the relay settings TMS
and PSC are optimized simultaneously. These methods ensure the achievement of convergence and the result in
near-optimum solutions, as it depends on the problem formulation. However, they require more computational
effort than metaheuristics [25, 26]; therefore, its complexity increases [27, 28].

Subsequently, in attempting to address the limitations of conventional protection methods, metaheuristic,
NLP, and LP techniques, researchers investigated ways for the DOCR coordination problem to be solved by a
combination of metaheuristic techniques with NLP or LP. A hybrid gravitational search algorithm and sequential
quadratic programming (GSA-SQP) is presented in [29] to solve the DOCR problem. Similarly, genetic algorithm
(GA) with LP[30], differential evaluation (DE) with LP [31], NLP-based GA [32] and LP-based biogeography
optimization [33] were utilized to achieve optimal coordination of DOCRs. While several hybrid approaches
have been proposed to overcome optimal DOCR coordination, more combinations of metaheuristic techniques
and mathematical programming can still be explored, which may result in more precise solutions efficiently.

2. Paper organization

This paper attended to provide a systematic review of optimal DOCR coordination. Numerous techniques
are reviewed to recognize the gap behind the latest relevant research. The advantages and drawbacks of the
techniques are discussed thoroughly. Based on the review, future works on optimal DOCR are presented. The
paper is organized as follows: Section 2 describes the relay coordination problem formulation and constraints.
Section 3 reviews the various computational intelligent techniques that have been proposed to mitigate the relay
coordination issues and discusses their respective working principle, advantages, and disadvantages. Section 4
discusses the recommendations for future studies and Section 5 concludes the paper.

3. Coordination problem formulation and constraints

Generally, DOCRs coordination problem is highly constrained and nonconvex. The goal is to determine the
optimal solution for DOCR setting, which minimizes the amount of their operational time while fulfilling
various coordinated and borderline constraints[33–37]. Figure 1 depicts the overall methodology of optimal
DOCR setting and coordination. The complete steps to explain the process flow to solve DOCR problem are
as follows:

Step 1: The power system network to be incorporated with relays is selected. In this step, load flow
analysis and fault analysis are conducted to determine the maximum load current and fault current for each
line.

Step 2: System parameters for optimal relay setting and coordination are determined. The parameters
are fault current value (from fault analysis in step 1), current transformer ratio, the primary and backup relay
pairs. Meanwhile, specific (parameters to form the objective functions (total relay operating time) are TMS
and PSC. In this step, the process of optimization is treated until it reaches to maximum number of iterations
for the final value of TMS and PSC and for all relays in the system.

Step 3: The optimization technique is performed. In this step, optimization is carried out using any
effective optimization approach to find the optimal solution for the TMS and PSC for each of the relays in
the system. the solution must satisfy all constraints, mainly minimum coordination time between primary and
backup relay.
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Figure 1. Protection strategy for integrated power networks.

Step 4: The optimal relay setting needs to be verified. In this step, the selected network can be modelled
in any industrial power system software. Fault current is applied at the midpoint of different line in the network.
The tripping time (tcc) curve is generated by the software. From this tcc, the overlapping or nonoverlapping
between primary and backup can be observed. There should not be any overlapping between primary and
backup and also fulfil the minimum coordination time.

3.1. Formulation of objective function

The relay coordination is defined as a nonlinear optimization problem where the minimization of the objective
function (OF) is the total operating time of the primary relays which protect the faulted line. OF formulation
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is shown Eq. (1) as:

f1 =

G∑
i=1

(Wp ∗ Tp(Primary)), (1)

where Tp denotes the operating period for relays, Rp in their primary area of protection, G is the total relay
located in the specific network and Wp the probability constant for the occurrence of fault beyond the area
of protection. Wp is typically set to one which means that each protection zone has an equal chance of
failure[33, 34, 36, 38].

3.2. DOCR constraints
The emphasis on minimizing relay operating times is usually achieved within the five constraints as discussed
below.

3.2.1. Coordination time interval
A specified time margin must be defined to ensure a safe operation of primary and backup relays. The backup
relay would trip if the primary relay fails to clear the fault. Therefore, a duration is required to maintain proper
selectivity between relays, generally referred to Coordination Time Interval (CTI). The CTI relies on the relay
type, circuit breaker operating time, relay error, and safety margin[33–37, 39]. It can be indicated as:

ROTrk −ROThk ≤ CTImin ∀k ∈ NPR (2)

Here, NPR is the number of pairs relay. ROThk and ROTrk are the operating time of the primary relay
and the backup relay, respectively. CTI is usually selected within 0.2 s and 0.5 s[33–37, 39].

