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Abstract: Piezo actuated systems are promising solutions for precision positioning applications. In this paper, a
piezoelectric actuator is modeled as a second-order system using the Dahl hysteresis model and the system parameters
have been identified from experimental data. The modified internal model control (M-IMC) approach is presented, which
not only improves control performance but also reduces associated controller hardware resources. System dead time is
approximated using first-order Padé expansion and the proposed Smith predictor-based M-IMC for piezoelectric actuators
is seen to offer satisfactory stable control response even for plants with large dead time. The control performance of
the M-IMC has been examined for the piezo actuator system against different set point tracking inputs in the presence
of a wide range of external disturbances such as plant parameter mismatch, white noise perturbation, and time delay.
Simulation results depict the efficacy and versatility of M-IMC in terms of decreased overshoot and settling time compared
to traditional IMC and PID designs.
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1. Introduction

Piezoelectric actuators (PZAs) are gaining wide acceptance, especially in the area of micro-nano positioning
applications. In the past decade, these manipulators became an active area of global research, being an inevitable
component of a wide array of mechanisms used in micro-nano factories. A few pertinent applications in
this domain range from atomic force microscopes (AFMs) to desktop reconfigurable nano-factories, IC chip
assembly lines, and even niche biological cell operators [1,2]. Advantages like enhanced blocking force, fast
response characteristics, and capacity to attain subnanometric positioning accuracy makes PZAs flagship linear
actuators for several industrial applications. However, PZA materials are inherently characterized by some
nonlinear phenomena, primarily hysteresis, which limits the positional accuracy [3]. The first step in achieving
a proper closed-loop control response is a suitable mathematical model encapsulating the physical system
behavior. Several studies have been carried out for modeling nonlinear hysteresis of PZA like the Preisach
model, Maxwell model, Duhem model, Prandtl-Ishkii model, Bouc Wen model, and Dahl model [4-8]. In this
paper, the Dahl model has been used to encapsulate hysteresis of the piezo actuator as it has a relatively simple
system model representation.

In the modern world, IMC controllers are popularly used in numerous process control industries as they facilitate

accurate set point tracking of the process, especially in the presence of disturbances. Asymptotic tracking of
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prescribed trajectories and/or asymptotic rejection of disturbances of a system is a crucial problem in control
theory. There are three different avenues to address these problems: a) tracking via dynamic inversion, b)
adaptive tracking, and c) tracking through system internal models. Tracking by dynamic inversion comprises
figuring out an exact initial system state and a precise control input with the objective that the system is
accordingly set up to initial conditions and run and the reference signal is exactly tracked by the output [9)].
This calls for “perfect knowledge” of the complete trajectory that is to be tracked along with “perfect knowledge”
of the plant model that is to be controlled. This approach is not preferable for plants with large uncertainties
for either parameters or the reference signal. Dynamic inversion plays a primary role in adaptive tracking where
the control input parameters are tuned so as to achieve asymptotic convergence to zero tracking error [10].
This methodology can tackle the problem of parameter uncertainties with the restriction of a priori knowledge
of the complete trajectory that is to be tracked to develop the adaptive strategy and hence not justified in
cases where tracking trajectories are unknown. A reference trajectory with a very slow varying nature may be
considered as a stabilizing issue with a gradual variation of unknown parameters but mostly leading to a very
conservative solution. On the contrary, simultaneous handling of uncertainties of plant parameters as well as
the trajectory that is to be tracked can be dealt with by internal model-based control. The principle of internal
model control (IMC) states that if the trajectory to be tracked belongs to the set of all trajectories generated by
some fixed dynamical system, a controller that incorporates an internal model of such a system is able to secure
asymptotic decay to zero tracking error for every possible trajectory in this set and is also robust with respect
to parameter uncertainties [11]. This offers a huge advantage compared to the other two approaches discussed
earlier, where instead of presuming that a trajectory belongs to a class of trajectories set up by an exogenous
system, one is required to know complete information of the trajectories’ past, present, and future time history.
Due to this flexibility, the internal model-based approach is the best suited for dealing with scenarios that
involve rejecting unknown disturbances as well as tracking unknown references [12-14].

