
Turk J Elec Eng & Comp Sci
(2021) 29: 1797 – 1820
© TÜBİTAK
doi:10.3906/elk-2008-148

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

A new approach: semisupervised ordinal classification

Ferda ÜNAL1, Derya BİRANT2,∗ , Özlem ŞEKER1
1The Graduate School of Natural and Applied Sciences, Dokuz Eylül University, İzmir, Turkey

2Department of Computer Engineering, Faculty of Engineering, Dokuz Eylül University, İzmir, Turkey

Received: 28.08.2020 • Accepted/Published Online: 08.12.2020 • Final Version: 31.05.2021

Abstract: Semisupervised learning is a type of machine learning technique that constructs a classifier by learning
from a small collection of labeled samples and a large collection of unlabeled ones. Although some progress has
been made in this research area, the existing semisupervised methods provide a nominal classification task. However,
semisupervised learning for ordinal classification is yet to be explored. To bridge the gap, this study combines two concepts
“semisupervised learning” and “ordinal classification” for the categorical class labels for the first time and introduces a
new concept of “semisupervised ordinal classification”. This paper proposes a new algorithm for semisupervised learning
that takes into account the relationships between the class labels, especially class orderings such as low, medium, and high.
We also performed an extensive empirical study that involves 10 benchmark ordinal datasets with different quantities of
labeled samples varying from 15% to 50% with an increment of 5%, aiming to evaluate the performance of our method
by combining different base learners. The experimental results were also validated with a nonparametric statistical test.
The experiments show that the proposed method improves the classification accuracy of the model compared to the
existing semisupervised method on ordinal data.
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1. Introduction
Machine learning builds a model to be able to predict an outcome for a new data instance based on prior data.
The main types of machine learning are supervised learning and unsupervised learning that perform learning with
labeled data and unlabeled data, respectively. A typical supervised learning task is a classification that finds the
relationship between the objects in the training set and then assigns the unknown data to the classes previously
determined. The classification has been known with the ability to give high accuracy on data estimation due
to using labeled data. Nevertheless, obtaining labeled samples is a costly process, since it is usually based on
expert experience. Therefore, this study focuses on semisupervised learning (SSL) in which a small number of
labeled data and a large number of unlabeled data are used together.

Ordinal classification is a special case of multiclass classification in which an inherent ordering among
the classes exists. The aim of the ordinal classification is to predict the class label of an unseen data instance
by considering ranking relationships between the classes. For instance, an ordinal class attribute can have the
five ranking values such as “strongly disagree”, “disagree”, “neutral”, “agree”, and “strongly agree” that are
ordered from the worst situation to the best. Hence, the first class label can be considered five times worse
than the last one. Another example is that the size of an object can be one of the following labels: “large”,
∗Correspondence: derya@cs.deu.edu.tr
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“medium”, and “small”. According to the literature [1], in case there is an order relationship among the class
label, ignoring this relationship can affect classification performance in a negative way.

The main motivations of this study are two-fold. (i) The existing SSL algorithms are capable of processing
nominal or numerical class labels; however, we also need to capture the orderings among the categorical class
labels. (ii) The traditional ordinal classification is limited to using only labeled ordinal data to construct a
classifier; however, we also need a learning paradigm dealing with the design of classifiers in the presence of
both labeled ordinal data and unlabeled ordinal data.

The main novelty of this paper is that the ordinal classification is used as a new approach for semisuper-
vised learning. It proposes a new algorithm, called semisupervised ordinal classification (SSOC), which relies on
semantic knowledge on the class label ordering and uses both labeled and unlabeled data together for classifi-
cation. Our algorithm is different from the traditional regression and multiclass classification algorithms since,
in the former, numeric target values are predicted based on a metric and, in the latter, there is no ordering
between classes.

The main contributions of this study can be summarized as follows: (i) This is the first study that
combines two concepts “semisupervised learning” and “ordinal classification” for the categorical class labels and
introduces a new concept of “semisupervised ordinal classification”; (ii) this paper proposes a new algorithm,
called SSOC, for semisupervised learning that takes into account the relationships between the class labels,
especially class orderings such as bad, regular, and good; (iii) our new method allows a standard base learner
to be applied to an ordinal classification task. This study is also original in that it compares alternative base
learners conjunction with the proposed method, including decision tree (DT), support vector machines (SVM),
k-nearest neighbors (KNN), random forest (RF) and neural network (NN); (iv) it is the first time that different
ratios of labeled data (from 15% to 50%) are explored for ordinal classification.

The proposed SSOC method consists of the following main stages: The first stage is to train multiple
binary classifiers on the existing labeled ordinal data. After that, the unlabeled data is labeled by the constructed
classifiers via their predictions to generate additional labeled data, which is commonly referred to as pseudo-
labeled data. Lastly, the final inductive classifier is built by using both originally labeled and pseudo-labeled
ordinal data.

In the experiments, the effectiveness of the proposed SSOC method was verified on 10 benchmark ordinal
datasets by comparing with the standard ordinal classification algorithm [1]. In addition, it was also compared
with the well-known semisupervised classification algorithm, called YATSI (yet another two stage idea) [2]. The
main findings can be concluded as follows:

• The proposed SSOC method resulted in a significant improvement over the existing YATSI method.
• The accuracy of prediction slightly increased as the number of labeled data samples increased.
• When the SSOC method was tested in combination with popular classification algorithms (DT, SVM,

KNN, RF, and NN), the SSOC-RF algorithm achieved significantly better accuracy (93.57%) than the
rest.

• Semisupervised ordinal classification methods (SSOC-DT, SSOC-SVM, SSOC-RF, and SSOC-NN) gen-
erally exceeded their supervised ordinal counterparts (OC-DT, OC-SVM, OC-RF, and OC-NN) in terms
of accuracy when labeling at most half of the ordinal instances.
The implications/novelty of the results can be summarized as follows. The SSOC method performed

high accuracy by the use of a set of labeled ordinal data and a set of unlabeled ordinal data. The Wilcoxon
statistical test results showed that the differences in the performances of the proposed method and the existing
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method are statistically significant. As a result, the proposed SSOC method can be successfully used for the
tasks in management decisions and assessments where both labeled and unlabeled data are available and the
classes of the objects are discretely ordinal, instead of nominal or numerical.

The proposed method (SSOC) has a number of advantages that can be summarized as follows:
• The traditional ordinal classification is limited to using only labeled ordinal data to build a model. The

traditional semisupervised learning disregards the ordering information in class labels. The main advantage
of the SSOC method is that it overcomes these two limitations and deals with the design of classification
models in the presence of both labeled ordinal data and unlabeled ordinal data.

• In many real-world applications, an extremely huge amount of unlabeled ordinal data is available. How-
ever, labeling ordinal data is an expensive, difficult, tedious, or time-consuming process, since it usually
requires human efforts, sometimes domain expert knowledge. Data labeling by domain experts has both
explicit costs such as financial resources and implicit costs such as time spent. This is especially true for
real-world applications that include learning from a large number of class labels and distinguishing similar
classes. The SSOC method addresses this inherent bottleneck by automatically allowing the model to
integrate the available unlabeled ordinal data with little or no cost.

• An important advantage of the SSOC method is that it can be utilized with the combination of any super-
vised base learner such as DT, SVM, and NN. The base learner is entirely unaware of the semisupervised
ordinal classification method, in fact, it simply learns from the ordinal labeled and pseudo-labeled samples
as if they were regular labeled instances.

• The ordinal classification methods often address the problems where labeled ordinal data is scarce or
expensive. However, it is difficult to build a strong classifier with high generalization ability by using
limited labeled ordinal data. The main idea behind the SSOC method is to take advantage of a huge
amount of unlabeled ordinal data when building the ordinal classifier. In addition to labeled ordinal data,
the SSOC method also exploits unlabeled data to help improve classification performance. Thanks to
the SSOC method, the unlabeled data instances provide additional knowledge that is relevant for ordinal
classification, and they can successfully be used to improve the generalization ability of the learning
system.