3.2.2. Limits of the TMS
The TMS tunes the operating time lagging prior to the relay trips every time the fault current magnitude
reaching equal to or more than the plug setting current of the relay[33–37, 39]. The limits of the relay TMS are
being specified as:

TMSmin ≤ TMSp ≤ TMSmax ∀p ∈ G (3)

where G is a set of relays, TMSmin and TMSmax are the minimum and maximum range of TMS for
the Rp relay.

3.2.3. Limits of the PSC
The PSC specifies the secondary current range by considering two criteria; the relays are forbidden to operate
within rated load current and in a minimum fault current circumstance. Additionally, the relays must react to
the least fault current. The limits of the relay PSC can be specified as:

PSCmin
p ≤ PSCp ≤ PSCmax

p ∀p ∈ G (4)

where PSCmin
p and PSCmax

p are the minimum and maximum range of PSC for the Rp relay.
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These are further determined as:

PSCmin
p =

OLF ∗ IL,p

CTRp
=

Imin
PC

CTRp
(5)

PSCmax
p =

2 ∗ Imin
L,p

3 ∗ CTRp
=

Imax
PC

CTRp
(6)

where OLF, IL,p ,and CTRp are the current overload factors, the maximum of load current, the current
transformer ratio of relay Rp , respectively. Imf,pin is the minimum of fault current detected by Rp relay.Imin

PC and
Imax
PC is the minimum current and the maximum current range at the primary side of current transformer(CT).

3.2.4. Relay operating time limits
The protective relaying is designed to operate in the desired time span, meaning it requires a threshold
time to initiate the tripping action and that there is a limitation of maximum time to which it can keep
operating[33, 35, 36, 40, 41]. It can be stated as:

ROTmin ≤ ROTp ≤ ROTmax ∀p ∈ G (7)

where ROTm
p in and ROTm

p in are the minimum and maximum range of operating time levels of the Rp .

3.2.5. Relay time characteristics

According to the IEC 60255-3 standard[42], the nonlinear formulation of time inverse characteristic of relay
curve is represented by in Eqs. (??) which were addressed in [32–35, 38].

ROTp = RCOTp ∗ TMSp (8)

RCOTp =
α

PSMβ
p − 1

(9)

PSMp =
If,p

PSCp
(10)

Eqs. (8) and (9), α and β are the coefficients of the time characteristic curve for any type of relays,
RCOTp is the relay characteristic operating time, TMSp is the time multiplier setting and PSMp is the plug
setting multiplier of relay Rp . In Eq. (10), PSCp is the plug setting current and IL,p is the maximum three-
phase fault current that flow through the Rp relay coil. Characteristic coefficients for IEC-60255-3 protection
curves are specified in Table 1.

4. DOCR optimization technique
To solve the problem addressed in Section 2, many computational intelligent approaches for DOCR coordination
were proposed by researchers. In general, all the techniques are aimed to minimise Eq.(1) to obtain the optimal
solution of the relay settings. The techniques can be divided into two sections. Subsection 3.1 discusses
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Table 1. IEC 60255-3 coefficient of time characteristic curve for DOCR.

Curve type α β

Standard inverse(IDMT) 0.14 0.02
Very inverse(VI) 13.5 1
Extremely inverse(EI) 80 2
Long time standard inverse(LTI) 120 1

conventional method protection by considering advantages and disadvantages of each approach. Meanwhile,
subsection 3.2 discusses computational intelligent approaches, which consist of four techniques. Figure 2
summarizes the optimal DOCR coordination with different optimization techniques.
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Figure 2. Optimal DOCR coordination with different optimization techniques.
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4.1. Conventional method protection

Before the intensive use of computers, the change in relay settings was performed manually by the network
operators [21]. Most distribution network operators were used to update the current settings to permit
maximum full load current based on the network impedance and load. They also calculated the fault current
and determined the allowable time margin for relay coordination by considering relay data (error, overshoot
time.) and circuit breaker tripping time. Using this data, the current-time characteristics were plotted using
log-log graph paper assuming a tentative time multiplier setting and adjusting whenever necessary to maintain
the discrimination time. However, this method is an extremely painstaking task and needs a thorough check
on the applicability of the settings required for a small changes made in the distribution network[36]. This
approach was inaccurate practically and time-consuming [43]. To overcome these issues, various alternative
computational techniques to address the DOCR coordination problem were proposed: try and error, curve
fitting technique, graph theoretical technique.

