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Abstract: Zero-shot learning (ZSL) is a recent promising learning approach that is similar to human vision systems.
ZSL essentially allows machines to categorize objects without requiring labeled training data. In principle, ZSL proposes
a novel recognition model by specifying merely the attributes of the category. Recently, several sophisticated approaches
have been introduced to address the challenges regarding this problem. Embarrassingly simple approach to zero-
shot learning (ESZSL) is one of the critical of those approaches that basically proposes a simple but efficient linear
code solution. However, the performance of the ESZSL model mainly depends on parameter selection. Metaheuristic
algorithms are considered as one the most sophisticated computational intelligence paradigms that allows to approximate
optimization problems with high success. This paper addresses this problem by adapting leading metaheuristic algorithms
to automatically train the parameters of a linear ESZSL model. The model is statistically validated by performing a
series of experiments with benchmark datasets.
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1. Introduction
Classification is a process related to categorization. In machine learning, this action involves supervised learning
techniques that aims to design models for different problems. Each models are able to map an input to output
for a specific problem based on sample input/output pairs. There are many different classification tasks that can
be encountered in machine learning and specific approaches to modeling that can be used for each. One of the
critical problem encountered in this field is to perform classification automatically. Consequently, it has been
extensively studied and various ideas have been proposed. However, recognition systems are not able to cope
with the appearance of a new class after the training phase is completed. Another critical issues are to collect
as many sample images as possible to generate object classes appropriately. Besides, these images also have to
be taken from different angles in various contexts. Finally, it should be noted that collecting sample images for
every object is not possible. For instance, despite there exists lots of animal classes for which collecting sample
in an effortless manner is possible, there are animals in extinction, as shown in Figure 1, which does not allow
to collect image samples effortlessly. These problems motivate researches to focus on ZSL approaches.

ZSL is a new machine learning technique that aims to recognize new sample sets and assign them into
unseen but suitable classes without requiring any training examples but only necessitating the descriptions of
these instances. The descriptions of the new class examples are associated with the definitions of the classes
previously learned. In other words, ZSL is an approach which can solve a task without encountering any sample
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Figure 1. Ili Pika was last seen in 2017, after 20 years of disappearance.

of that task at training stage [1]. This enormous paradigm is inspired from humans that any human being is
able to recognize a new (unseen) object by reading and analyzing only some sematic definitions by considering
the similarities between the definition of the new object and the concepts already learned [1]. The seen and
unseen classes are linked by the semantic descriptions. According to this, an expected idea, visual semantic
mapping, is employed. This compares both seen and unseen classes in semantic space [2]. The earlier literature
includes indirect learning method for unseen samples, which however, associates one sematic description with
vast number of visual samples [3, 4].

Alternatively, several recent approaches handle the problem directly in which ”generative adversarial net-
works (GANs)” are employed, which recognize unseen samples from the random noises and semantic definitions
[5, 6]. One of the notable approaches in the ZSL domain is the one-line linear solution introduced by Romero
and Torr [1] in 2015. According to the proposed model, a loss function, and a regularizer, simpler but also
efficient way of constructing the complete process is introduced. The solution involves two critical parameters
directly influences the accuracy of the model. They employ the validation set so as to tune the hyper-parameters
of the methods. This set contains instances, which belongs to ”20%” of the training classes, selected randomly.
They use the value range, 10b for b = −3,−2, ..., 2, 3 in order to tune all hyperparameters. Nevertheless, it
should be stated that the accuracy rates for parameters of real numbers parameters have not been observed.
This motivates authors to overcome this problem by employing approximation algorithms. Accordingly, two
leading metaheuristics algorithms, namely: genetic algorithm (GA and particle swarm optimization (PSO) are
adapted and then evaluated to estimate the parameters of ESZSL. The confidence of the algorithms is tested
on benchmark datasets statistically. The results reveal the performance of these algorithms for this problem.
The structure of paper consists of the Sections named as: materials and methods, experimental results, and
conclusion.
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2. Materials and methods
The main concept of employing semantic description to represent a class was first discussed in [7]. In this
study, error-correcting code is seen as a kind of communication problem where the correct output class identity
is ”transmitted” over a channel for a new example. Binary descriptors are used as error-correcting codes.
However, they do not have a semantic meaning. In computer vision, the methods of feature sharing between
object classes were studied in [8]. This method uses experiences with previously learned classes to make learning
of new classes easier. Features that have been learned and proven useful in the previous classification process are
selected and are adapted to the new classification process. In this adaptation, the properties of classes previously
learned are changed with the similar features from the new class. Another study focused on predicting the visual
properties of new objects using visual property predictions for object recognition. They introduced attribute
based classification. Instead of training images, object recognition is performed on the basis of high level
definitions of target objects. The high level definitions consist of semantic attributes. New classes can be
identified according to their representation, without new training phase [9].