• Another advantage is that the SSOC method can be applied to any ordinal data without any prior
information about the given dataset. It does not provide any specific knowledge and specific assumptions
for the given data.

• A large amount of data generated in real-life is unlabeled. Since the SSOC method covers a relatively
wide domain, it enables enormous applications, and so it expands the application field of the ordinal
classification algorithm.
The remainder of this paper is organized as follows: Section 2 presents the previous works on semi-

supervised learning as well as ordinal classification; Section 3 explains the method proposed in this article;
Section 4 presents the empirical results with dataset descriptions. Finally, concluding remarks and possible
future works are given in Section 5.

2. Related work
Since our study combines two concepts (“semi-supervised learning” and “ordinal classification”) for the cate-
gorical class labels for the first time, we herein present a literature review of previous studies on both of them
separately.
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2.1. Literature review for semisupervised learning

In the field of semisupervised learning (SSL), some new methods have been developed, as well as some existing
supervised methods have been adapted to the problem. Until now, the semisupervised learning methods have
been successfully applied to problems in many different areas such as health [3], security [4], education [5],
geology [6], biology [7], real estate [8], and energy [9]. A comprehensive survey on the SSL topic was conducted
by Van Engelen and Hoos in 2020 [10]. They give a broad overview of the SSL methods by presenting a new
taxonomy, explain recent advances, and provide basic assumptions underlying SSL.

Semisupervised learning can be grouped into two different categories [10]: inductive learning and trans-
ductive learning. The goal of inductive learning [11] is to produce a prediction function that is defined on the
whole input space. On the other hand, the idea in transductive learning [6, 12] is to directly perform predictions
only for the unlabeled data. In other words, given a dataset consisting of labeled (XL) and unlabeled (XU )

samples such that XL , XU ⊆ X , with labels YL ∈ Y for the labeled samples, the inductive methods consider
both XL and XU to yield a model f : X 7→ Y , whereas the transductive methods output predicted labels ŶU

for the given unlabeled samples (XU ) only. Our proposed algorithm (SSOC) is based on the inductive learning
paradigm.

The semisupervised learning methods exist in the literature can be mainly categorized into generative
models [10], cotraining [7, 8], self-training [5], semisupervised support vector machines (i.e., semi-SVM, S3VM)
[9], disagreement-based methods [4] and graph-based methods [3, 11]. Generative models [10] build a joint
probability model (i.e., Gaussian mixture model) depending on a distribution assumption, and the decision
boundary is determined by using both labeled data samples and unlabeled data samples in the probabilistic
framework such as expectation-maximization, maximum probability likelihood, or Bayes. The cotraining
methods [7, 8] iteratively build two or more classifiers by using multiple different views of data, in which the
most confident predictions of a classifier on the unlabeled samples are utilized as the labeled training samples
by another classifier in each iteration. Self-training [5] is one of the widely used wrapper approaches, where a
classifier firstly is trained with the initial labeled data for the purpose of classifying unlabeled samples, and then
it is retrained by adding its predictions to the labeled data. The Semi-SVM method [9] is an extended version
of the traditional SVM, which is used both labeled and unlabeled data to iteratively find a boundary that
maximizes the margins between classes. The disagreement-based methods [4] train multiple learners and exploit
the disagreements among the learners during the SSL process. The graph-based methods [3, 11] firstly construct
a weighted graph, where each vertex refers to a data sample and the edge between two nodes represents the
pairwise similarity of data samples, and then the methods use the graph to assign class labels to the unlabeled
data samples. In our study, a new approach based on the self-training method is proposed to address the ordinal
classification.

Similar to supervised learning, no technique has been discovered yet to determine prior information in
which the SSL method is well-suited for a certain problem. Each method has some advantages and disadvantages,
as well as each problem, even each dataset, has its own characteristics. Therefore, a combination of empirical
evaluation and theoretical analysis should be used to determine a method that is best-suited to the given
problem. For instance, Livieris et al. [5] compared four different semisupervised algorithms (cotraining, self-
training, tri-training, and YATSI) to determine the best one for the student performance prediction problem.
Similarly, Uylas Sati [13] tested many different SSL methods on real-world datasets.

A semisupervised learning problem is designed to reflect an assumption that the algorithm builds on.
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The most commonly known assumptions are cluster assumption, manifold assumption, smoothness assumption,
and low-density separation assumption [14]. The cluster assumption considers that samples belonging to the
same group are likely to be of the same class. The manifold assumption states that data samples on the same
low-dimensional manifold have a great probability of having the same class value. The smoothness assumption
means that if samples close to each other in a high-density space, these samples may have the same label. The
low-density separation assumption states that the class-decision boundary lies in the region where the data
density is low in the input space. Since our proposed algorithm deals with the ordinal classification task, it is
based on the assumption that if two samples are close, then, may have similar class rankings (orders).

Although most of the research on SSL has been centered on semisupervised classification, other problems
such as semisupervised clustering [12] and semisupervised regression [8] have also been studied. The former
focuses on building a model using labeled data and unlabeled data together to make a prediction based on
continuous variables, whereas the latter aims to improve clustering results with the help of labeled data.

Since the aforementioned SSL algorithms focus on nominal classification, they are out of the scope of
this paper. They do not capture and reflect the orderings among the class labels; hence, they may lead to
construct inefficient models in terms of accuracy in the case of ordinal data. Unlike the previous studies, this
paper proposes a new paradigm for semisupervised learning where ordinal data is used in the model construction
process. More specifically, semisupervised learning is extended by considering the relationships between class
labels.

2.2. Literature review for ordinal classification
Ordinal classification (OC) considers the problems where the class labels of the target attribute in the dataset
follow a given order, such as very hot, hot, warm, cold, and very cold labels in weather prediction problem.
Recently, the ordinal classification has received much attention in machine learning field with the development
of a growing number of real-world applications, such as customer segmentation (i.e., gold, silver, and bronze),
sentiment analysis (i.e., happy, natural, and sad), credit scoring (i.e., high, medium, and low risk levels), human
age estimation (i.e., old, adult, and young), medical diagnosis (i.e., initiation, proliferation and progression
stages of cancer), and survey analysis (i.e., disagree, neutral, and agree). In these contexts, the ability to
capture the natural order of the labels is crucial to improve the classification performance of the model. The
importance of taking into account inter-classes relations has already been proven in [1].

The OC approaches can be grouped under three categories: threshold approaches, naive approaches,
and ordinal binary decomposition approaches [15]. The threshold approaches [16] obtain a set of thresholds by
dividing the target variables into successive intervals, where each class label belongs to an interval limited by
these thresholds. The naive approaches [17] use an appropriate simplifying assumption on the class labels to
treat OC problems as if they were standard classification problems. For instance, one possible solution is to use
different weights for different class labels, or another alternative solution is to map the class labels into numeric
values and then implement a standard regression algorithm such as the support vector regression. The ordinal
binary decomposition (OBD) approaches [1] transform the original ordinal classification task into a set of binary
classification tasks. Each sub-task is separately solved by a binary classification algorithm, and then the final
class labels are determined by ultimately combining the binary outputs into one label. In this study, we propose
a new method based on the OBD approach.

The supervised ordinal classification approaches aforementioned above present limitations when only a
small number of labeled ordinal data is available. The reason is that, in most ordinal classification problems,
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data instances are labeled by a user and this process could be difficult, expensive, or time-consuming, especially
when the number of class labels is high (i.e., more than three). In order to overcome this limitation, this article
proposes a new paradigm for ordinal classification where both labeled ordinal data and unlabeled data are
utilized during the model construction process.