In the early 1960s, the trial-and-error technique was performed using computers to obtain the optimal
relay setting. The technique was able to address the coordination problem for a simple conventional network.
However, this method experienced low convergence rates and required massive computational effort with the
increment in size and complexity of the network [44]. In the late eighties, the curve fitting approach which relies
on topological analysis, including techniques for graphical and functional dependencies was adopted. However,
the curve-fitting technique is an easy technique for relays setting, but it is inaccurate for currents setting less
than 1.3 times of the pick-up current [17–19].

Similarly, the graph theoretical technique which is based on the principle of the breakpoint was used [18,
45, 46]. In [18], the linear graph theory definition has been expanded to define and evaluate all simple network
loops, concerning both the minimum breakpoint set and all main and backup relay pairs. The constraints upon
these relay settings are formulated by the functional dependency approach, which is a systematic topological
analytical technique [46]. Nevertheless, the technique is not effective for complex networks and high penetration
of DG. Thus, the computer-aided approach is utilized to cater the coordination problem involving DOCRs in a
multi-DG power network with a graphical user interface implemented [60, 61] but the approach is not optimal
enough when multimiscoordination occurs. Among all these strategies, the optimization technique eliminates
the need to find the breakpoints needed in curve fitting and graph-theoretical techniques. In addition, TMS
and PSC found from the graph and curve theoretical methods are not optimal [47–49]. Due to the problems,
several work started to explore the use of artificial intelligence (AI) and nature-inspired algorithms (NIA) to
solve the optimal coordination of DOCR [34, 40, 50–52].

4.2. Computational intelligence approaches

In general, the techniques are broadly categorised into conventional and intelligent techniques. These optimiza-
tion strategies are utilized in combination with protective devices to perform the most appropriate protection
strategy for a particular DN. Figure 3 illustrates the percentage of citations for the past seven years in DOCR
coordination research. It has been revealed that the hybrid technique and mathematical based optimization
indicates increasing trend as compared to artificial intelligence techniques respectively in term of percentage.
However, hybrid technique is preferred nowadays due to its superiority which is more robust, fast convergence
and expediting time of searching for feasible solution in order to solve the optimization problems. Thus, this
will result in an efficient DN protection based on the optimal setting of the relays [53]. Table 2 summarizes the
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advantages and limitations of the optimal DOCR coordination optimization techniques using hybrid, mathe-
matical, and AI/ANN techniques.
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Figure 3. The percentage of citations in the research on the optimal DOCR coordination reported in this article.

Table 2. Summaries of advantages and disadvantages of optimal DOCR coordination optimization
techniques using conventional, hybrid, mathematical and AI/ANN technique.

Type of
techniques

AI/NIA
techniques

Main feature Advantages disadvantages

Trial and Error
[44]

Transparent plate
has been cut ac-
cording to relay
current-time char-
acteristics

Good for sim-
ple power net-
work

Time consuming
when dealing with
large network.
This approach
has a slow rate
of convergence
and the obtained
TDS values of
the relays are
relatively high

Conventional technique Curve fitting
technique[17]

Time inverse
operating char-
acteristics are
generated for vari-
ous types of linear
and nonlinear
functions relay
time operating
curves

Method avail-
able at that
time only

Poor accuracy
which will lead to
nonoptimal result
and causing the
setting violated

Graph theory
[18]

Break points relay
are identified

fast to con-
verge solution
the best solu-
tion

Selection of break
point is critical
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Table 2. (Continued).
Type of
techniques

AI/NIA tech-
niques

Main feature Advantages disadvantages

EP [70] Optimize the relay
setting and avoid
the trapping in lo-
cal optima

Constraint
being handle
very well

Miscoordination
occur, longer com-
putational time
taken

NIA-heuristic GA[95] Modifying objec-
tive function (OF)
by adding new
terms to handle
miscoordination

Very effective,
flexible and ac-
curate

Longer computa-
tional time taken

CGA [96] Reduce relay op-
erating time and
proposed continu-
ous genetic algo-
rithm

Satisfactory All the constraint
not fully satisfy

CPSO [97] Assimilation of
PSO with the
penalty method
to enhance and
improve the qual-
ity of the solutions
the CPSO scheme