The contribution of this research is that it investigates the performance of a traditional IMC structure in
piezoelectric actuation and examines its performance. A relatively less hardware-intensive solution in the
form of modified IMC is presented for delay-free PZA systems, which, however, does not perform well for
PZA processes with dead time. The proposed Smith predictor-based modified IMC framework confirms the

satisfactory performance of the PZA system with dead time along with considerable robustness to disturbances.

2. Modified internal model control (M-IMC) for delay-free piezoelectric actuation system

Realization of an IMC structure centers around getting the exact model of the PZA plant and then using it as a
reference model in a parallel loop of the PZA model. This procedure involves repetitive resource utilization, once
for the model and then for the controller. M-IMC introduces some changes in the IMC structure to reduce the
amount of hardware components for the controller. In spite of IMC being an easily implementable controller,
PID control still remains the most commonly used industrial control. The presented design eliminates the
additional parallel reference model along with the advantage of proposing a PID equivalent of the IMC with

reduced controller tuning parameters.

2.1. Design approach
The following figures elaborate the transformation of classical IMC through block diagram manipulation.

Figure 1 represents the typical IMC structure where Gpza(s) represents the actual process, G pzA(8) stands for

the mathematical model (transfer function) of the process, Gyyv (s) is the transfer function of the classical IMC
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controller, and d(s) is the disturbance. Figure 2 shows the modified IMC control structure of the piezoelectric
actuator system where the plant model has been shifted in the inner feedback loop. It is clear in Figure 2
that the inner feedback loop has R(s)-Y(s) as its input, which is the error term used by a standard feedback
controller. Figure 3 shows that the modified IMC structure can be reorganized in the form of a feedback control
loop, which is useful as it can be represented by an equivalent PID topology, which is widely used in common
industrial applications. The PID tuning parameters have been derived from the modified IMC structure shown
in Figure 4. The modified topology also has the advantage of reduced hardware resources as it brings about a
single tunable control block in contrast to traditional IMC, which has two control blocks: the inverse controller

and the process model.

d(s)
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Figure 1. Conventional IMC structure for piezoelectric =~ Figure 2. Modified IMC structure for piezoelectric actu-
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Figure 3. Simplified structure of modified IMC. Figure 4. PID equivalent control structure of modified

IMC.

A low-pass filter is augmented in series with the plant to make the system proper. This robust compen-
sating filter plays an important role in the PZA system by handling different plant uncertainties in the system
design so that the resultant controller can achieve the desired design objectives of robustness in performance

and stability. The final form of the IMC controller with the augmented filter function is

Ginv(s) = Gpyals) - Gy(s), (1)

where Gy(s) = n is the filter order, and «, the filter time-constant, is taken as 2. With the

1
(aus+1)m
incorporation of the filter, the final form of the closed-loop transfer function that characterizes the system

becomes i

(158 + 1) (128 +1)

Gpza(s) = (2)

The M-IMC controller transfer function is formulated according to the block schematic shown in Figure 4 as

Ginv(s) = Ginv(s)f(s) = Gpya(s)Gy(s). (3)
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The PZA plant can be conceptualized in invertible and noninvertible components as
éPZA(S) = éPZA+(S) -Gpza- (s)- (4)

G pza+(s) contains all nonminimum phase components and has been neglected. The process model can thus

be represented as Gpza(s) = Gpza-(s). Therefore,

Grxv(s) = Ol ()G (s) = DD 1 5)

where G(s) is a filter in series with é;,lz 4(s) and the equation of the equivalent standard closed-loop controller

is now
(rs+1)(ras+1) 5
Gu—_1mc(s) = Grvv(s) — k(as+1) _ TiTes” + (11 +72)s+1 ©
- 1-— GPZA(S)GINV(S) 1 k-(T15+1)(125+1) kas .