Semisupervised ordinal regression (SSOR) has very little coverage in the literature, only several detailed
analyses [18–21] has been performed. Table 1 shows the comparison of our SSOC study with the existing SSOR
studies. Our method differs from the existing methods in three respects. First, they performed the prediction of
numeric target values, while we focus on the classification of categorical target values. Second, they used different
methods such as kernel discriminant learning [18], empirical risk minimization [19], max-coupled learning [20],
and Gaussian processes [21]; whereas we utilized the ordinal binary decomposition method. Third, since their
target values are numeric they used different evaluation metrics such as mean absolute error (MAE), mean
squared error (MSE), and mean zero-one error (MZE), whereas we tested the performance with accuracy and
F-score metrics. To the best of our knowledge, a semisupervised ordinal classification that will consider the
ordinal categorical class labels has not been studied until now. To bridge this gap, in this study, a new algorithm
for semisupervised learning is developed in the context of ordinal classification.

Table 1. Comparison of our study with the existing studies.

Ref Year Methods Algorithm Target class attribute Evaluation
metrics

Application
domainNumeric Categorical

[18] 2016 Kernel dis-
criminant
learning
(KDL)

Reduced empirical fea-
ture space semisupervised
KDL for ordinal regres-
sion (ES-DL)

✓ MAE
STD

Various
domains

[19] 2019 Empirical risk
minimization

Semisupervised ordinal re-
gression with Gaussian
kernel (SEMI-Kernel)

✓ MAE
MSE
MZE

Various
domains

[20] 2011 Max-coupled
learning

Semisupervised max-
coupling algorithm

✓ MAE Health

[21] 2013 Gaussian pro-
cesses

Semisupervised Gaussian
process ordinal regression
(SSGPOR)

✓ MAE
MZE

Various
domains

Proposed
approach

Ordinal binary
decomposition

DT, SVM, KNN, RF, and
NN

✓ Accuracy
F-Score

Various
domains

Cardoso and Domingues [20] propose a new learning paradigm, called max-coupled learning, and three
different methodologies for the breast cancer application. Our study differs from their study in many aspects.
First, they focused on the prediction of numeric target values (breast imaging reporting and data system -
BIRADS scores such as 1,2,3), whereas we consider the categorical class labels where the metrical distances
between adjacent categories are commonly unknown. For instance, the question of whether the difference
between classes c1 and c2 is the same as between classes c2 and c3 is unknown. We propose a completely
different approach that enables unlabeled data via the smoothness assumption (i.e., close samples are likely to
have similar categorical class labels). Second, their method was proposed for handling data with two views (x
and z ), however, our method can be applied to any ordinal data without any restriction. Third, they presented
their solution for a specific problem (breast cancer) by generating synthetic data, whereas we demonstrated the
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generalization ability of our method on real-world datasets obtained from various domains. Fourth, they used
a different method (max-coupling) which finds the maximum of the values obtained from the two “views” in
prediction, while we utilized the ordinal binary decomposition method by considering upward and downward
unions of classes. Fifth, to evaluate the performance, they used the MAE metric since their target values
are numeric like a regression problem, whereas we assess the percentage of errors since the class labels are
categorical.

3. Material and methods
3.1. Semisupervised learning

Semisupervised learning (SSL) is an important and useful type of machine learning concerned with using
both labeled and unlabeled data to perform a particular learning task. It is conceptually situated between
unsupervised learning and supervised learning and implies a more complex problem than both of them. The
semisupervised learning topic has received much attention in many areas ranging from health [3] to education [5],
where it is cheaper and easier to obtain unlabeled data rather than labeled data since it requires less expertise,
effort, and time consumption.

The existing SSL algorithms are capable of processing nominal data; however, they do not capture and
reflect the orderings among the class labels. Hence, they may lead to building inefficient models in the case of
ordinal data. In order to address this limitation of the existing SSL algorithms, in this article, we propose a
new SSL algorithm to exploit the presence of the orders among class labels in ordinal data. Our study aims to
investigate how combining labeled and unlabeled ordinal data may improve the classification performance, and
develop an algorithm that takes advantage of such a combination.

3.2. Ordinal classification
Ordinal classification is a special kind of supervised multi-class classification task that addresses the class
attributes whose labels exhibit a form of ordering. For example, an ordinal class attribute can represent four
wind-level categories in a wind speed prediction problem: very high, high, moderate, and low. It is clear that
there exists an order among the class labels such that very high � high � moderate � low, where � represents
that the former class label is better than the latter class label.

The conventional classification algorithms disregard the ordering information in class labels; however, it
usually leads to a significant loss of performance. In a ordinal classification problem, a sample from the lowest
class is remarkably different from a sample from the highest class, whereas two samples, from the lowest and
middle classes, are relatively close to each other. Therefore, taking into account such ordering information aims
to improve the performances of classifiers.

The traditional ordinal classification is limited to using only labeled ordinal data to construct a classifier.
However, in this study, we propose a novel learning paradigm dealing with the design of classifiers in the presence
of both labeled ordinal data and unlabeled ordinal data.

3.3. The proposed approach: semi-supervised ordinal classification

In this study, we propose a new approach “semi-supervised ordinal classification” (SSOC), which considers the
hierarchical relationship among the target variables when using both labeled and unlabeled ordinal data for
classification. In other words, we present a new classification strategy for incorporating ordinal data information
into semisupervised learning.
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There are many cases where unlabeled data in addition to labeled ordinal data can help in building or
improving a classifier. Consider, for instance, the case of movie classification, where we want to assign a rating
to a collection of movies such as very good, good, average, poor, and terrible ratings. However, most users
might not have an interest in rating movies, thus labeled ordinal data is scarce or difficult to obtain; on the
other hand, a huge amount of unlabeled data is available. This is where semisupervised ordinal classification
comes in. The proposed SSOC method is able to use unlabeled data along with the labeled ordinal data to
construct more efficient models in terms of accuracy compared to the standard ordinal classification methods.

A simple solution for the SSOC can be converting class labels into real values, e.g., {1,2,3,4,5}, and then
solve the problem as a standard regression problem. However, this solution may lead to building unreliable
models, since the metrical distances between adjacent categories are commonly unknown. For instance, the
question is whether the difference between saying “strongly agree” and “agree” is the same as between saying
“neutral” and “disagree”. The answer is that it is not possible to ensure this assumption. Therefore, in this
paper, we propose a completely different approach. We extended the ordinal classification algorithm presented
in [1] to enable unlabeled data via the smoothness assumption (i.e., close samples are likely to have similar
categorical class labels).

The proposed SSOC method is based on the self-training principle (also known as self-learning or self-
labeling). Firstly, an ordinal classifier is trained in a standard way with an initial small number of labeled
samples on an ordinal scale. After that, the unlabeled data is labeled by the constructed ordinal classifier via
its predictions. Lastly, a purely ordinal classification algorithm builds the final inductive classifier by using both
originally labeled and pseudo-labeled ordinal data together.

3.3.1. The formal definition of the proposed method

Formally let X be an input space with d-dimensional features, X ⊆ Rd , and, Y = {c1 ,c2 ,…,ck } be a finite set
of predetermined ordered classes such that c1 ≺ c2 ≺ ... ≺ ck . We denote two sample sets XL and XU as the
collection of input instances for the ordinal labeled and unlabeled samples, respectively, where XL ,XU ∈ X and

X = XL ∪XU . Given a set of l labeled instances {(xi, yi)}li=1 and u unlabeled instances {xj}(l+u)
j=l+1 , we denote

labeled data as DL = {(x1, y1), (x2, y2), , (xl, yl)} and unlabeled data as DU = {xl+1, xl+2, , xl+u} . Each data
point (xi, yi) in the labeled data DL consists of an instance xi from a given input space X , such that xi ∈ X ,
and has an associated label yi , where yi is one of the ordinal categories such that yi ∈ Y . The two datasets
DL and DU form the training set D together with n instances, where n = l+ u . We are especially interested
in cases where u >> l since an unlabeled instance is abundant and easily to be obtained while labeling the
instance is difficult and expensive since it usually requires expert knowledge.

Definition 1 (Semi-supervised ordinal classification) Semi-supervised ordinal classification refers to the
problem that utilizes both ordinal labeled data DL and unlabeled data DU and aims to find a decision function
f : XL+U → Y that can correctly predict the class labels y∗ of some unseen inputs x∗ .