Until 2012, studies concerning computer vision have shown limited performance due to hardware limita-
tion and time costs. Krizhevsky et al. achieved a success of 83.6% in Deep Learning’s Image Net Large-Scale
Visual Recognition Competition (ILSVRC) in 2012 [10]. This success, in essence, has changed the direction
of the researches in this field. Accordingly, many academic studies based on deep learning have been carried
out within the following years. Despite deep learning is able to achieve outstanding performance, it still needs
to handle a crucial problem that already exists in traditional machine learning methods according to which,
the data should be diverse enough to reflect the real world and the data must have sufficient information. To
overcome these difficulties, there has recently been an increase in research of ZSL [11]. Most studies employing
zero-shot have learning consists of two stages: training and inference. In the training phase, information of
attributes is obtained, and, in the inference, phase this information is used to categorize the unseen samples
[9, 12–14]. For example, in DAP, [9], at training stage, the posterior of each attribute is estimated by learning
probabilistic classifier. At the second stage, the preceding estimators are used to calculate the class posteriors,
and the new classes are predicted using their attributes signatures. Similarly, in IAP, a probability classifier is
generated for each training class, but at inference phase, forecasts are combined considering both the attributes
of training classes and test classes. A “multiclass” classifier is used to estimate the class posterior of seen classes.

ESZSL describes zero-shot learning approach by considering the relationships between features, attributes,
and classes [1]. This framework consists of two linear layers. Framework integrates the training stage and the
inference stage. The weights of the first layer, which are learned at the training stage, model the association
among the features and the attributes. On the other hand, the weights of the second layer are not learned, they
are obtained from the environment. The relationship between the attributes and the classes is modeled by the
second layer. This layer, in essence, is fixed by employing the prearranged attribute signatures of the classes.

In Study [15], Gencer Sumbul et al. 2017 examined problems that occurred in several cases regarding
the recognition and detection systems. These situations where problems arise are the escalation in spatial and
spectral resolution, the emergence of novel details, the increase of new classes, and the diversity of target classes.

2.1. ESZSL
ESZSL is a one-line liner code solution introduced by Romero and Torr in 2015. The approach proposed in the
study is mainly based on transfer learning. In the transfer learning, which is also acknowledged as learning to
learn [16] or inductive transfer [17–19], the information obtained while solving a problem is stored and then is
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used to solve other related problems. In terms of this feature, it is similar to “zero-shot learning”. However,
there is a significant difference between transfer learning and ZSL. In transfer learning, data about new tasks
is given as a series of labeled samples. Romero and Torr [1] present a linear model, which is based on defining
the relationship between features, attributes, and classes. This model is similar to one introduced in [20]. The
presented framework is able to integrate both training and inference stage, overcoming the general deficiencies,
which are seen previous studies.

ESZSL has important notations used in training and inference phase. At the training phase, there are
“z classes”, each of which has a signature composed of a attributes. These signatures are symbolized in a
matrix namely, S∈ [0, 1]a×z . The instances obtainable at training phase are symbolized by X∈ Rd×m . Here
d represents the dimensionality of the data, and m is the number of samples. The ground truth labels of each
training instance that belongs to any of the z classes are indicated by Y∈ {−1, 1}m×z . ESZSL framework
integrates the training stage and the inference stage. The weights of the first layer are obtained at the training
stage. In this case, the solution is expressed in equation 1 [1].