T (ris+1)(mes+1)k(as+1)

However, the transfer function of a standard PID controller is

TCTd82 + 715+ 1

gc(s) = kc[ ] (7)

TeS
T1+T2

Equation 7 is multiplied by 22 and rearranged to make it in the form of Equation 8 to find an equivalent to

T1+T2
the PID structure. Thus,

T1 + T2 7'17'282+(7'1 +7'2)5+1
Gy = . . 8
M-ryc(s) = (——) 1+ )5 (8)
Equating terms from Equation 7 and Equation 8 leads to k. = %, e = (T1+72), 7a = 7% . In this research,

the piezo actuator transfer function has been found using the procedure described in Section 4, Equation 31,

and is as follows:

0.0336 2.8186 x 1077

pza(8) = Grza(s) = G oaoe 3 190,154 1 110206.85 ~ 15334 x 10552 + 15951 x 1035 1 1

9)

From Equation 2, we get

~ k k
p— = . ].
GPZA(S) <T18+1)<7_28+1) T17'282—|—(7'1+7'2)s+1 ( 0)

The plant parameters have been identified comparing (9) and (10), which are then used in Equa-
tion 6 to represent the controller transfer function. Thus, the Gpr—jare(s) controller can be represented

4.3389x10 %52 +4.51345+2829.59
1.5951x 1035 :

as

3. Modified internal model control for piezoelectric actuation system with time delay

A practical dynamical system does exhibit some time lag between the change of input and representation of
the same in its output. There are different causes behind this time lag. In PZA systems, time delay may occur
in the state of the system sensor measurements and transmission of the measurement of the system as seen by
AT in Figure 5.
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Figure 5. Modified IMC structure for piezoelectric actuator with time-delay system.

For a mathematical representation, this total phenomenon is aggregated and referred to as dead time or
commonly as time delay. If the practical PZA system is modeled with time delay in the form of a time-invariant
nonlinear system, the system transfer function becomes less rational due to the presence of this delay function.
However, most of the methods used for analyzing and synthesizing control systems are for rational transfer
functions. To use these methodologies for a dynamical PZA system, the time delay needs to be approximated
through some rational function, mostly using Taylor series expansion of the exponential function or Padé
approximation. In this research, Padé approximation is preferred as Taylor series expansion meets the weak

conditions of physical realizability besides introducing unstable zeros in the system:

~ ke—ATs
G s) = . 11
rzA(s) (ris+ 1)(m2s+1) (11)
First—order Padé approximation is used for dead time, yielding
o—ATs _ (=0.5ATs + 1). (12)
(0.5ATs + 1)
Hence, the PZA system is
~ ke=ATs k(—0.5ATs + 1
GPZA(S) = = ( ) (13)

(ms+1)(res+1)  (0.5ATs+1)(mis+1)(m2s+1)°
The system is then factorized into invertible and noninvertible components, with the invertible component being

k
(0.5ATs +1)(m1s + 1) (T2s + 1)’

GPZA* (s) = (14)

and Gpga+(s) = (=0.5ATs + 1) being the noninvertible term with RHP zero and nonminimum phase. Hence,

the idealized controller G Nv(s) is

Crnv(s) = (0.5ATs + 1)(7’;8 + 1) (728 + 1). (15)

The proposed controller is now augmented with a low-pass filter to make the controller proper, resulting in

[(O.5AT3 +1)(ris+1)(r2s + 1) 1

Ginv(s) = Ginv(s)Gy(s) = Gpza-(s)Gy(s) = A ](as 1

)- (16)
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The equivalent closed-loop M-IMC transfer function is obtained as from Eq. (4), Eq. (5), and Eq. (6):

G nro(s) = _Ginvv(s) _ ] GINV(f)Gf( s)

B 1—GPZA(S)G]N\/(8) 1_GPZA(5)GINV( ) (8)

_ GrwlIGle) , (17)
1= Gpza-(5)Gpzar(s)Gpya(s)Gy(s)
. (0.5ATs+1)(mis+1)(mes +1),,
Guy-1mc(s) = Crn ()G (s) = | k iz (18)
1~ Gpza+(s)Gy(s) 1= (“0.5ATs + 1)(——) 7
as+1
which leads to

s e (s) = (%) (O.5ATS(‘;:E2(8—'15SA—;1;{)9(T28 + 1). (19)