The proposed SSOC method consists of two main steps. In the first step, the SSOC method applies an
ordinal classification algorithm to the labeled ordinal instances in XL to build an ordinal classifier and then
produces pseudo-labels Ŷ = {yl+1, yl+2, , yl+u} for the unlabeled data instances in XU by using the predictions
of the resulting classifier. In the second step, the ordinal classifier is then retrained on the newly obtained
pseudo-labeled ordinal data in addition to the originally labeled ordinal data.
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Definition 2 (Ordinal decomposition) Assume that the output space is defined as Y = {c1, c2, , ck} and the
labels are ordered according to the ranking structure ck � ... � c2 � c1 , where � denote this order information.
Ordinal decomposition is to decompose the original ordinal classification problem involving k classes into k− 1

binary classification problems to encode the ordering information among the class labels. The ith binary problem
is defined by separating the classes from 1 to i , denoted by Y− = {c1, c2, , ci} , and the classes from i+1 to k ,
denoted by Y+ = {ci+1, ci+2, , ck} .

Rather than the standard class probability P (label = ci) , the ith problem estimates the binary compo-
sition probability P (label � ci) , which is the probability of a sample of having a class greater than ci in the
ordinal scale. In this way, it takes into account the order among the classes since the upward and downward
unions of classes are progressively considered during the creation of the binary datasets. The final output is
then predicted by multiple models (k − 1 models), which are trained in conjunction with a base learner, i.e.,
using a decision tree method.

Definition 3 (Binary composition probability) Let Mi for i = 1, 2, , k−1 , denotes the model constructed
for the ordinal classification problem. Given a search instance x , an estimation Mi(x) is considered as a
prediction of the probability P (Lx � ci) that the class label of x is interpreted in Y+ , where Lx denotes the
class label of x . Binary composition probabilities on Y are formulated as follows:

P (c1) = 1− P (Lx � c1)

P (ci) = P (Lx � ci−1)× (1− P (Lx � ci)) 1 < i < k

P (ck) = P (Lx � ck−1)

(1)

To assign a class label (L) to a new sample x , we need to calculate the probabilities of the k ordinal
classes using k - 1 binary models. The prediction of the probabilities for the first and last class depends on a
single model. The probability of an example being of the first class P (c1) is given by 1 − P (Lx � c1) since
we will only consider the first model that discriminates between c1 and the rest. Similarly, the probability
of the last class P (ck) is computed from P (Lx � ck−1) in accordance with the one-vs-followers strategy. For
the intermediate classes 1 < i < k , the probability depends on a pair of models since the ordinal structure
of a middle-class ci can be reflected by two indicators: greater than its previous class P (Lx � ci−1) and not
greater than itself (1−P (Lx � ci)) . In this way, the method considers the order in the frontiers. For instance,
when the model is queried with a sample x for the class c2 , a vote for the higher classes c3 and a vote for the
lower classes c1 should be considered. Therefore, the upward and downward unions of classes are progressively
considered. In other words, adjacent classes are grouped together to encode the ordering among classes. For
example, assume that there are five ordered classes: very sad, sad, natural, happy, and very happy; then the
probability of each class is calculated as follows:

Ordinal decomposition Binary composition probability
{verysad} {sad, natural, happy, veryhappy} P(verysad) = 1 - P( label � verysad )
{verysad} {sad} {natural, happy, veryhappy} P(sad) = P( label � verysad ) × ( 1 - P( label � sad ))
{verysad, sad} {natural} {happy, veryhappy} P(natural) = P( label � sad ) × ( 1 - P( label � natural ))
{verysad, sad, natural} {happy} {veryhappy} P(happy) = P( label � natural ) × ( 1 - P( label � happy ))
{verysad, sad, natural, happy} {veryhappy} P(veryhappy) = P( label � happy )
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At the end of the binary decomposition, the label that has the highest probability is predicted as the
final class for a given instance. This probability estimation is meaningful for ordinal classification since it
typically assigns higher scores to the instances from higher classes. As an example, an instance x of class
ci will be in a positive class (Y+) of all i+1 binary classifiers, and therefore the model Mi should return a
high score. Thereby, the model Mi yields reasonable probability estimation that is consistent in the sense of
Mi(x) ≥Mi+1(x) . Essentially, the mapping i 7→Mi(x) is similar to a decumulative distribution function.

Coming back to the problem of semisupervised ordinal classification, an ordinal classifier model is
constructed by using labeled data until now. In the next step, the pseudo-labeling step, the resulting ordinal
classifier is used to predict labels for the previously unlabeled instances. Since the SSOC method takes into
account the relationships among the class labels, an unlabeled sample will be assigned to a pseudo-label by
maximum ranking probability to which it is associated. The pseudo-labeled data is appended to the initial
labeled data. Finally, the SSOC method retrains the underlying ordinal classifier with this augmented data.

3.3.2. The algorithm of the proposed method
The general framework of the proposed SSOC approach is given in Algorithm 1. The algorithm consists of five
steps.
Step 1: In the first step (lines 9-18), called ordinal binary decomposition, the method converts the original
ordinal labeled dataset DL into a set of binary datasets {Di}ki=1 to encode the ranking relation among the
classes. In this process, the label yj associated with the instance xj is replaced with yj = 0 ,∀ yj � ci , and,
yj = 1 , ∀ yj � ci . In other words, if we consider the class ci , the class values higher than ci are labeled as 1 and
the others are labeled as 0. In this way, the algorithm transforms the ordinal classification problem involving
k classes into k − 1 binary classification problems. For every i ∈ {1, 2, ..., k − 1} , the dataset Di is generated
using classes {c1, c2, ..., ci} against {ci+1, ..., ck} .
Step 2: In the second step (lines 19–23), a separate model Mi is trained for each binary dataset Di by using
a base learner. The first model M1 is built to estimate what is the probability of a given sample to belong to
any of the classes that are located higher than class c1 (class � c1 ), the second model M2 is constructed to
estimate the probability of belonging to any of the classes that are located higher than c2 (class � c2 ), and so
on. Finally, the last model Mk is trained to estimate the probability of belonging of a sample to the highest
class ck (class � ck ). In the training phase, a standard classification algorithm (i.e., DT, SVM, and NN) can
be used as a base learner.
Step 3: In the third step (lines 24-33), a query instance xi ∈ DU is submitted to all models M∗ , and their
estimations (M∗(xi)) are compared, and the class label with the highest probability is assigned to xi as a
pseudo-label. This process is repeated for each instance xi in the unlabeled dataset DU . In the foreach-loop,
the probability of belonging of the query instance xi to each class is estimated by using Equation (1). While
the probability of the first class P (c1) is computed (line 27), the upward union of classes P (Lx � c1) is
subtracted from 1. While the probability of the last class P (ck) is computed (line 31), the upward union of
classes P (Lx � ck−1) is directly considered. On the other hand, the probabilities for the intermediate classes
2 ≤ j ≤ k − 1 are computed in the for-loop (lines 28-30) by considering both upward and downward unions of
classes. In the end, the label that has the highest (MAX) probability is predicted as the final class (y ) for the
query instance xi .
Step 4: In the fourth step (lines 34-35), the binary datasets are generated from the combined (labeled and
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pseudo-labeled) data, similar to the first step. In other words, the algorithm repeats Step 1 by simply using
both the originally labeled and pseudo-labeled ordinal data as if it was regular labeled ordinal data.
Step 5: In the fifth step (lines 36-37), the ordinal classifier is re-trained by using the newly obtained binary
datasets, similar to the second step. In other words, the ordinal classifier is re-trained with its own estimations
by enlarging its initial labeled set.