V = (XXT + γI)−1XY ST (SST + λI)−1 (1)

where, I is unit matrix and γ , λ are hyper parameters, which affect the performance of the algorithm. In this
study, with using GA and PSO, these hyper parameters have been tuned.

In the inference phase, the classes of samples never seen before are estimated using the model obtained
from the training phase. When a new sample is given, x is estimated using the equation 2 [1]:

argmax
i

XTV Si

′
(2)

here, S
′ refers to the attribute signatures of the new set of z

′ classes. A sample architecture of the framework
is shown in Figure 2 [1], and this framework is adapted from a previous study can be seen in [20].

Figure 2. Summary of the ESZSL framework can be seen in [1].

According to the framework, at the training phase, the V matrix, which maps from the feature space to
the attribute space, is learned through the signature matrix (S ) with the training samples. At inference stage,
the final linear model (W

′
) is obtained by using the matrix V , which is learned at the training stage, together

with the attribute signatures of the test classes (S
′
) .
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2.2. Datasets
For the experimental process of this study, benchmark datasets that are commonly preferred in zero-shot learning
are employed. These are the “Animals with Attributes dataset (AwA1)” [21], “the SUN scene attributes database
(SUN)” [22], the “aPascal/aYahoo objects dataset (aPY)” [23], “the Caltech-UCSD Birds 200-2011 (CUB)” [24],
and the “Animals with Attributes dataset 2 (AwA2)” [25]. These datasets contain set of images with various
classes in a different context. The aPY, which contains images of objects, is a “coarse-grained” and “small-
scale” dataset. It involves 64 attributes and 32 classes. The original “AwA1” and “AwA2” are coarse-grained
datasets and have 50 classes and 85 attributes. In “AwA1” and “AwA2”, there are images of various animal
classes. The “CUB” is a medium scale and fine-grained dataset of birds. It contains 200 classes and 312
attributes. The “SUN” is a fine-grained and medium-scale dataset. The “SUN” has 717 types of scenes and 102
attributes. Table 1 illustrates the characteristics of aforementioned datasets and sample images obtained from
“aPY” dataset are shown in Figure 3.

Table 1. The characteristics of datasets.

“aPY” “AwA1” “AwA2” “CUB” “SUN”
“Training classes” 20 40 40 150 707
“Test classes” 12 10 10 50 10
“Instances” 15339 30475 37322 11788 14340
“Attributes” 64 85 85 312 102

Figure 3. Sample images obtained from ”aPY” dataset [23].

2.3. Genetic algorithm

Genetic algorithm is a random search algorithm that aims to find the optimal solution. It was developed by
Holland in 1975 based on the theory of evolution [26]. Since this algorithm is based on the principle of natural
selection, it is included in the group of heuristic algorithms. According to natural selection, the most suitable
individuals in the population are selected to produce the next generation. Based on this notion in genetic
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algorithm, firstly an initial population is randomly created. Each candidate solution (individual) consists of a
set of genes. Generally, binary form (0s and 1s) is used to represent individuals, but there are different coding
methods. It is aimed to find the most optimal solution with the evolution of individuals in the population.
The genetic algorithm works iteratively, and the population that gets after each iteration is called the new
generation. The following steps are performed to each generation:

1. The fitness value of each individual in the population is determined according to fitness function in the
optimization problem.

2. Generally, in order to protect best individuals, the best candidate solutions in a certain percentage are
transferred to next population without any processing. This is called elitism.

3. The individuals that will be used to create the individuals of the new generation are determined according
to the selection method.

4. After the selection process, a new generation is created by applying crossover and mutation to these
selected individuals. Crossover is creation of new individuals by crossing two individuals according to
crossover method. Mutations are random changes in individuals to prevent the population from becoming
same (to preserve diversity).