The popula-
tion member
of the CPSO
more dis-
criminative
in finding
the optimal
solution

Consuming more
time for each sub-
problem stage due
to the iterations
process

MPSO [38] Optimize DOCRs
coordination by
using PSO and 5
agents

Easy to imple-
ment and ro-
bust

Suffers from par-
tial optimization
in the system

IA-PSO [52] Employed by
coupling the im-
mune information
processing mech-
anism with the
PSO

Fastest con-
vergence rate,
gives minimum
CTI values

Not dealing with
more complicated
cases include con-
flicting objective
functions and
various systems
topologies

Hybrid GA-PSO[53] Accelerate the
optimization
process, manual
tuning steps

A highly
reliable coor-
dination, able
to identify the
pairs in which
the backup
relays fail to
react to faults

No result pre-
sented or val-
idation being
made for tested
under network
reconfigure cases

NM-PSO [97] Optimise the re-
lay setting using
PSO and imple-
ment melder mead
to enhance the ef-
ficiency

Fast and bet-
ter rate of con-
vergence

Not considering
continuous value
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Table 2. (Continued).
Type of
techniques

AI/NIA tech-
niques

Main feature Advantages disadvantages

PSO-DE [77] Use two differ-
ent evolutionary
algorithms by
exploring the
search space first
globally and then
locally

able to find
superior TDS
and PS and
thus minimum
operating time
of the relays
and minimum
CTI

Not robust

SA-SOS [98] Proposed new
objective function
by incorporating
the summation of
time operating for
far end and near
end DOCR relay
to clear fault

minimum
function evalu-
ations required
by the algo-
rithm to reach
the optimum

Applicable only
for small bus
system, need ex-
tensive statistical
analysis and pa-
rameters tuning
can further high-
light and improve
the efficiency of
SASOS

MINLP solver
[99]

Two-stage analyti-
cal approach

remove infea-
sibility of the
MINLP coor-
dination prob-
lem and con-
verge to an op-
timal solution
in a few itera-
tions

Consuming more
time for each sub-
problem stage due
to the iterations
process

Mathematical Analytic ap-
proach [100]

Proposed new op-
timal relay setting
procedure, an it-
erative numerical
solution

fast conver-
gence, small
run time,
initial values
independence,
insensitiveness
to coordina-
tion order

No mathematical
formulation has
been proposed
to assure the
convergence of
the proposed
algorithm

Interval linear
programming
[54]

Convert the set
of inequality
constraints corre-
sponding to each
relay pair to an in-
terval constraint,
modelling topol-
ogy uncertainty
in the large-scale
coordination
problem

number of
coordination
constraints is
significantly
reduced

The result has not
been verified
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Table 2. (Continued).
Type of
techniques

AI/NIA tech-
niques

Main feature Advantages disadvantages

AMPL [101] Utilizing a mathe-
matical program-
ming language
(AMPL) based
interior point
optimization
(IPOPT) solver

Good results
in reasonably
small time and
thus suitable
for the adap-
tive protection
scheme

No comparison
being made to jus-
tify the efficiency
of the method

LP-interior
point algo-
rithm [55]

Use the variation
of the primal-
dual approach
that uses multi-
ple correctors of
centrality

capable to
reduce the di-
mension of the
coordination
problem and
the number of
constraints

No comparison
with other tech-
nique to justified
the efficiency of
the method

Fuzzy
(FLDM)-Fast
recursive dis-
crete Fourier
transform
(FRDFT)
[102]

FRDFT algorithm
is used for effi-
cient fundamental
tracking of vary-
ing power system
signals and em-
bedded with an
FLDM for obtain-
ing optimal pro-
tection settings for
different topology

Easily coor-
dinated with
other numer-
ical relays,
computation-
ally effective

The identification
of all potential
network topolo-
gies are difficult.

ANN,AI ANN [102] Used in the pre-
diction of misco-
ordination time of
relay operations.