Inputs:
DL : the labeled ordinal dataset D = {(x1, y1), (x2, y2), ., (xl, yl)} with l intances
DU : the unlabeled dataset D = {xl+1, xl+2, ., xl+u} with u intances
Y : ordinal class labels y ∈ {c1, c2, ., ck} with an order ck � ... � c2 � c1
k: the number of classes
Output:
M∗ : semisupervised ordinal classification model
Begin:
// Step 1 - Construction of binary datasets from the labeled data, DL

for i← 1 to k − 1 do
foreach (xj , yj) in DL do

if (yj � ci) then
Di.Add(xj , 0) // The class values smaller than or eqaul to ci are labeled as 0

else
Di.Add(xj , 1) // The class values higher than ci are labeled as 1

end
end

end
// Step 2 - Construction of unified binary models
for i← 1 to k − 1 do

Mi = Train(Di) // Building a classifier on the training set using a base learner
M∗ = M∗ ∪Mi

end
// Step 3 - Pseudo-labeling unlabeled data, DU

foreach xi in DU do
y = M∗(xi) = MAX ( // The label with max probability is predicted as the final class
P (c1) = 1− P (Li � c1) // The probability of belonging to the first class
for j ← 2 to k − 1 do

P (cj) = P (Li � cj−1)× (1− P (Li � cj)) // The probability of belonging to a middle class
end
P (ck) = P (Li � ck−1)) // The probability of belonging to the last class
DL.Add(xi, y)

end
// Step 4 - Construction of binary datasets from the labeled and pseudo-labeled data
Repeat step 1
// Step 5 - Construction of semisupervised ordinal classification model
Repeat step 2
End Algorithm

Algorithm 1: Semi-supervised Ordinal Classification (SSOC)

The SSOC method builds k − 1 models on the training set, where k is the number of classes. When
we use a base learner with complexity T , the overall time complexity of the method for training is given by
O((k − 1).T (l) + u + T (l + u)) , where l and u are the number of labeled and unlabeled ordinal instances,
respectively.
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3.3.3. An example of the proposed method

Figure 1 shows a concrete example of the proposed approach: semi-supervised ordinal classification (SSOC).
Assume that each sample in the given dataset has three features (gender, age, and status) and is classified
into one of the predefined four categories on an ordinal scale (none ≺ low ≺ medium ≺ high). The SSOC
method consists of six consecutive steps grouped under two main stages. The first stage (Figure 1a) is to train
ordinal classifiers on the existing labeled ordinal data, and after that, use the predictions of these classifiers on
the previously unlabeled data to generate additional labeled data, which is commonly referred to as pseudo-
labeled data. This process allows unlabeled data to be introduced to the training process in an efficient and
straightforward manner. In the binary decomposition step, the ordinal classification problem involving k classes
(k = 4 in this example) is converted into (k − 1) binary classification problems to encode the ordering among
the class labels such that P (class � none) , P (class � low) , and P (class � medium) . In the second main
stage (Figure 1b), the ordinal classifiers are retrained on the newly obtained pseudo-labeled data in addition to
the originally labeled data. The method simply passes both the originally labeled and pseudo-labeled ordinal
data to a supervised base classifier as if they were regular labeled ordinal instances.

4. Experimental studies

We conducted five experiments on 10 ordinal datasets for illustrating the efficiency and validity of the proposed
SSOC algorithm.
Experiment 1 - We compared the SSOC method with the existing semi-supervised learning algorithm (YATSI)
presented in [2] to show the superiority of our algorithm on ordinal data.
Experiment 2 - We investigated the performance of the SSOC method with different ratios of labeled data (from
15% to 50%) to determine its impact on the method.
Experiment 3 - We evaluated the performance of the SSOC method with different base classifier combinations
(DT, SVM, KNN, RF, and NN).
Experiment 4 - We compared the SSOC method with the standard ordinal classification algorithm presented in
[1] to show the effectiveness of our method.
Experiment 5 - We investigated that after retraining the classifier with new pseudo-labels, how much the
performance is increased compared to the performance with initial training labels.

In these experiments, the performances of the classification models were evaluated according to the
accuracy metric, which is the percentage of correctly predicted samples. Accuracy is calculated by the formula:
Accuracy= (TP+TN)/(TP+TN+FP+FN), where true positive (TP) and true negative (TN) indicate the correct
predictions for the positive samples and negative samples, respectively; whereas false positive (FP) and false
negative (FN) represent the misclassified positive and negative samples, respectively. The SSOC and YATSI
methods were compared by using the original dataset for testing. Ordinal classification accuracies were obtained
by using the 10-fold cross-validation technique, in which the data is randomly divided into ten disjoint and equal-
sized partitions, and one of the partitions is kept for the testing process, while the remaining partitions are
utilized for the training process.

We implemented the proposed method in the Java programming language by using the WEKA machine
learning library [22]. We also compared our method with the existing methods [1, 2] which are available as
packages for the WEKA tool. The comparison results were evaluated by using Wilcoxon statistical test to
ensure the significance of the performance results obtained by the methods on the ordinal datasets.
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Figure 1. An example of the proposed SSOC method.

In each experiment, all the input parameters of the algorithms were left as default values, except the
KNN algorithm. The number of neighbors (the parameter k) was selected as log2(n) based on the previous
study [23], where n is the number of objects in the respective dataset. The default value of this parameter is 1;
however, it is too small and it generally does not make sense to choose the parameter k so small when a large
number of instances are available in the dataset.
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4.1. Dataset description

In order to demonstrate the validity and effectiveness of the proposed SSOC method, the experiments were
carried out on 10 ordinal datasets available in the UCI (the University of California at Irvine) and OpenML
repositories. Table 2 gives the names and main characteristics of the datasets, including the number of features,
classes, instances, the number of instances per class, and the source repository.

Table 2. Summary description of the datasets.

No Dataset #Features #Instances #Classes Class Distribution Source
1 Automobile 26 205 7 (0, 3, 22, 67, 54, 32, 27) UCI
2 Car Evaluation 7 1728 4 (384, 69, 1210, 65) UCI
3 Employee Selection (ESL) 5 488 9 (2, 12, 38, 100, 116, 135, 62, 19, 4) OpenML
4 Eucalyptus 20 736 5 (180, 107, 130, 214, 105) OpenML
5 Nursery 9 12960 5 (4320, 2, 328, 4266, 4044) UCI
6 Squash-Stored 25 52 3 (8, 21, 23) OpenML
7 User knowledge modeling (UKM) 6 403 5 (50, 129, 122, 102) UCI
8 Volcanoes on venus (B6) 4 10130 5 (88, 86, 58, 68, 2952) UCI
9 Wine quality-red 12 1599 6 (10, 53, 681, 638, 199, 18) UCI
10 Wine quality-white 12 4898 7 (20, 163, 1457, 2198, 880, 175, 5) UCI

Each dataset is divided into two parts: labeled and unlabeled sets because the main purpose of the SSOC
method is to utilize unlabeled ordinal data to improve learning performance. We used a random selection of
instances that were marked as labeled samples, and the class labels of the rest of the samples were removed.
To investigate the effect of the amount of labeled ordinal data, we considered different percentage values when
dividing the dataset, varying from 15% to 50% with an increment of 5%. For example, assuming a dataset
that contains 1000 instances, when the labeled data rate is 10%, 100 samples were put into the labeled dataset
DL with their class labels, while the remaining 900 samples were placed into the unlabeled dataset DU without
their class labels.

4.2. Experimental results

In this study, the proposed SSOC methods were tested with different base classifiers (i.e., DT, SVM, KNN, RF,
and NN) on the benchmark datasets. In other words, the SSOC method with each different base classifier is built
as an independent classifier. From here onwards, the abbreviation of the method followed by the abbreviation
of the base classifier technique is used to refer to the related approach. For example, SSOC-SVM refers to the
SSOC method with the SVM base classifier.