3.1. Role of Smith predictor

Ideally, the time-delay affects the system response by shifting with the value of the time delay besides introducing
a higher overshoot and a larger settling time. If the introduced time delay is large enough, the system response
will be unbounded, leading to instability. Thus, traditional controllers cannot deal with systems with large time
delay, leading to a well-recognized problem in control processes with an unsatisfactory performance. Smith
predictor control topology helps overcome this drawback and facilitates larger gains. The PZA system can be
conceptually split into a system of delay-free dynamics and a pure time-lag component, as shown in Figure 6a.
A measurable variable would enable it to be connected to the controller, as in Figure 6b, which would shift the
time delay out of the control loop. The closed-loop transfer function derived from the block diagram and Smith

predictor control scheme [15] is given in Figure 6c:

Y(S) _ G]Nv(S)GpZA(S)AT (20>
R(S) 1+ GINV(S)GPZA(S) — GINV(S)GPZA(S)AT + GINV(S)GPZA(S)AT
When the PZA model matches the PZA plant, the transfer function reduces to Gpza(s) = Gpza (s),
Y(s) . Ginv(s)Gpza(s)AT 1)

R(s) 14 Ginv(s)Gpza(s)

4. System modeling and identification

Dynamical modeling of the piezoelectric system has been expressed in the form of a second-order mass-spring-
damper system with the nonlinear hysteretic effect being modeled using the Dahl hysteresis model [16,17],

represented by the following equation:
Mi+ D+ Kx =Tu — Fy, (22)
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Figure 6. (a) Conventional time-delay system with feedback from Y, (b) conventional time-delay system with feedback
from V, (¢) IMC-based Smith predictor control scheme for piezoelectric actuator system.

where M, D, K, T, u, and F} represent the system mass, damping coefficient, stiffness, piezoelectric coefficient,
input voltage, and hysteresis effect in terms of force, respectively. The above hysteresis force can be represented

with state vector V in state space form as

V = (Ahx)V + (Bhup)a'c, F,=C,V, (23)
where the intermediate state vector V = [pl pg]T, x denotes x-axis displacement, and u, is taken as a
constant of 30, and the matrices are
0 1 0 .
A = a —sgn(:'r)al] , By, = [1} ,Cp = [bl sgn(x)bo] . (24)

Thus, using the above Dahl model formulation, we have the following equations, which mathematically represent

the nonlinear force and involve the hysteretic parameters:
P1 = P2, P2 = —prasd — paarsgn(i)i + upd, Fl, = p1bi + bopasgn(i). (25)

The hysteresis parameters ay, as, by, and by of the above equations can be experimentally determined from
the following equations:
2 Hy — H, 472 2

ai
= . = ——— — + — by = Ggeaa,bg = S, 26
. anst’aZ (t17t2)2+ 1 de@2, 0 0 (26)

ai

where to — ¢1 is the time period of the PZA damped oscillations in the time domain open-loop step response of
the piezo actuator, as seen in Figure 7. H; and Hs represent the height of the overshoot of the first and second
peaks, respectively, and Hj is the steady state response, G4. represents the dc gain, and Sy is the initial slope
of the response. For the below time domain step response, the DC gain, G4, is calculated as the ratio of H
to the input step voltage, i.e. (21.1/75), and initial slope Sy = 0.
Thus, we have
2 (28.6 — 21.1)

- .| — 115.732 27
“1 710,021 — 0.0150) " (26.4 — 21.1) ’ (27)

472 N 115.7322
(0.021 — 0.0150)2 4

g =

= 1098859.58,b1 = 0.281 - az, by = 0. (28)
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Figure 7. Open-loop time domain response of the piezoelectric actuator for 75 V input.

A state space representation of the entire piezoelectric system including the nonlinear hysteresis force can be

represented as follows using state vector X = [z, 4,p1,p2]? and also as shown in Figures 8a and 8b:
X = AX + Bu,Y = CX, (29)

where the system, input, and output matrix are

0 1 0 0 0
0 0 0 x 0
0 Up —as® —ay&sgn() 0

To identify the system parameters, input voltage at different frequencies (1 Hz, 10 Hz,) and different peak-peak
amplitudes (10 V, 50 V) have experimentally been given to the piezoelectric actuator and outputs of the system
have been used to identify the four dynamic parameters M, D, K, and T of the PZA transfer function model, as
mentioned in Equation 31. The specifications of the actuator used in the study are mentioned in the Table. The

experimental setup to determine the plant parameters of the piezoelectric actuator system is shown in Figure 9.