Able to find
the minimum
solution for
medium size of
radial network

Still produce mis-
coordination

Adaptive
neuro-fuzzy
[103]

Proposed the
adjustment of
the overcurrent
relay’s pick-up
currents with
instantaneous and
current-voltage
based inverse-time
units

Develop in
time char-
acteristic
curve,TCC
relay

Still limited on the
radial system net-
work
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Table 2. (Continued).
Type of
techniques

AI/NIA tech-
niques

Main feature Advantages disadvantages

Cascade
forward neu-
ral network
(CFNN) [104]

It is modelled us-
ing cascade neural
network by com-
paring the num-
ber of neurons and
learning rates in
the learning and
testing processes

Applied to
the loop sys-
tem network,
maximizes the
weight in the
iteration pro-
cess to achieve
the suitable
error value
based on the
setting goal

The complication
of DG fault cur-
rent affects the
reliability of the
sampling rate

Levernberg–
Marqurdt
ANN based
[105]

User defined char-
acteristic curve
applied to the
DOCR

Convenient
alternative on
curve selection
to the conven-
tional DOCR
particularly
on the im-
plementation
phase

Not considering
miscoordination
issues, not val-
idated on the
network system

4.2.1. Mathematical techniques
Mathematical techniques are derived from the numerical formulas based on the mathematical formulation.
Researchers have explored new DOCR setting techniques that rely on protective devices and objective functions
that are optimally designed. The motivation behind implementing optimization techniques to achieve the exact
and reliable setting to all protection schemes in the DN dealing with DG [54–56].

Some researchers have formulated the relay coordination as a nonlinear programming problem and it is
solved by implementing various optimization techniques. However, those proposed techniques are complicated
and time-consuming [48, 51]. In [34, 35, 51] the relay coordination problem was formulated as a mixed-integer
nonlinear programming (MINLP) and was determined using the general algebraic modelling system (GAMS)
software. Nevertheless, considering the discrete PSC, the use of binary variables increased the difficulty of the
coordination problem [47]. Due to the difficulty of the technique, linear programming (LP) such as simplex,
dual simplex, and simplex two-phase methods occasionally were used to coordinate the overcurrent relays
[20, 34, 57, 58]. The techniques were based on an initial prediction and can be stuck in the local optima
[59]. These techniques specified PSC and each relay operating time is expected to be a linear mathematical
function for the TMS setting. In [60], the big M-method was proposed in determining the optimal TMS value
of overcurrent relays which assumes that the PS is specified and fixed. Following the proposed techniques in LP
and Big-M, the proceeding paper in [61] demonstrated the comparison among the proposed techniques using
LP-technique, the big-M technique, and the dual-simplex process.

Linear programming (LP), nonlinear programming (NLP), mixed-integer programming (MIP), mixed-
integernonlinear programming (MINLP), branch and bound were already commonly used to deal with the relay
coordination problem optimally. High dimensionality and low computational problems of these methods are
major disadvantages [14, 62, 63]. The articles in [40, 65] formulated the mixed integer programming problem
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(MIP) for directional overcurrent relay coordination. The chances of getting stuck in local optima can be
reduced by updating global best (Gbest) and position vector (Pbest) values for each iteration [66]. On-line
risk evaluation is implemented in this approach to identify areas of susceptibility, and the probabilities of
relay miscoordination are estimated using the event tree approach [67]. Pourtandorost et al. in [68] used LP
to perform the optimization towards TMS setting by predetermining the PSC. Birla et al. in [1] carried out
sequential quadratic programming (SQP) to discover the solution to the coordination problem of a DOCR based
only on the location of fault at the near end which will maintain its optimality. On the other hand, Gholinezhad
et al. in [69] has applied additional constraints of near-end selectivity and remote end selectivity to prevent
blinding trip. Two phases were designed to address this challenging issue. Regular coordination technique is
used in the first stage to classify sympathy tripping. Additional constraint proposed for handling sympathetic
tripping obtained from the previous stage are included in the second stage. By relaxing the constraints, this
method is able to avoid constraint violation but consumes more time due to the complexity of the network.

Mathematical approaches are effective for simple distribution networks. However, for interconnected
power networks, the number of relay coordination pairs is quite large, which leads to the complexity of the matrix
coordination constraint. Since the mathematical approach tends to be stuck in local minima in searching space,
this gap led the researchers to explore the application of NIA-heuristic and the combination of NIA-heuristic
and mathematic approaches to attain the global optimum solution for the coordination problems.