4.2.1. The results of experiment 1

In this experiment, we compared the proposed method (SSOC) with the existing method (YATSI) [2] on
various ordinal datasets in terms of classification accuracy (%). YATSI (yet another two stage idea) is a
collective classifier for semisupervised learning and it can be used in the WEKA machine learning tool [22]
with additional Collective Classification package. Table 3 shows the comparison results. The selection of initial
labeled data was repeated five times for the proposed method and the average results were reported here. It
can be observed from Table 3 that the proposed SSOC method resulted in performance improvement over the
existing YATSI method on 10 benchmark ordinal datasets. For example; for the “UKM” dataset, the SSOC-DT
algorithm (90.07%) is significantly better than the YATSI-DT algorithm (83.13%). The predictive performance
difference between SSOC and YATSI is considerable for almost all datasets, for different percentages of labeled
data (i.e., 25%, 50%, and 75%), and for all machine learning algorithms (DT, SVM, KNN, RF, and NN).

1810



UNAL et al./Turk J Elec Eng & Comp Sci

Hence, the results indicated that semisupervised based ordinal classification could generally produce a robust
model with high prediction accuracy.

Although the SSOC method usually outperforms YATSI, in some cases the performance of the YATSI
is better than SSOC, especially for the Car Evaluation and Nursery datasets. This is probably true when the
data is noisy or some classes are similar to each other. The reason is probably because of the fact that YATSI
is a collective classification algorithm that uses an of-the-shelf classifier in a first step and benefits from the
weighted nearest neighbor approach. The main idea behind collective classification is that the predicted class
label of a test-sample is influenced by the predictions made by related samples. However, if the user does not
determine the optimal number of neighbors as well as the optimal weights, YATSI may lose this advantage,
especially when the data is noisy.

Although accuracy is a widely used evaluation metric, sometimes it is not enough alone due to its strong
bias against the rare (minority) class, especially when the data is imbalanced. Since even considering all
examples as the majority class, high accuracy can be achieved. Since some of the datasets used in this study is
imbalanced we applied the synthetic minority oversampling technique (SMOTE) [24] and we used the F-Score
measure to evaluate the results. Options for setting hyperparameters were left as default values from the WEKA
software package, except the percentage of SMOTE instances to be created for the minority class. It was set
according to the ratio of instances between the majority and minority classes in the particular dataset. Table 4
shows the comparison results in terms of F-Score which is the harmonic mean of precision and recall. The
selection of initial labeled data was repeated five times and the average results were reported here. The value
of the F-Score metric is ranged between 0 and 1, where 1 is the best value. As seen from Table 4; the F-score
values obtained by the SSOC-RF algorithm are close to 1, especially when 75% of the data was considered as
labeled. The F-score values slightly increased as the number of labeled data samples increased. As a result, it
can be concluded that it is possible to achieve high F-score values by the proposed method for the ordinal data.

Even though the proposed SSOC method has higher accuracy than the YATSI method on average, the
results were evaluated by using a formal statistical test to ensure the differences in performance are statistically
significant. Table 5 demonstrates the P-values computed through the Wilcoxon test by pairwise comparisons
between the methods. Based on the reported P-values, it can be noted that the results are statistically significant
since almost all the obtained p-values are very smaller than the significance level (α = 0.05). Hence, the
statistical test strongly demonstrated the existence of significant differences between the methods.

4.2.2. The results of experiment 2
In this experiment, we considered different ratios of labeled data since the classification performance can be
varied with the amount of labeled data. Figure 2 shows the accuracy results obtained by the proposed SSOC
method with different ratios of labeled data varying from 15% to 50% with an increment of 5%. The results
indicated that considerable improvement could be expected from our method in circumstances where the ratio of
labeled data grows. The best accuracy on average (79.35%) was achieved when 50% of the data was considered
as labeled. The second-best accuracy on average (78.12%) was obtained under the circumstance: 45% labeled
and 55% unlabeled data. The percentages of 40% and 35% followed them with the average accuracy values
of 76.98% and 75.54%, respectively. Hence, it can be concluded that, in ordinal classification tasks, a set of
labeled ordinal data can be employed by the proposed SSOC algorithm to consistently improve performance.
This result indicates that the initial small number of labeled ordinal data can be insufficient enough to learn
the model, and therefore, additional labeled data can improve the classification performance.
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Table 3. Comparison of the proposed method (SSOC) and the existing method (YATSI) [2] in terms of accuracy (%).

Dataset Labeled
data (%)

SSOC-DT SSOC-SVM SSOC-KNN SSOC-RF SSOC-NN YATSI-DT YATSI-SVM YATSI-KNN YATSI-RF YATSI-NN

25 56.78 63.02 48.39 71.71 66.15 48.78 46.34 50.24 47.32 47.80
Automobile 50 73.56 74.54 58.83 87.80 81.95 57.07 57.56 50.73 56.10 55.12

75 76.88 80.20 67.41 96.10 91.12 60.49 64.39 59.02 61.95 63.41
25 81.42 82.13 75.21 89.28 95.30 83.39 89.12 76.33 84.38 91.78

Car 50 86.79 80.31 82.35 96.06 98.62 91.32 92.94 82.99 92.71 94.91
Evaluation 75 91.63 81.31 91.86 98.34 99.76 91.90 92.01 88.54 92.82 93.23

25 62.83 58.98 59.92 68.93 71.15 60.25 51.23 60.45 61.68 63.11
ESL 50 68.57 63.81 66.68 75.33 74.18 67.21 58.40 65.16 68.44 68.03

75 72.75 65.53 69.47 79.67 76.43 64.96 59.22 65.16 64.55 65.16
25 61.90 65.76 47.93 67.42 68.13 52.04 53.53 48.23 51.63 50.82

Eucalyptus 50 66.85 70.22 57.04 81.20 79.08 54.35 56.39 54.21 56.25 55.98
75 72.80 72.55 61.82 90.35 85.90 50.00 54.08 55.03 55.43 54.76
25 92.78 91.88 91.87 96.07 99.58 93.74 94.05 92.35 95.00 96.25

Nursery 50 96.30 92.64 95.84 98.74 99.98 96.99 95.44 95.81 97.38 98.74
75 97.43 93.09 97.26 99.60 99.98 96.63 94.93 96.03 97.38 97.57
25 64.62 65.00 58.08 70.00 67.69 38.46 40.38 42.31 42.31 40.38

Squash- 50 69.23 77.31 62.31 81.54 82.69 57.69 48.08 53.85 55.77 51.92
Stored 75 78.46 87.31 68.46 91.15 90.38 57.69 51.92 44.23 51.92 50.00

25 90.07 81.84 72.95 90.82 95.53 83.13 77.42 72.95 83.13 83.37
UKM 50 95.53 83.13 84.42 96.92 96.87 85.36 83.37 84.37 84.86 86.10

75 96.97 91.41 87.39 98.86 98.21 84.62 82.63 82.88 84.12 84.12
25 96.20 96.21 96.23 97.11 96.48 96.47 96.20 96.23 96.41 96.42

Volcanoes 50 96.25 96.21 96.42 98.17 96.62 96.54 96.20 96.43 96.54 96.58
75 96.30 96.21 96.53 98.89 96.67 96.52 96.21 96.51 96.54 96.60
25 61.79 57.66 57.36 69.79 60.38 57.22 57.16 57.47 58.04 57.29

WQ-Red 50 68.09 58.09 61.71 81.78 63.63 58.16 58.16 59.16 58.85 57.72
75 77.24 58.41 63.09 91.56 67.03 57.79 57.35 60.54 59.47 60.23
25 56.57 45.87 53.44 67.92 53.84 52.10 46.96 53.63 54.23 51.12

WQ-White 50 65.66 51.67 57.76 81.76 56.61 55.59 53.74 56.57 56.94 55.96
75 73.44 50.32 59.58 91.19 57.92 55.45 53.12 56.98 56.17 54.02
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Table 4. Comparison of the methods in terms of F-Score.