P
-l x 1
— : b, x Lo yF
Product  Integrator ‘b k
* Product
1 X - b
Ms*+Ds+ K ' —
CO1 7R «
1
X Sign 1 x b "“pz
Product
i i Product integrstor
dt 30
Constant
(a) 1 1

(b)

Figure 8. (a) Schematic block diagram of the entire piezoelectric system leading to output of x for input voltage u;
(b)Dahl model for calculating the hysteresis force Fj,.
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Figure 9. Experimental setup for determination of piezo actuator parameters.

0.0336 T

TF = = .
0.1828s2 + 190.154s + 119206.85 Ms? + Ds+ K

(31)

To observe the response of the PZA system, different external disturbances along with plant parameter variations

were independently simulated and the performance of the controllers was observed.

Table 1. Table. Specifications of the piezo actuator.

Open-loop travel, at 0 to 100 V 30 um
Closed-loop travel 30um
Integrated feedback sensor SGS
Resolution, closed-loop / open-loop | 0.6 / 0.3 nm
Static large-signal stiffness 27TN/um
Electrical capacitance 3.0uF

Push force capacity 1000 N
Length 50 mm

5. Results and discussion

To verify the efficiency of the proposed controller in the presence of external perturbations, system disturbances,
and parametric variations, different test cases have been used and are presented in the following sections. It
is observed that for the proposed controller (M-IMC), tracking performance is better than that of the classical
controller for piezo system dynamics. The system stability issue for large time-delay is successfully achieved by
the Smith predictor-based controller.
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5.1. Performance of M-IMC controller in presence of impulse disturbances at the PZA system
output

The second-order PZA system is subjected to a unit impulse disturbance assuming no mismatch between process
and model, as shown in Figure 10a. The response of the PZA system to an impulse disturbance (of width 20

starting from t = 20 s) is shown in Figure 10b.

Disturbances d(s)

—
T

Il
oe
T

_<
—_
w
—
=
=
T

A

R“) 9?‘4 Gy SFTGo®)

i épzxt(s)

Y(s)

d
B
T

Impulse Disturbance

=
~
T

—]
-

20 30 40 50 60 70
Time (s)
(b)

=
(=]

(a)

Figure 10. (a) M-IMC control structures with disturbances (impulse, band white noise). (b) Impulse disturbance of
width 20 applied to the PZA system.

Though the input is provided to achieve zero tracking, it is seen that the response shifts to an amplitude
of one due to the onset of the disturbance at the 20th second and the system gradually eliminates this effect
and returns to zero owing to controller action. As the disturbance becomes zero at the 40th second, the system
behaves in a reverse manner due to the sudden absence of the impulse and again returns to its set-point of zero
as shown in Figure 11. No overshoot is observed and the system gradually achieves near-zero steady state error.
It is observed that the effect of impulse disturbance is better compensated with M-IMC control at a settling

time of 28 s while conventional IMC settles at 31 s and conventional PID at 36 s.

5.2. Band white noise disturbance at the PZA plant output

In a practical scenario, the plant may be subjected to random disturbances, which are not readily identifiable.
A stochastic disturbance model in the form of band white noise (noise power, sample time of 0.1 s) is used to
simulate unknown disturbances. The output is seen to reduce the effect of external disturbances and return to
its set point, which is zero, as shown in Figure 12. It is seen that M-IMC control results are better as it seems

to have a quicker nullification of the band white noise with less time response as shown in Figure 12.
5.3. Plant parameter variation at the PZA plant output

Plant/model mismatch is very common and practically unavoidable, which appears due to reasons such as
measuring error, uncertainty in plant parameters, or treating higher-order systems as lower-ordered.