5. The new population is then used in the next generation.

6. Until the stop condition is met, these steps are repeated.

It should be noted that the algorithm is terminated in a certain number of iterations or when a certain
fitness value is provided. The flowchart representation of genetic algorithm (GA) is shown in Figure 4 and
algorithm 1 shows the pseudocode of GA. GA has an ease implementation and it can be directly carried out on
continuous and discrete problems. Therefore, genetic algorithm has been used on many problems ranging from
engineering applications to healthcare, and it will be kept using [27].

Algorithm 1 Pseudocode of GA.
Generate the initial population
Compute fitness
while termination condition not met do

Elitism
Selection
Crossover
Mutation
Compute fitness

end while

2.4. Particle swarm optimization

Particle swarm optimization (PSO) is also a metaheuristic technique and was proposed by Kennedy and Eberhart
[28]. PSO is adapted by the movements of animals that move in flocks, such as fish or birds, to meet their basic
needs, such as finding food, for optimizing continuous nonlinear functions. In these groups, a leader guides the
navigation of the entire herd. The movement of each individual is determined by the position of the leader
(global best) and the local best. The working steps of the PSO algorithm are basically given as follows:
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Figure 4. A detailed flowchart representation of GA.

• A random assignment is made to the position and speed of each particle “p” in the herd. In the
N-dimensional search space, the velocity and position of the particle “p” are denoted by the vectors.
Xp=(xp1 ,xp2 ,xp3 ,...,xkn ) and Vp=(vp1 ,vp2 ,vp3 ,...,vpn ) correspond to position and the flight speed of
the particle “p” in the search space.

• Each particle “p” knows its position, the fitness value for that position and the best value it has found
until then. This best value is called as “pbest”.

• In each iteration “t”, the movement of particle is determined according to pbest and gbest. While “gbest”
refers the best global position found by all particles, “pbest” refers the current location of the corresponding
particle.

The velocity and position of the particle are updated for each iteration based on the equations given
below:

V t+1
pd = wvtpd + c1r1(p

t
pd − xt

pd) + c2r2(g
t
d − xt

pd) (3)

xt+1
pd = xt

pd + V t+1
pd (4)

here, ”w”, which is called the inertia weight suggested by [29], is utilized to control the parameter of the swarm
velocity, whereas “c1 ” and “c2 ” are called acceleration coefficients. They are the weights that determine how
much a particle must move towards its local best and global best within swarm. In general, while the values of
“c1 ” and “c2 ” are kept constant, “r1 ” and “r2 ” are randomly generated variables, defined in [0, 1] . When “c1 ”
and “c2 ” (the acceleration coefficients) are multiplied with random variables: “r1 ” and “r2 ”, velocity of the
swarm can be controllable [30], and p and g refer pbest and gbest parameters, respectively. Figure 5 illustrates
the flowchart of PSO algorithm and also Algorithm 2 involves the pseudocode of PSO.
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Figure 5. A detailed flowchart representation of PSO algorithm.

Algorithm 2 Conventional PSO approach [31–35].
Initialize population with random position
Initialize velocity of population
while stop condition is not met do

Calculate the fitness value of each particle
Update the pbest of each particle
Update the gbest
Calculate the velocity of each particle
Update the position of each particle

end while

3. The Experimental section and discussion
This section represents the proposed model performance using GA and PSO for tuning hyper parameters
on benchmark datasets. In order to train the models and perform the experiments, a computer of medium
configuration is employed. The features of the computer are: Intel Core i5, 3.40 GHz CPU, and 4 GB RAM.
During the evaluation process, the accuracy rate is used as fitness function, and all of the training examples are
used for optimization. After the parameter are adjusted, the model is obtained according to these parameters.
The success of GA and PSO has been determined by classifying examples that have not been seen before (i.e.
they are not used in the training phase) using this model.