4.2.2. NIA-heuristic and hybrid approach

Metaheuristic techniques known as deterministic and multipoint search optimization have been applied to obtain
an optimal global completed in a short computational time and are most widely used to coordinate relays [51].
In the year 2000, So et al. introduced the EP implementation to the protection scheme in [70]. However,
two main issues were encountered; relay miscoordination and TSM variable selection. Gupta et al. in [60]
identified the relay operating time by using GA for both linear and nonlinear objectives functions. Similarly, L.
Yinhong et al. in [71] suggested GA for the optimal coordination of the overcurrent relay, and the constraint
interval coding technique were used to improve the performance and accuracy of GA. Asadi and Kouhsari, and
Hussain et al. [72, 73] assured that PSO is able to resolve the problems of miscoordination compared to the
EP- and the GA-algorithm ways of solving for continuous and discrete TSM and PSC settings. Later, three
groups of the researchers, Zieneldin et al., Mansur et al., and Rathniam et al., proposed a modified particle
swarm optimization (PSO) to attain the optimum relay settings [39, 74, 75]. However, the optimal outcomes
of coordination cannot be sustained. This DOCRs problem is developed as MINLP by the well-established
differential evolution (DE) algorithm[76, 77].

New and more comprehensive algorithms such as the hybridation approach have used classical and
nature-inspired approaches [21] which have enhanced the convergence and effectiveness of the NIA-heuristic
technique. The hybrid type algorithms in general divides the optimization problem into the subproblems,
where each subproblem is solved by using a specific algorithm [78]. These techniques are the combination
of mathematical and NIA-heuristic or double NIA-heuristic optimization methods, which are widely used to
counter a highly constraint DOCR problem [37, 39–41]. The problem of optimum DOCR coordination is
normally being formulated as an LPP, whenever current pick-up settings are predetermined. The formulation
for each relay operation time is likely to be a linear feature function of its TMS. Bedekar and Bhide et al.
have come out with the combination of the GA-NLP method in[35]. The problem of obtaining the optimum
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setting of TMS and PS of DOCRs is formed as a nonlinear programming issue (NLP). The function adopted
a sequential quadratic programming (SQP) approach to gain an optimal global solution for the NLP problem.
However, their convergence speed is slow; algorithms become more complex for implementation and require
high computation time.

In[79], Zellagui and Abdelaziz adopted numerical relay into a small system. A year later, Al-Roomi
et al. proposed a hybrid approach BBO/DE to obtain optimal relay settings by considering numerical and
electromechanical DOCR relays [80]. The static DOCR is used, which needs feasible search space, very confined,
less accurate time, and is difficult to be feasibly optimized. In [81], the authors proposed an improved hybrid
BBO/DE algorithm for the numerical relays to overcome the miscoordination and avoid violation of the relay
constraints. Khurshaid et al. in [82] presented a better solution by combining WOA and SA. The literature
adopted convex optimization and problem relaxation techniques to coordinate DOCRs, which contributes to a
low relay operating time for a complex network. Nevertheless, the technique generated miscoordination in the
system.

Generally, NIA-heuristic and hybrid have the potential to mitigate the common issues related to relay
coordination with large integrated networks and can easily achieve the optimal global solution. However, it
works only for fixed network topology because of the incapability to store many load profile data. Due to
this limitation, the researchers had also explored the artificial intelligent approach to address such limitations
[106–108].

4.2.3. ANN and AI
Artificial intelligence (AI) is an approach that imitates the humanoid rational of thinking mode and makes a
duplication into the computer application that could be utilized to reconfigure networks such as those applied in
expert systems [53]. Karupiah et al., with the use of the artificial neural network (ANN) in[83], recommended a
new efficient relay operation time which has the capabilities to forecast the possibilities of relay miscoordination
in the network; however, the operation of this scheme has not been experimentally validated. Similarly,
Emmanuel et al. proposed a novel GA-ANN hybrid approach to determine the time-current characteristics
curve for forecasting the actual optimal operating time for each protective relay of different station buses by
using the valid experimental result output from the MOF in the GA solution, which addresses the global
optimal parameter settings determination as to the input training data to the ANN. However, miscoordination
elimination among relay pairs was not improved effectively [84].

In all the aforementioned solutions, the main obstacle is storing and using numerous data related to
different groups of protection settings in the computer memory. If the network is extended or more DGs are
installed, it would require collecting an immense quantity of data resulting from the hugeness of the set of
additional conditions to be considered. Moreover, if the prevailing condition of the microgrid does not match
any of the stored protection settings, then consequently, the interpretation of the proposed structure becomes
essential. Consequently, to find a solution for the issue related to a conventional system, a flexible approach is
required. In [85], Daryani et al. proposed a flexible approach based on fuzzy logic and artificial neural network
(ANN), namely adaptive neuro-fuzzy interface system (ANFIS). In the proposed system, the ANFIS structure
is incorporated into the developed protection relay model, and the ANFIS structure of each relay is optimally
aligned to the DG-connected topological state. The entire relay has perfect performance for post contingency
and precontingency conditions. Regardless, network selection is less complicated, and the number of topological
changes is very minimal. However, the approach only employed a single inverse type of relay into consideration.
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Figure 4 shows the adaptive relaying scheme using ANFIS [85]
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Figure 4. Flow diagram of adaptive relaying scheme using ANFIS.