Dataset Labeled data (%) SSOC-DT SSOC-SVM SSOC-KNN SSOC-RF SSOC-NN
25 0.5206 0.5967 0.3481 0.6837 0.6227

Automobile 50 0.7708 0.7315 0.5584 0.9098 0.8448
75 0.8402 0.7414 0.6222 0.9785 0.9458
25 0.5679 0.5359 0.4350 0.7488 0.8857

Car 50 0.6494 0.5038 0.4899 0.9106 0.9718
Evaluation 75 0.8580 0.5074 0.7885 0.9737 0.9945

25 0.5451 0.3863 0.4882 0.5980 0.5942
ESL 50 0.5823 0.4355 0.5616 0.6817 0.6377

75 0.6316 0.4806 0.5731 0.8035 0.6699
25 0.5971 0.6359 0.4645 0.6582 0.6660

Eucalyptus 50 0.6501 0.6821 0.5455 0.8016 0.7818
75 0.7173 0.7060 0.5931 0.8989 0.8535
25 0.7079 0.7283 0.6976 0.8127 0.8907

Nursery 50 0.8003 0.7740 0.7339 0.8837 0.9125
75 0.8229 0.7856 0.7785 0.9003 0.9125
25 0.6107 0.6715 0.5325 0.709 0.6976

Squash- 50 0.6302 0.7769 0.5729 0.8081 0.8232
Stored 75 0.806 0.8703 0.6899 0.9083 0.9011

25 0.9043 0.7772 0.7324 0.9112 0.9539
UKM 50 0.9543 0.8053 0.8369 0.969 0.9699

75 0.968 0.9093 0.8702 0.9891 0.9844
25 0.4388 0.5810 0.43815 0.5207 0.5482

Volcanoes 50 0.4673 0.5810 0.5174 0.7300 0.5536
75 0.5648 0.5810 0.5295 0.9035 0.7099
25 0.3973 0.3305 0.3523 0.5676 0.4160

WQ-Red 50 0.4659 0.3325 0.3938 0.7639 0.4697
75 0.5321 0.3341 0.3935 0.9265 0.5210
25 0.3565 0.2365 0.3164 0.5372 0.3446

WQ-White 50 0.4487 0.2729 0.3386 0.7606 0.3800
75 0.5152 0.2704 0.3638 0.8928 0.4116

Table 5. Wilcoxon test results.

Compared algorithms P-value Significance level
SSOC-DT vs. YATSI-DT 0.0000971 very strong
SSOC-SVM vs. YATSI-SVM 0.0349977 strong
SSOC-KNN vs. YATSI-KNN 0.0028530 very strong
SSOC-RF vs. YATSI-RF 0.0000017 very strong
SSOC-NN vs. YATSI-NN 0.0000017 very strong
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Figure 2. Accuracy results obtained with different ratios of labeled data.
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As has been observed in the Nursery, UKM, and Volcanoes datasets, it is possible to provide good
generalization ability for the ordinal classification problem by applying a small number of labeled data and a
large number of unlabeled data. This is probably because of the following reasons. The Nursery and Volcanoes
datasets are the largest datasets among others, hence the initial labeled ordinal data is sufficient enough to
learn the model. This makes the model more robust, and therefore, unlabeled data can be labeled correctly by
using this initial model. The Volcanoes dataset has the least number of features among the other datasets, and
therefore, it is free from irrelevant and redundant features. The presence of irrelevant or redundant features
may mislead the algorithm to produce irrelevant patterns, leading to classification errors. The UKM dataset is
a relatively balanced dataset, and therefore, providing a representative investigation and being able to reliably
classify all classes. When the dataset is imbalanced, the instances from the minority class may not exist in the
small labeled data enough for learning. Furthermore, the model may fail to converge to a correct solution and
cannot give good results, if labeled data does not represent patterns in the data. Performance declines could be
observed when there was a mismatch between the classes available in the labeled ordinal data and the classes
present in the unlabeled data. Therefore, the selection of optimal labeled data ratio is restricted so that at least
one sample per class should be labeled. In multiclass classification, the number of labeled data samples can be
increased linearly with respect to the number of classes.

It experimentally confirmed that the characteristics of the ordinal data and their partitioning may have
an important impact on the classification performance of different machine learning algorithms. To provide a
realistic evaluation, researchers should run alternative algorithms on available datasets with different ratios of
labeled and unlabeled ordinal data. For example, in this study, it was observed from Figure 2 that the SSOC-RF
and SSCO-NN algorithms were usually worked well even if a small number of labeled data is available.

The results obtained from the Nursery and Volcanoes datasets are quite stable, no matter what ratio of
labeled data is used. This is probably because of the fact that they are the largest datasets and so the initial
labeled data were supplied sufficiently, and therefore, the classification accuracy did not change so much by
adding more unlabeled data. On the other hand, the labeling process is quite important for other datasets. For
example, for the Automobile dataset, after adding 5% labeled data, we found that the classification accuracy
of the SSOC-RF algorithm increased from 84.88% to 87.80%.

4.2.3. The results of experiment 3

A key property of our SSOC method is that it can be applied to any ordinal data in combination with any given
base learner. The performance of the method is dependent on the selection of the appropriate base learning
algorithm. Therefore, in this experiment, the proposed approach was tested on various datasets in combination
with five popular classification algorithms, including DT, SVM, KNN, RF, and NN.

Figure 3 shows the radar and bar charts that represent the accuracy values obtained from each algorithm
for the ordinal datasets considered when using a 75%-25% labeled-unlabeled ratio. We selected this ratio since
the accuracy of prediction increased as the number of labeled data samples increased, and the characteristics
underlying the data cannot be suitable for training with a small ratio of labeled data due to many different
reasons, i.e., small data size, imbalanced data, noisy data, the presence of similar classes, and a large number of
classes. The radar chart (Figure 3a) illustrates the classification performance as the distance from the center;
thus, a higher area indicates a better classification performance. It helps us to comparatively visualize the
accuracy of the methods for each dataset separately. Figure 3b shows the same results in a different way aiming
to compare the accuracy values on all the datasets.
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According to the results, SSOC-RF achieved slightly better accuracy (93.57%) than the rest. This
is probably because RF is an ensemble learning method that constructs many decision trees to improve the
classification performance. The SSOC-NN and SSOC-DT methods follow the SSOC-RF method with the
accuracy values of 86.34% and 83.39%, respectively. It seems that KNN is not a good choice as a base learner
for SSOC since their combinations showed the worst performance (76.29%) on almost all datasets. Furthermore,
it was observed that SSOC-SVM provided better results than SSOC-KNN, although the differences between
them are less remarkable than in the cases of other methods adopted as base learner.

As has been empirically observed, the characteristics of the ordinal data may have an important impact
on the classification performance of different base learners. While the best average accuracy (96.92%) was
achieved for the Volcanoes dataset, the worst average values were generally obtained for the WQ-red and WQ-
white datasets. Some base learners may work well on particular types of datasets and may perform poorly on
others. Therefore, a combination of empirical evaluation and theoretical analysis should be used to determine
the best base learner for the given problem.
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Figure 3. Accuracy results obtained with different ratios of labeled data.

In this study, we considered different ratios of labeled data since the classification performance can be
varied with the amount of labeled data. For example, when 25%–75% labeled-unlabeled ratio was considered,
the results given in Table 3 and Figure 2 showed that the SSOC-DT, SSOC-RF, and SSOC-NN methods achieved
the high accuracy values (≥80%) on some datasets such as the Car Evaluation, Nursery, UKM, and Volcanoes
datasets. However, a small ratio of labeled data could sometimes be insufficient enough to train the model.
This is especially true in the following cases: (i) When the dataset size is small, the insufficient labeled data
may not represent patterns in the data; (ii) when the dataset is imbalanced, the instances from the minority
class may not exist in the small labeled data enough for learning; (iii) when the data is noisy, a small portion of
labeled data may not tolerate the noise itself; (iv) when some classes are similar to each other, a small portion
of labeled data may not contain useful information for distinguishing them; (v) when the number of classes is
large, a small number of labeled data may not include at least one sample per class.