Besides, the piezo actuator system is nonlinear in nature, which enhances the chance of mismatch. In
the following section, the controller works for a plant model that suffers from 10% plant parameter variation
as compared to the nominal model and its performance has been observed by applying impulse disturbance
to a unit step input. From the results it is clear that M-IMC is able to handle the uncertainties due to plant
parameter variation in a much better way with less settling time and regulate its output to track the set point
of unity in comparison to conventional IMC as shown in Figure 13, which steadies at a slightly shifted value

other than one.
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Figure 11. Response of conventional IMC, modified IMC, Figure 12. Effect of band white noise disturbance of
and conventional PID control schemes to impulse distur-  conventional IMC and modified IMC for the PZA system.
bance for PZA system.
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Figure 13. Step responses of modified IMC and conventional IMC with impulse disturbance due to 10% plant parameters
variation.

5.4. PZA system stability issues in presence of large time-delay disturbance

Response of the PZA system in the presence of large time delay (5 s) and impulse disturbance is studied in
this section. M-IMC with Smith predictor produces a stable output as shown in Figure 14a with an overshoot
of 13% and settling time of 36.5 s and a suitable compensation of the impulse disturbance. System response
changes considerably upon increasing the delay with the output gradually getting unbounded, and the system
turns unstable with conventional IMC (Figure 14b).

5.5. Role of Smith predictor-based controller in compensating delay disturbance

Smith predictor-based design is useful to compensate the time lags occurring in physical systems, treating it
as a delay-free process. The Smith predictor-based IMC controller is compared with normal IMC for a system
with time delays of 2 s. The step response of a Smith predictor-based IMC is seen in Figure 15 to be better
with a very shorter settling time of 11 s as compared to 16 s for without Smith predictor although with a slight

overshoot.
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(a) (b)

Figure 14. (a) Stability response of modified IMC with Smith predictor scheme in the presence of large time-delay
disturbance AT = 5s and impulse disturbances. (b) Unstable response of conventional IMC scheme in the presence of
large time-delay disturbances AT = 5s and impulse disturbances.

5.6. System performance in presence of time delay and step disturbance

Accordingly, a time delay of 2 s is assumed in the PZA system along with a mismatch of 0.5 s. Conventional
IMC is seen to have an uneven response with the effect of the perturbation seen to persist for a longer time
duration. On the other hand, M-IMC compensates the effect of the step disturbance with a comparatively

smoother response and smaller settling time of 8.5 s compared to 30 s as shown in Figure 16.

== = Modified IMC =

Conventional IMC

== IMC with unith prodicter

08} — M witheut smith predictor

0.6}

04r

- . 30 40 50 60
0 20 40 Time (s) 60 20 100 Time (s)

Figure 15. Step response of IMC-based Smith predictor = Figure 16. System performance response of conventional
and without Smith predictor for PZA. IMC and modified IMC with time delay for PZA system.

5.7. Step response of time-delayed PZA system with impulse disturbance

This subsection shows the performance of four different controllers towards the step response of the PZA system
with a time delay of 1.5 s and an impulse disturbance. The conventional PID controller is seen to have the
longest settling time of 84 s among the four after the impulse is given at t = 60 s, as seen in Figure 17. M-IMC
performs better than conventional IMC with a settling time of 71 s and 75 s, respectively. The Smith predictor-
based controller with M-IMC is seen to be the most efficient controller in terms of disturbance rejection and
settles fastest at 69.5 s.

6. Conclusion
The present research focuses on the design of an efficient control structure targeting improved control perfor-
mance of a piezo actuator in the presence of time delay. The M-IMC-based controller design with a low-pass

filter has been presented for a piezo actuated micromanipulator. The system delay has been approximated using
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w= == Modified IMC

— Conventional IMC

"""" Modified IMC with smith predictor
== = w= Coventional PID

0.5 M

0 50 Time (s) 100 150

Figure 17. Step responses of different control schemes with impulse disturbances for time-delay PZA system.

first-order Padé approximation. The presented controller is seen to perform better for PZA systems with dead
time compared to classical IMC; however, the system becomes unstable for higher values of time delay. The role
of the Smith predictor-based M-IMC is also observed towards compensating the presence of large time delay
and maintaining system stability with better control response. Results depict that the proposed M-IMC-based

controller for PZA systems is better than both classical PID and IMC in terms of common control parameters.
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