3.1. Parameter settings
There are some parameters that affect the success of the genetic algorithm and PSO, and therefore, their choices
are crucial. In this study, parameters which are used in genetic algorithm are set as follows:

• “Population size”: 100

• “Number of iteration”: 100

• “Crossover rate”: 0.8
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• “Mutation rate”: 0.1

Parameters which are used in particle swarm optimization are set as follows:

• “Population size”: 100

• “Number of iteration”: 100

• Constants “c1 ” and “c2 ”: 2

Table 2a illustrates the best, average, and worst accuracy rate (%) obtained only by executing the
ESZSL algorithm without employing parameter optimization algorithms. In Table 2a, results for datasets
are not obtained from [1]. Accuracy rates of datasets are obtained by running 10 times ESZSL using b =

−3,−2,−1, 0, 1, 2, 3 values for 10b .

Table 2. Accuracy rate (%) results. (a) The accuracy rate of datasets obtained without parameter optimization;
(b) the accuracy rates obtained from optimized model using GA on benchmark datasets; (c) the accuracy rates
obtained from the optimized model using PSO on benchmark datasets.

(a)

Dataset Best
accuracy

Average
accuracy

Worst
accuracy

“aPY” 29.45 25.07 22.92
“AwA1” 45.79 44.50 44.15
“AwA2” 53.14 51.53 50.92
“CUB” 53.93 50.73 48.03
“SUN” 60.00 58.25 57.5

(b)

Dataset Best
accuracy

Average
accuracy

Worst
accuracy

“aPY” 31.26 31.14 27.59
“AwA1” 59.14 58.69 51.73
“AwA2” 57.73 57.41 53.51
“CUB” 54.94 54.66 52.75
“SUN” 67.50 66.65 60.00

(c)

Dataset Best
accuracy

Average
accuracy

Worst
accuracy

“aPY” 31.30 31.28 30.94
“AwA1” 59.14 59.02 54.46
“AwA2” 57.78 57.77 57.68
“CUB” 54.904 54.84 54.23
“SUN” 67.50 67.32 60.00

3.2. Application of GA on the problem
GA is applied to problem by using the fitness function. Firstly, initial population, which is suitable for structure
of problem, is created randomly. An individual consists of two real value in the range of (−− 4, 4) . One value
is for λ , the other is for γ . Once the initial population has been created, the fitness value of individuals
is calculated using the fitness function. In order to protect best individuals, the best candidate solutions in a
certain percentage are transferred to next population without any processing. Individuals to be used in crossover
are determined by triple tournament selection method. As a crossover method, single point crossover has been
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used. After crossover has been done, mutation process is started. Value change mutation method is applied in a
low percentage to ensure diversity of population. A new population is obtained after mutation. This population
is evaluated by sending to the fitness function. Until the stop condition is met, elitism, selection, crossover,
and mutation process are repeated. When 75% of the population has same individual, in other words, diversity
of population is smaller than 25% of the population size, reproduction is done in order to preserve diversity.
Genetic algorithm is applied to dataset of “aPY”, “AwA1”, “AwA2”, “SUN”, and “CUB”. GA is executed in
total 10 times for 100 iterations on datasets. Table 2b illustrates the best, average, and worst accuracy rate by
using the GA optimized model. According to the result shown in Table 2b, it can be stated that (ESZSL+GA)
is able to obtain better results in all datasets.