5. Recommendations for future studies
Future smart grid capabilities promise to leverage network technologies to revolutionize the electricity produc-
tion, transmission, distribution, and utilization[109]. With the increase of generator assembly capacity, the
abundance of power types, and the increasingly close AC-DC hybrid connection of the power grid, the opera-
tion characteristics of the power grid are becoming more complex [86, 87]. Therefore, the expansion of power
grid-scale and construction of ultrahigh voltage (UHV) power grid that leads to a variation in fault current
capacity due to the integration and disintegration of the utility grid, needs to be addressed [88–90]. Based on
the reviews presented in this paper, changes in power grids such as high DG penetration and dynamic changing
of the load cause erratic to coordinate the relay to address network issues. In this section, future recommenda-
tions are made according to the gaps identified from the literature, and a directional relay for future studies is
recommended. The key topics related to the hybrid intelligent computerized method that should gain further
consideration in future studies include:

i) Removing or reducing the impact of handling constraints as much as possible is a promising solution
to achieve major operating time reduction. Thus, a veritable minimization in TMS of relays can be attained
without violating any coordination constraint. The motivation behind this is to increase the feasible solution
area and reduce the relay coordination problem dimension using the strategies given in [91, 92, 108]. Nonetheless,
both approaches should satisfy the inequality coordination constraints, which are related to different network
topologies.

ii) Devising a criterion to select relay decision variables or characteristics curves from the standard ones
such as IEC, IAC, IEEE and U.S type. Moreover, a new user-defined relay characteristics curve should be
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considered to obtain more optimal solutions for the relay coordination problem.
iii) Utilizing the hybrid artificial neural network and fuzzy logic into numerical relay coordination to deal

with ill-defined and uncertain systems, especially with the IBDG. Furthermore, the modeling of DOCRs using a
specific neural network model is likely to generate an accurate outcome. Most of the mathematical based model
requires large memory, thus by incorporating the special microprocessor to store the protection algorithm with
a variety of settings is the best solution.

iv) It should be emphasised that by minimizing the impact of CTI on the relay operating time in its
main protection zone with the increase of the integration of flexible AC transmission system (FACTS) in the
distribution network [110], the issue of coordinating protective relays becomes more difficult. Some methods
have lately been carried out to counter the effect of the controlled series FACTS device, i.e. TCSC and GCSC,
on optimal coordination of DOCRs problem. Therefore, in future studies, the usage of optimization techniques
to gain the optimal coordination of DOCRs in the transmission network in the presence of dynamic FACTS is
worth to be considered.

v) The difficulties of protection schemes in modern power systems are tackled well by the multiple
metaheuristic methods with major improvements such as the use of variation coefficients or the combination of
more than one steps of the standard technique. Nevertheless, it is worth establishing a range for each coefficients
so that there is no risk of divergence, particularly in large networks exposed to heavy DG penetration and
dynamic load redeployment.

6. Conclusion
This paper presents a timely review of the cutting-edge techniques for optimal DOCR coordination protection.
Multiple approaches have been proposed in the literature to reduce the complexity of the nonconvex and the
nonlinear problems with the highly-constrained and numerous objectives. This paper gives an in-depth review
of the hybrid techniques, mathematical algorithms, and AI/ANN approaches. Furthermore, recommendation
work is also suggested to enhance the DOCR coordination technique to improve grid operation, security and
reliability. It can be observed that conventional methods to solve protection issues corresponding to the modern
interconnected DN have almost been replaced by computational intelligence techniques. The research in optimal
DOCR coordination is ongoing despite many techniques or methods that have been proposed. This is due to
new challenges in power system networks such as the increase in network size, DG penetration and smart grid
technology. In addition, the introduction of more advanced optimization techniques also encourages researchers
to explore them to obtain improvement in optimal DOCR coordination. Hence, continuous research remains a
substantial requirement towards establishing an efficient protection scheme to overcome future challenges.
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