Since SSOC is a metaalgorithm, it allows any supervised base learner to be applied, such as DT, SVM, and
NN. Since deep learning (DL) has been attracting attention in the machine learning community in recent years,
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our method can also be combined with it. Since deep learning has been proven to be a powerful ML technique
in many studies, it can be used to improve the classification performance of our method. We performed an
experiment to investigate the performance of SSOC-DL by using the WekaDeeplearning4j package [25]. The first
experimental results showed that SSOC-DL outperformed the existing OC-DL on average, similar to other base
learners. The optimal hyperparameters could be found and increased to build models with higher performance.
However, we can have challenges of high computational time and high power consumption. Deep learning has
generally been used to solve complex problems such as image classification, speech recognition, and natural
language processing since it has ability to automatically to extract useful features (such as edges in images).
Actually, the datasets used in this study contain simple transactional data and are not complex to be analyzed
by deep learning. However, the proposed SSOC method can take advantage of deep learning when classifying
ordinal image, voice, text, and video data.

4.2.4. The results of the experiment 4
This experiment was conducted to evaluate semisupervised learning in the case of ordinal classification. The
central question in this experiment is: whether the introduction of unlabeled ordinal data yields a learner
better than the traditional learner or not – shortly, be it semisupervised or supervised. To answer this question,
we compared the proposed SSOC algorithm with the existing ordinal classification algorithm presented in [1].
Table 6 shows the comparison results obtained when using a 50%–50% labeled-unlabeled ratio. It is clearly
seen that the semisupervised ordinal classification methods (SSOC-DT, SSOC-SVM, SSOC-RF, and SSOC-
NN) were exceeded their supervised ordinal counterparts (OC-DT, OC-SVM, OC-RF, and OC-NN) in terms
of accuracy on average. The results presented in Table 6 are promising since they indicate that, in ordinal
classification, unlabeled ordinal data can be employed by the machine learning algorithms to consistently
improve performance. This is because of the fact that when unlabeled data is available besides the labeled
ordinal data, semisupervised learning can better exploit and learn existing structures in the explanatory features
than supervised learning would be. For instance, the SSOC-RF method (87.93%) remarkably outperformed
the existing OC-RF algorithm (80.61%) on average. Similarly, the SSOC-NN method (83.02%) achieved better
performance than the existing OC-NN algorithm (77.43%) on average. It experimentally confirmed that the
introduction of unlabeled ordinal data can improve the generalization and so classification performances of any
particular learning algorithm. Hence, our semi-supervised ordinal classification algorithms showed significant
potential and competitiveness against supervised ordinal ones. Consequently, the experimental results provided
good synergy for the ordinal version of semisupervised learning.

The obtained results are promising indeed because, in real-world applications, unlabeled ordinal data are
more available than labeled ordinal data, and labeling ordinal data is a difficult, expensive, or time-consuming
process and it usually requires human efforts. Therefore, it is usually possible to construct a proper classification
model by labeling at most half of the ordinal instances, instead of all.

4.2.5. The results of experiment 5
The proposed SSOC method consists of two main steps. In the first step, a classifier is trained with the initial
labeled data on an ordinal scale. In the second step, the unlabeled data is labeled by the constructed ordinal
classifier via its predictions, called pseudo-labels, and then the classifier is retrained with this augmented data.
In this experiment, we investigated that after retraining the classifier with new pseudo-labels, how much the
performance is increased compared to the performance with initial training labels. To answer this question, we
compared the performances of the initial model and retrained model.
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Figure 4 shows the average accuracy values obtained from the initially trained model and retrained model
for all the ordinal datasets considered when using 25%-75%, 50%-50%, and 75%-25% labeled-unlabeled ratios.
It can be clearly seen from the results that the pseudo-labeled data can be employed by the algorithm to
consistently improve performance. For example, when 50%-50% labeled-unlabeled ratio was considered, the
SSOC-NN method achieved a higher accuracy value (83.02%) than the initial model (76.07%) on average. It
experimentally confirmed that the introduction of unlabeled ordinal data can improve the generalization and so
classification performances of any particular learning algorithm. This is because of the fact that when unlabeled
data is available besides the labeled ordinal data, the algorithm can better exploit and learn existing structures
in the explanatory features. The unlabeled data instances provide additional knowledge that is relevant for
ordinal classification, and they can successfully be used to improve the generalization ability of the learning
system. The best improvement (14.81%) was observed for the SSOC-RF algorithm when the labeled data rate
is 75% probably due to its ensemble structure. Based on the results, we can conclude that the introduction of
unlabeled ordinal data yields a learner better than the initial learner. Unlabeled data in addition to labeled
ordinal data can help in improving a classifier in terms of accuracy.

Table 6. Comparison of the proposed method (SSOC) and the existing method [1] in terms of accuracy (%).

Dataset SSOC-DT SSOC-SVM SSOC-KNN SSOC-RF SSOC-NN OC-DT OC-SVM OC-KNN OC-RF OC-NN
Automobile 73.56 74.54 58.83 87.80 81.95 66.34 66.83 61.95 85.85 72.68
Car evaluation 86.79 80.31 82.35 96.06 98.62 90.16 80.32 94.27 95.72 99.42
ESL 68.57 63.81 66.68 75.33 74.18 65.78 66.80 68.24 66.60 68.85
Eucalyptus 66.85 70.22 57.04 81.20 79.08 65.49 66.03 54.48 62.77 63.32
Nursery 96.30 92.64 95.84 98.74 99.98 97.04 93.13 97.77 99.14 99.95
Squash-stored 69.23 77.31 62.31 81.54 82.69 69.23 71.15 53.85 67.31 65.38
UKM 95.53 83.13 84.42 96.92 96.87 92.56 93.55 85.86 93.55 95.29
Volcanoes 96.25 96.21 96.42 98.17 96.62 96.08 96.18 96.49 96.42 96.61
WQ-red 68.09 58.09 61.71 81.78 63.63 61.60 58.41 58.04 69.48 59.29
WQ-white 65.66 51.67 57.76 81.76 56.61 57.62 51.72 54.10 69.27 53.51
Avg. 78.68 74.79 72.34 87.93 83.02 76.19 74.41 72.51 80.61 77.43
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Figure 4. The performance improvement provided by retraining compared to the initial training.
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As a result of five experiments aforementioned, it can be concluded that the proposed SSOC algorithm
looks quite promising in achieving high accuracy for the ordinal version of semi-supervised learning. The
experiments demonstrated that exploiting the order among class labels in semi-supervised learning could lead
to building better models, compared to the traditional nominal and supervised learning.

5. Conclusion and future work
Ordinal classification differs from multiclass (nominal) classification in that there exists some ordering among
the class labels such as low, medium, and high. The existing semisupervised methods provide a nominal
classification task. The key issue for our study, thus, is to design a new method that can effectively combine
“semisupervised learning” and “ordinal learning” paradigms for the categorical class labels for the first time.
The purpose of our study is to effectively use a small number of labeled ordinal data and a large number of
unlabeled ordinal data for classification model construction. From this perspective, our study is very important
since unlabeled ordinal data is cheap and abundantly available, and labeling ordinal data is a time-consuming
and costly process requiring expert knowledge. It aims to maximize the classification performance of the model
through appending unlabeled samples to the labeled ordinal data while minimizing the human effort.

This paper introduces a new concept of ”semi-supervised ordinal classification” for the categorical class
labels. It proposes a new algorithm, called SSOC, which takes into account the relationships between the class
labels during semi-supervised learning. In the proposed SSOC method, a classifier is firstly trained on an initial
small number of labeled ordinal samples for the purpose of classifying unlabeled instances. After that, the
resulting classifier is re-trained with its own estimations by enlarging its initial labeled set.

In the experimental studies, we evaluated the performance of the proposed algorithm (SSOC) on various
ordinal datasets. The SSOC method resulted in a significant improvement over the existing YATSI method.

As future work, an ensemble semi-supervised ordinal classification approach can be implemented by using
the proposed method as an ensemble member.
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