3.3. Application of PSO on the problem

In addition to GA, PSO is also applied to problem by using the fitness function. Firstly, initial population,
which is suitable for structure of problem is created. A particle consists of two real value in the range of [−4, 4] .
One value is for λ , the other is for γ . Initial velocity of particles are zero. Once the population has been
created, the fitness value of individuals is calculated using the fitness function. According to fitness value of the
particles, the gbest is determined. The pbest of each particle is equal to itself. Equations 3 and 4 are used in
order to modify position and velocity values of particles. If the velocity of a particle exceeds the lower limit,
its value is substituted with the lower limit, and if it exceeds the upper limit, its value is substituted with the
upper limit. In the same manner, if the position of particle exceeds the lower limit, its value is substituted
with the lower limit, and if it exceeds the upper limit, its value is also substituted with the upper one. After
updating of velocity and position are completed, the fitness value of particles is calculated. The pbest and
the gbest are updated by considering this new fitness values. According to pbest and gbest values, velocity
and position parameter of each particle is recalculated. These steps are repeated until the stop condition is
accomplished. As in the genetic algorithm, when 75% of the population has same individual, reproduction is
done in order to preserve diversity. (PSO+ESZSL) is applied to “aPY”, “AwA1”, “AwA2”, “SUN”, and “CUB”
datasets. PSO is executed in total 10 times with 100 iterations on these benchmark datasets. Table 2c presents
the best, average, and worst accuracy rate (%) generated by employing the PSO algorithm so as to optimize
the parameters of the model.

According to the results shown in Table 2c, it can be stated that (ESZSL+PSO) yields better results in
“aPY”, “AwA2” datasets than (ESZSL+GA) can achieve. While both models have the same accuracy rate in
the “AwA1” and “SUN” datasets, (ESZSL+GA) achieves better results in the “CUB” dataset. Figures 6a, 6b,
7a, 7b, 8 illustrate the convergence graph of GA and PSO on “aPY”, “AwA1”, “AwA2”, “CUB”, and “SUN”
datasets, respectively. These figures belong to the individual with the best fitness value (highest success rate).

Once the convergence graphs are analyzed, it should be noted that despite PSO achieves the best success
rate in a shorter time on “aPY”, “AwA2”, and “SUN” datasets, GA shows a faster convergence in “AwA1” and
“CUB” datasets. In addition, computation complexity of algorithms are addressed to analyze their effectiveness.
By considering running times, it is calculated O(n3) for GA and O(n2) for PSO, respectively. As can be
understood from these values, PSO produces faster results than GA. Finally, t-test is applied to the ESZSL
model and the model used GA (ESZSL+GA) and PSO (ESZSL+PSO) so as to verify the efficiency of the
algorithm in statistical manner. The t-test was invented in 1908 by William Sealy Gosset, an Irish chemist who
used it to monitor quality of beverage for the factory where he worked [36]. It is generally used to evaluate
whether the difference between the results of two sets of data is statistically significant or random. In this
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Figure 6. Convergence graph of GA and PSO methods on “aPY”, ”AwA1” datasets (a) “aPY” dataset, (b)
“AwA1” dataset.

study, it is applied to measure the influence of GA and PSO approaches to the model. Table 3a shows the t-test
results using the accuracy parameter obtained from PSO and GA, Table 3b illustrates the t-test results between
the ESZSL model and the GA optimized model (ESZSL+GA) based on abovementioned five datasets, and
Table 3c illustrates the t-test results between ESZSL model and PSO (ESZSL+PSO). It should be noted that
P(T⩽ t) << 0.05 is accepted during t-tests for all datasets and the results of the ESZSL model are obtained
by performing execution.

Once the Table 3a is analyzed, it can be noted that t stat is higher than both the t critical one-tailed
value and the two-tailed value for “aPY”, “AwA1”, “AwA2”, and “CUB” datasets. However, t stat value is
smaller for “SUN” dataset. This means that the performance differences between the accuracy of the optimized
GA model and PSO model are statistically significant for “aPY”, “AwA1”, “AwA2”, and “CUB” datasets. Since
the maximum accuracy rates obtained from (ESZSL+GA) and (ESZSL+PSO) models for “SUN” dataset in
almost all executions are the same; t test results are obtained close to each other as it is expected. According to
the Table 3b, t stat value is higher than both the t critical one-tailed and the two-tailed for all datasets. This
means that the performance differences between the ESZSL model and the optimized GA model are statistically
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Figure 7. Convergence graph of GA and PSO methods on ”AwA2” and ”CUB” datasets. (a) “AwA2” dataset,
(b) “CUB” dataset.
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Table 3. t-test results (a) t-test results between the optimized PSO model and the optimized GA model; (b)
t-test results between the ESZSL model and the GA optimized model; (c) t-test results between the ESZSL
model and the PSO optimized model.

(a)

Dataset t Stat P(T<=t) one-tail t Critical one-tail P(T<=t) two-tail t Critical two-tail
“aPY” 6.4130 6.17E-05 1.8331 0.000123 2.2622
“AwA1” 3.5196 0.00326 1.8331 0.006519 2.2622
“AwA2” 8.3843 7.59E-06 1.8331 1.52E-05 2.2622
“CUB” 4.3208 0.000966 1.8331 0.001931 2.2622
“SUN” 1 0.171718 1.8331 0.343436 2.2622

(b)

Dataset t Stat P(T<=t) one-tail t Critical one-tail P(T<=t) two-tail t Critical two-tail
“aPY” 10.8951 8.72668E-07 1.8331 1.74534E-06 2.2622
“AwA1” 90.1443 6.44805E-15 1.8331 1.28961E-14 2.2622
“AwA2” 29.6115 1.39491E-10 1.8331 2.78983E-10 2.2622
“CUB” 7.2369 2.44244E-05 1.8331 4.88489E-05 2.2622
“SUN” 39.4974 1.06292E-11 1.8331 2.12584E-11 2.2622

(c)

Dataset t Stat P(T<=t) one-tail t Critical one-tail P(T<=t) two-tail t Critical two-tail
“aPY” 10.9603 8.29834E-07 1.8331 1.65967E-06 2.2622
“AwA1” 94.2268 4.3298E-15 1.8331 8.6596E-15 2.2622
“AwA2” 30.6532 1.02473E-10 1.8331 2.04946E-10 2.2622
“CUB” 7.52325 1.80191E-05 1.8331 3.60383E-05 2.2622
“SUN” 31.6593 7.68135E-11 1.8331 1.53627E-10 2.2622

significant. P(T⩽ t) values for all datasets are very close to zero, which shows that the evaluation confidence
is high. Table 3c presents a similar result with Table 3b that t stat value is higher than both the t critical
one-tailed and the t critical two-tailed for all datasets. Accuracy differences between the ESZSL model and
the optimized PSO model are statistically significant. In this table, it can be seen that P(T⩽ t) values for all
datasets are very close to zero as well. This indicate that the confidence of the evaluation is higher than 99%.
Consequently, the proposed approach provides a significant increase in the accuracy parameter, and it is proved
that the evaluation confidence is high.

4. Conclusion
Automatic classification is one of the significant problems discussed in machine learning; thus, it has been
studied extensively. Various approaches have been proposed to address this problem. One of the important
difficulties encountered in the automatic classification is the appearance of a new class after the training phase.
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This is the main reason motivates researchers to focus on ZSL approaches to handle this problem. One of
the notable approach used by the ZSL domain is the one-line linear solution ESZSL, mainly involving two
parameters that affect the accuracy of the model completely. Hence, parameter selection is a crucial step for this
algorithm. It should be noted that one of the critical contribution of this study is to apply leading metaheuristic
algorithms to optimize corresponding parameters for a better overall training performance. Benchmark datasets
are employed for validation. According to the results, models optimized with GA and PSO approaches show
better performance for all datasets. Results also reveal that despite its simplicity, PSO achieves more successful
results than GA in most datasets for this problem. T-test is also applied to compare the base model and
proposed models. Consequently, the differences in performances were found to be statistically important. It
should also be noted that the configuration of the computer used during the experimental process are insufficient
to run such large datasets, since it takes long time to execute the codes especially during the training phase.
Consequently, population size and the number of iteration are set to a low value for GA and PSO approaches.
Results encourage authors to perform new experiments by using more powerful computers for future studies.
This will allow to generate larger population size with more iterations. Besides, authors are planning to adapt
different optimization algorithms to this problem in order to obtain better results.
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